Friday


Learning to Love the Wisdom

Homo technologiensis

of Industrial-Technological Civilization


A confession of enthusiasm

Allow me to give free rein to my enthusiasm and to proclaim that there has never been a more exciting time in human history to be a philosopher than today. It is ironic that, at the same time, philosophers are probably held in lower esteem today than in any other period of human history. I have recently come to the opinion that it is intrinsic to the structure of industrial-technological civilization to devalue philosophy, but I have discussed the contemporary neglect of philosophy in several posts — Fashionable Anti-Philosophy, Further Fashionable Anti-Philosophy, and Beyond Anti-Philosophy among them — so that is not what I am going to write about today.

Today, on the contrary, I want to write about the great prospects that are now opening up to philosophy, despite its neglect in popular culture and its abuse by the enthusiasts of a positivistically-conceived science. And these prospects are not one but many. In some previous posts about object-oriented philosophy (also called object-oriented ontology, or OOO) I mentioned how exciting it was to be alive at a time when a new philosophical school was coming into being, especially at a time when academic philosophy seems to have stalled and relinquished any engagement with the world or any robust relationship to the ordinary lives of ordinary human beings. (As bitterly as the existentialists were denounced in their day, they did engage quite directly with contemporary events and contemporary life. Sartre made a fool of himself by meeting with Che Guevara and by mouthing Maoist claptrap in his later years, but he reached far more people than most philosophers of his generation, and like fellow existentialist Camus, did so through a variety of prose works, plays, and novels.) Now I see that we live in an age of the emergence of not one but of many different philosophical schools, and this is interesting indeed.

Philosophical periodization: schools of thought

Anyone who discusses so-called “schools” in philosophy is likely to run into immediate resistance, usually from those who have been characterized as belonging to a dubiously-conceived school. As soon as Sartre gave an explicit definition of existentialism as being based on the principle that existence precedes essence, Heidegger and Jaspers explicitly and emphatically denied that they were “existentialists.” And if we think of the hundreds years of philosophical research and the hundreds of philosophers who can be lumped under the label of “scholasticism,” the identification of a school of “scholastic” philosophers would seem to be without any content whatsoever.

Nevertheless, some of these labels remain accurate even when and where they are rejected. While Heidegger and Jaspers rejected the principle that existence precedes essence, there is no question that all three of these great existentialist thinkers were preoccupied with the problematic human condition in the modern world. Similarly, the ordinary language philosophers had their disagreements, but there were unified by a method of the analysis of ordinary language.

The school of techno-philosophy

With this caveat in mind about identifying a philosophical “school” that will almost certainly be rejected by its practitioners, I am going to identify what I will call techno-philosophy. In regard to techno-philosophy I will identify no common goals, aspirations, beliefs, principles, ideas, or ideals that belong to the practitioners of techno-philosophy, but only the common object of philosophical analysis. Techno-philosophy offers an initial exploration of novel ideas and novel facts of life in industrial society, and especially the ideas and facts of life related to technology that rapidly change within a single lifetime.

What makes the school of techno-philosophy interesting is not the special rigor or creativity of the philosophical thought in question — contemporary Anglo-American academic analytical philosophy is far more rigorous, and contemporary continental philosophy is far more imaginative — but rather the objects taken up by techno-philosophy. What are the objects of techno-philosophy? These objects are the novel productions of industrial-technological civilization, which appear and succeed each other in breathless rapidity. The fact of technological change, or even, if one would be so bold, rapid technological progress, is unprecedented. As an unprecedented aspect of life in industrial-technological civilization, rapid technological progress is an appropriate object for philosophical reflection.

The original position of technical society

The artifacts of technological progress have been produced in almost complete blindness as regard to their philosophical significance and consequences. What techno-philosophy represents is the first attempt to make philosophical sense of the artifacts of technology taken collectively, on the whole, and with an eye to their extrapolation across space and through time. In fact, the very idea of technology taken whole may be understood as a conceptual innovation of techno-philosophy, and this very idea has been called the technium by Kevin Kelly. (I wrote about the idea of the technium in Civilization and the Technium and The Genealogy of the Technium.)

Thus we can count Kevin Kelly among techno-philosophers, and even Ray Kurzweil — though Kurzweil does not seem to be interested in philosophy per se, he has pushed the limits of thinking about machine intelligence to the point that he is on the verge of philosophical questions. Thinkers in the newly emerging tradition of the technological singularity and transhumanism belong to techno-philosophy. Academic philosopher David Chalmers, known for his contributions to the philosophy of mind (and especially known for formulating the phrase “explanatory gap” to indicate the chasm between consciousness and attempted physicalistic accounts of mind) was invited to the last singularity conference and tried his hand at an essay in techno-philosophy.

Bostrom and Ćirković and techno-philosophers

The work of Nick Bostrom also represents techno-philosophy, as Professor Bostrom has engaged with a number of contemporary ideas such as superintelligence, the Fermi paradox, extraterrestrial life, transhumanism, posthumanism, the simulation hypothesis (which is a contemporary reformulation of Cartesian evil spirit), and existential risk (which is a contemporary reformulation and secularization of apocalypticism, but with a focus on mitigating apocalyptic scenarios).

Serbian astronomer and physicist Milan M. Ćirković has also dealt with many of the same questions in an admirably daring way (he has co-edited the volume Global Catastrophic Risks with Bostrom). What typifies the work of Bostrom and Ćirković — which definitely constitutes the best work in contemporary techno-philosophy — is their willingness to bring traditional philosophical sensibility to the analysis of contemporary ideas, and especially ideas enabled and facilitated by contemporary technology such as computing and space science.

The branches of industrial-technological philosophy

Industrial-technological civilization is created by practical men who eschew philosophy if they happen to be aware of it, and those with a bent for abstract or theoretical thought, and who desire a robust engagement with the world, turn to science or mathematics, where abstract and theoretical ideas can have a direct and nearly immediate impact upon the development of industrial society. Techno-philosophy picks up where these indispensable men of industrial-technological civilization leave off.

Once we understand the relationship between techno-philosophy and industrial-technological civilization (and its disruptions), and knowing the cycle of science, technology and engineering that drives such a civilization, we can posit a philosophical analysis of each stage in the escalating spiral of industrial-technological civilization, with a philosophy of the science of this civilization, a philosophy of the technology of this civilization, and a philosophy of the engineering of this civilization. Techno-philosophy, then, is the philosophy of the technology of industrial-technological civilization.

Philosophy in a time of model drift

In parallel to the emerging school of techno-philosophy, there is a quasi-philosophical field of popular expositions of science by those actively working on the frontiers of the sciences that have been most profoundly transformed by recent developments, and which are still in the process of transformation. This is the philosophy of the science of industrial-technological civilization, and it is distinct from traditional philosophy of science. The rapid developments in cosmology and physics in particular have led to model drift in these fields, and those scientists who are working on these concepts feel the need to give these abstract and theoretical conceptions a connection to ordinary human experience.

Here I have in mind the books of Brian Green, such as his exposition of string theory, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, as well as criticisms of string theory such as Peter Woit’s Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. Some of these books are more widely ranging and therefore more philosophical, such as David Deutsch’s The Fabric of Reality: The Science of Parallel Universes — and Its Implications, while some appeal to a traditional conception of “natural philosophy” as in David Grinspoon’s Lonely Planets: The Natural Philosophy of Alien Life. While these works do not constitute “techno-philosophy” as I have characterized it above, they stand in a similar relationship to the civilization the thought of which they represent.

The prospects for techno-philosophy

As techno-philosophy grows in scope, rigor, depth, and methodological sophistication, it promises to give to industrial-technological civilization something this civilization never wanted and never desired, but of which it is desperately in need: Depth. Gravitas. Intellectual seriousness. Disciplined reflection on the human condition. In a word: wisdom.

If there is anything the world needs today, it is wisdom.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Friday


Alonzo Church and Alan Turing

What is the Church-Turing Thesis? The Church-Turing Thesis is an idea from theoretical computer science that emerged from research in the foundations of logic and mathematics, also called Church’s Thesis, Church’s Conjecture, the Church-Turing Conjecture as well as other names, that ultimately bears upon what can be computed, and thus, by extension, what a computer can do (and what a computer cannot do).

Note: For clarity’s sake, I ought to point out the Church’s Thesis and Church’s Theorem are distinct. Church’s Theorem is an established theorem of mathematical logic, proved by Alonzo Church in 1936, that there is no decision procedure for logic (i.e., there is no method for determining whether an arbitrary formula in first order logic is a theorem). But the two – Church’s theorem and Church’s thesis – are related: both follow from the exploration of the possibilities and limitations of formal systems and the attempt to define these in a rigorous way.

Even to state Church’s Thesis is controversial. There are many formulations, and many of these alternative formulations come straight from Church and Turing themselves, who framed the idea differently in different contexts. Also, when you hear computer science types discuss the Church-Turing thesis you might think that it is something like an engineering problem, but it is essentially a philosophical idea. What the Church-Turing thesis is not is as important as what it is: it is not a theorem of mathematical logic, it is not a law of nature, and it not a limit of engineering. We could say that it is a principle, because the word “principle” is ambiguous and thus covers the various formulations of the thesis.

There is an article on the Church-Turing Thesis at the Stanford Encyclopedia of Philosophy, one at Wikipedia (of course), and even a website dedicated to a critique of the Stanford article, Alan Turing in the Stanford Encyclopedia of Philosophy. All of these are valuable resources on the Church-Turing Thesis, and well worth reading to gain some orientation.

One way to formulate Church’s Thesis is that all effectively computable functions are general recursive. Both “effectively computable functions” and “general recursive” are technical terms, but there is an important different between these technical terms: “effectively computable” is an intuitive conception, whereas “general recursive” is a formal conception. Thus one way to understand Church’s Thesis is that it asserts the identity of a formal idea and an informal idea.

One of the reasons that there are many alternative formulations of the Church-Turing thesis is that there any several formally equivalent formulations of recursiveness: recursive functions, Turing computable functions, Post computable functions, representable functions, lambda-definable functions, and Markov normal algorithms among them. All of these are formal conceptions that can be rigorously defined. For the other term that constitutes the identity that is Church’s thesis, there are also several alternative formulations of effectively computable functions, and these include other intuitive notions like that of an algorithm or a procedure that can be implemented mechanically.

These may seem like recondite matters with little or no relationship to ordinary human experience, but I am surprised how often I find the same theoretical conflict played out in the most ordinary and familiar contexts. The dialectic of the formal and the informal (i.e., the intuitive) is much more central to human experience than is generally recognized. For example, the conflict between intuitively apprehended free will and apparently scientifically unimpeachable determinism is a conflict between an intuitive and a formal conception that both seem to characterize human life. Compatibilist accounts of determinism and free will may be considered the “Church’s thesis” of human action, asserting the identity of the two.

It should be understood here that when I discuss intuition in this context I am talking about the kind of mathematical intuition I discussed in Adventures in Geometrical Intuition, although the idea of mathematical intuition can be understood as perhaps the narrowest formulation of that intuition that is the polar concept standing in opposition to formalism. Kant made a useful distinction between sensory intuition and intellectual intuition that helps to clarify what is intended here, since the very idea of intuition in the Kantian sense has become lost in recent thought. Once we think of intuition as something given to us in the same way that sensory intuition is given to us, only without the mediation of the senses, we come closer to the operative idea of intuition as it is employed in mathematics.

Mathematical thought, and formal accounts of experience generally speaking, of course, seek to capture our intuitions, but this formal capture of the intuitive is itself an intuitive and essentially creative process even when it culminates in the formulation of a formal system that is essentially inaccessible to intuition (at least in parts of that formal system). What this means is that intuition can know itself, and know itself to be an intuitive grasp of some truth, but formality can only know itself as formality and cannot cross over the intuitive-formal divide in order to grasp the intuitive even when it captures intuition in an intuitively satisfying way. We cannot even understand the idea of an intuitively satisfying formalization without an intuitive grasp of all the relevant elements. As Spinoza said that the true is the criterion both of itself and of the false, we can say that the intuitive is the criterion both of itself and the formal. (And given that, today, truth is primarily understood formally, this is a significant claim to make.)

The above observation can be formulated as a general principle such that the intuitive can grasp all of the intuitive and a portion of the formal, whereas the formal can grasp only itself. I will refer to this as the principle of the asymmetry of intuition. We can see this principle operative both in the Church-Turing Thesis and in popular accounts of Gödel’s theorem. We are all familiar with popular and intuitive accounts of Gödel’s theorem (since the formal accounts are so difficult), and it is not usual to make claims for the limitative theorems that go far beyond what they formally demonstrate.

All of this holds also for the attempt to translate traditional philosophical concepts into scientific terms — the most obvious example being free will, supposedly accounted for by physics, biochemistry, and neurobiology. But if one makes the claim that consciousness is nothing but such-and-such physical phenomenon, it is impossible to cash out this claim in any robust way. The science is quantifiable and formalizable, but our concepts of mind, consciousness, and free will remain stubbornly intuitive and have not been satisfyingly captured in any formalism — the determination of any such satisfying formalization could only be determined by intuition and therefore eludes any formal capture. To “prove” determinism, then, would be as incoherent as “proving” Church’s Thesis in any robust sense.

There certainly are interesting philosophical arguments on both sides of Church’s Thesis — that is to say, both its denial and its affirmation — but these are arguments that appeal to our intuitions and, most crucially, our idea of ourselves is intuitive and informal. I should like to go further and to assert that the idea of the self must be intuitive and cannot be otherwise, but I am not fully confident that this is the case. Human nature can change, albeit slowly, along with the human condition, and we could, over time — and especially under the selective pressures of industrial-technological civilization — shape ourselves after the model of a formal conception of the self. (In fact, I think it very likely that this is happening.)

I cannot even say — I would not know where to begin — what would constitute a formal self-understanding of the self, much less any kind of understanding of a formal self. Well, maybe not. I have written elsewhere that the doctrine of the punctiform present (not very popular among philosophers these days, I might add) is a formal doctrine of time, and in so far as we identify internal time consciousness with the punctiform present we have a formal doctrine of the self.

While the above account is one to which I am sympathetic, this kind of formal concept — I mean the punctiform present as a formal conception of time — is very different from the kind of formality we find in physics, biochemistry, and neuroscience. We might assimilate it to some mathematical formalism, but this is an abstraction made concrete in subjective human experience, not in physical science. Perhaps this partly explains the fashionable anti-philosophy that I have written about.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Sunday


L. E. J. Brouwer: philosopher of mathematics, mystic, and pessimistic social theorist

A message to the foundations of mathematics (FOM) listserv by Frank Waaldijk alerted me to the fact that today, 14 October 2012, is the one hundredth anniversary of Brouwer’s inaugural address at the University of Amsterdam, “Intuitionism and Formalism.” (I have discussed Frank Waaldijk earlier in P or Not-P and What is the Relationship Between Constructive and Non-Constructive Mathematics?)

I have called this post “One Hundred Years of Intuitionism and Formalism” but I should have called it “One Hundred Years of Intuitionism” since, of the three active contenders as theories for the foundations of mathematics a hundred years ago, only intuitionism is still with us in anything like its original form. The other contenders — formalism and logicism — are still with us, but in forms so different that they no longer resemble any kind of programmatic approach to the foundations of mathematics. In fact, it could be said that logicism was gradually transformed into technical foundational research, primarily logical in character, without any particular programmatic content, while formalism, following in a line of descent from Hilbert, has also been incrementally transformed into mainstream foundational research, but primarily mathematical in character, and also without any particular programmatic or even philosophical content.

The very idea of “foundations” has come to be questioned in the past hundred years — though, as I commented a few days ago in The Genealogy of the Technium, the early philosophical foundationalist programs continue to influence my own thinking — and we have seen that intuitionism has been able to make the transition from a foundationalist-inspired doctrine to doctrine that might be called mathematical “best practices.” In contemporary philosophy of mathematics, one of the most influential schools of thought for the past couple of decades or more has been to focus not on theories of mathematics, but rather on mathematical practices. Sometimes this is called “neo-empiricism.”

Intuitionism, I think, has benefited from the shift from the theoretical to the practical in the philosophy of mathematics, since intuitionism was always about making a distinction between the acceptable and the unacceptable in logical principles, mathematical reasoning, proof procedures, and all those activities that are part of the mathematician’s daily bread and butter. This shift has also made it possible for intuitionism to distance itself from its foundationalist roots at a time when foundationalism is on the ropes.

Brouwer is due some honor for his prescience in formulating intuitionism a hundred years ago — and intuitionism came almost fully formed out of the mind of Brouwer as syllogistic logic came almost fully formed out of the mind of Aristotle — so I would like to celebrate Brouwer on this, the one hundredth anniversary of his inaugural address at the University of Amsterdam, in which he formulated so many of the central principles of intuitionism.

Brouwer was prescient in another sense as well. He ended his inaugural address with a quote from Poincaré that is well known in the foundationalist community, since it has been quoted in many works since:

“Les hommes ne s’entendent pas, parce qu’ils ne parlent pas la même langue et qu’il y a des langues qui ne s’apprennent pas.”

This might be (very imperfectly) translated into English as follows:

“Men do not understand each other because they do not speak the same language and there are languages ​​that cannot be learned.”

What Poincaré called men not understanding each other Kuhn would later and more famously call incommensurability. And while we have always known that men do not understand each other, it had been widely believed before Brouwer that at least mathematicians understood each other because they spoke the same universal language of mathematics. Brouwer said that his exposition revealed, “the fundamental issue, which divides the mathematical world.” A hundred years later the mathematical world is still divided.

For those who have not studied the foundations and philosophy of mathematics, it may come as a surprise that the past century, which has been so productive of research in advanced mathematics — arguably going beyond all the cumulative research in mathematics up to that time — has also been a century of conflict during which the idea of mathematics as true, certain, and necessary — ideas that had been central to a core Platonic tradition of Western thought — have all been questioned and largely abandoned. It has been a raucous century for mathematics, but also a fruitful one. A clever mathematician with a good literary imagination could write a mathematical analogue of Mandeville’s Fable of the Bees in which it is precisely the polyglot disorder of the hive that made it thrive.

That core Platonic tradition of Western thought is now, even as I write these lines, dissipating just as the illusions of the philosopher, freed from the cave of shadows, dissipate in the light of the sun above.

Brouwer, like every revolutionary (and we recall that it was Weyl, who was sympathetic to Brouwer, who characterized Brouwer’s work as a revolution in mathematics), wanted to do away with an old, corrupt tradition and to replace it with something new and pure and edifying. But in the affairs of men, a revolution is rarely complete, and it is, far more often, the occasion of schism than conversion.

Many were converted by Brouwer; many are still being converted today. As I wrote above, intuitionism remains a force to be reckoned with in contemporary mathematical thought in a way that logicism and formalism cannot claim to be such a force. But the conversions and subsequent defections left a substantial portion of the mathematical community unconverted and faithful to the old ways. The tension and the conflict between the old ways and the new ways has been a source of creative inspiration.

Precisely that moment in history when the very nature of mathematics was called into question became the same moment in history when mathematics joined technology in exponential growth.

Mars is the true muse of men.

. . . . .

Mars, God of War and Muse of Men.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Wednesday


Addendum on Civilization and the Technium

in regard to human, animal, and alien technology


One of the virtues of taking the trouble to formulate one’s ideas in an explicit form is that, once so stated, all kinds assumptions one was making become obvious as well as all kinds of problems that one didn’t see when the idea was just floating around in one’s consciousness, as a kind of intellectual jeu d’esprit, as it were.

Bertrand Russell wrote about this, or, at least, about a closely related experience in one of his well-known early essays, in which he discussed the importance not only making our formulations explicit, but of doing so by way of putting some distance between our thoughts and the kind of facile self-evidence that can distract us from the real business at hand:

“It is not easy for the lay mind to realise the importance of symbolism in discussing the foundations of mathematics, and the explanation may perhaps seem strangely paradoxical. The fact is that symbolism is useful because it makes things difficult. (This is not true of the advanced parts of mathematics, but only of the beginnings.) What we wish to know is, what can be deduced from what. Now, in the beginnings, everything is self-evident; and it is very hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we invent some new and difficult symbolism, in which nothing seems obvious. Then we set up certain rules for operating on the symbols, and the whole thing becomes mechanical. In this way we find out what must be taken as premiss and what can be demonstrated or defined. For instance, the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions. But without a symbolism it would have been very hard to find this out. It is so obvious that two and two are four, that we can hardly make ourselves sufficiently skeptical to doubt whether it can be proved. And the same holds in other cases where self-evident things are to be proved.”

Bertrand Russell, Mysticism and Logic, “Mathematics and the Metaphysicians”

Russell’s foundationalist program in the philosophical of mathematics closely followed the method that he outlined so lucidly in the passage above. Principia Mathematica makes the earliest stages of mathematics notoriously difficult, but does so in service to the foundationalist ideal of revealing hidden presuppositions and incorporating them into the theory in an explicit form.

Another way that Russell sought to overcome self-evidence is through the systematic pursuit of the highest degree of generality, which drives us to formulate concepts that are alien to common sense:

“It is a principle, in all formal reasoning, to generalize to the utmost, since we thereby secure that a given process of deduction shall have more widely applicable results…”

Bertrand Russell, An Introduction to Mathematical Philosophy, Chapter XVIII, “Mathematics and Logic”

These are two philosophical principles — the explication of ultimate simples (foundations) and the pursuit of generality — that I have very much taken to heart and attempted to put into practice in my own philosophical work. Russell’s foundationalist method shows us what can be deduced from what, and gives to these deductions the most widely applicable results. To these philosophical imperatives of Russell I have myself added another, parallel to his pursuit of generality, and that is the simultaneous pursuit of formality: it is (or ought to be) a principle in all theoretical reasoning to formalize to the utmost…

Russell also observed the imperative of formalization, though he himself did not systematically distinguish between generalization and formalization, and it is a tough problem; I’ve been working on it for about twenty years and haven’t yet arrived at definitive formulations. As far as provisional formulations go, generalization gives us the highly comprehensive conceptions like astrobiology and civilization and the technium that allow us to unify a vast body of knowledge that must be studied by inter-disciplinary means, while formalization gives us the distinctions we must carefully observe within our concepts, so that generalization does not simply give us the night in which all cows are black (to borrow a phrase that Hegel used to ridicule Schelling’s conception of the Absolute).

Foundationalism as a philosophical movement is very much out of fashion now, although the foundations of mathematics, pursued eo ipso, remains an active and highly technical branch of logico-mathematical research, and today looks a lot different from what it was when it was first formulated as a philosophical research program a hundred years ago by Frege, Peano, Russell, Whitehead, Wittgenstein, and others. Nevertheless, I continue to derive much philosophical clarification from the early philosophical stages of foundationalism, especially in regard to theories that have not (yet) been reduced to formal systems, as is the case with theories of history or theories of civilization.

I am still a long way from reducing my ideas about history or civilization to first principles, much less to symbolism, but I feel like I am making progress, and the discovery of assumptions and problems is a sure sign of progress; in this sense, my post on Civilization and the Technium marked a stage of progress in my thinking, because of the inadequacy of my formulations that it revealed.

In my Civilization and the Technium I compared the extent of civilization — a familiar idea that has not yet received anything like an adequate definition — with the extent of the technium — a recent and hence unfamiliar idea for which there is an explicit formulation, but since it is new its full scope remains untested and untried, and therefore it presents problems that the idea of civilization does not present. I formulated concepts of the technium parallel to formulations of astrobiology and astrocivilization, as follows:

● Eotechnium the origins of the technium, wherever and whenever it occurs, terrestrial or otherwise

● Esotechnium our terrestrial technium

● Exotechnium any extraterrestrial technium exclusive of the terrestrial technium

● Astrotechnium the totality of technology in the universe, our terrestrial and any extraterrestrial technium taken together in their cosmological context

I realize now that when I did this I was making slightly different assumptions for civilization and the technium. The intuitive basis of this was that I assumed, in regard to the technium, that the technium I was describing was all due to human activity (a clear case of anthropic bias), so that the distinction between the exotechnium and the exotechnium was the distinction between terrestrial human technology and extraterrestrial human technology.

When, on the other hand, I formulated the parallel concepts for civilization, I assumed that esocivilization was terrestrial human civilization and that exocivilization would be alien civilizations not derived from the human eocivilization source.

Another way to put this is that I assumed the validity of the terrestrial eotechnium thesis even while I also assumed that the terrestrial eocivilization thesis did not hold. Is that too much technical terminology? In other words, I assumed the uniqueness of the human technium but I did not assume the uniqueness of human industrial-technological civilization.

This points to a further articulation (and therefore a further formalization) of the concepts employed: one must keep the conception of eocivlization (the origins of civilization) clearly in mind, and distinguish between terrestrial civilization that expands into extraterrestrial space and therefore becomes exocivilization from its eocivilization source on the one hand, and on the other hand a xeno-eocivilization source that constitutes exocivilization by virtue of its xenomorphic origins. If one is going to distinguish between esocivilization and exocivilization, one must identify the eocivilization source, or all is for naught.

All of this holds, mutatis mutandis, for the eotechnium, esotechnium, exotechnium, and astrotechnium, although I ought to point that my formulations in Civilization and the Technium, and repeated above, were accurate because they were formulated in Russellian generality. It was in my following exposition that I failed to observe all the requisite distinctions. But there’s more. I’ve since realized that further distinctions can be made.

As I thought about the possibility of a xenotechnium, i.e., a technium produced by a sentient alien species, I realized that there is a xenotechnium right here on Earth (a terrestrial xenotechnium, or non-hominid technium), in the form of tool use and other forms of technology by non-human species. We are all familiar with famous examples like the chimpanzees who will strip the leaves off a branch and then use the branch to extract termites from a termite mound. Yesterday I alluded to the fact that otters use rocks to break open shells. There are many other examples. Apart from tool use, beaver damns and the nests of birds, while not constructed with tools, certainly represent a kind of technology.

The nest of a weaver bird is a form of non-human technology.

If we take all instances of animal technology together they constitute a terrestrial non-human technium. If we take all instances of technology known to us, human and non-human together, we have a still more comprehensive conception of the technium that is more general that the concept of the human-specific technium and therefore less subject to anthropic bias (the latter concept due to Nick Bostrum, who also formulated existential risk). This latter, more comprehensive conception of the technium would seem to be favored by Russell’s imperative of generalization to the utmost, although we must continue to make the finer distinctions within the concept for the formalization of the conception of the technium to keep pace with its generalization.

There is a systematic relationship between terrestrial biology and the terrestrial technium, both hominid and non-hominid. Eobiology facilitates the emergence of a terrestrial eotechnium, of which all instances of technology, hominid and non-hominid alike, can be considered expressions. This is already explicit in Kevin Kelly’s book, What Technology Wants, as one of his arguments is that the emergence and growth of the technium is continuous with the emergence of growth of biological organization and complexity. He cites John Maynard Smith and Eors Szathmary as defining the following thresholds of biological organization (p. 46):

One replicating molecule -» Interacting population of replicating molecules
Replicating molecules -» Replicating molecules strung into chromosome
Chromosome of RNA enzymes -» DNA proteins
Cell without nucleus -» Cell with nucleus
Asexual reproduction (cloning) -» Sexual recombination
Single-cell organism -* Multicell organism
Solitary individual -» Colonies and superorganisms
Primate societies -» Language-based societies

He then suggests the following sequence of thresholds within the growth of the technium (p. 47):

Primate communication -» Language
Oral lore -> Writing/mathematical notation
Scripts -» Printing
Book knowledge -» Scientific method
Artisan production -» Mass production
Industrial culture -» Ubiquitous global communication

And then he connects the two sequences:

The trajectory of increasing order in the technium follows the same path that it does in life. Within both life and the technium, the thickening of interconnections at one level weaves the new level of organization above it. And it’s important to note that the major transitions in the technium begin at the level where the major transitions in biology left off: Primate societies give rise to language. The invention of language marks the last major transformation in the natural world and also the first transformation in the manufactured world. Words, ideas, and concepts are the most complex things social animals (like us) make, and also the simplest foundation for any type of technology. (p. 48)

Thus the genealogy of the technium is continuous with the genealogy of life.

Considering this in relation to the possibility of a xenotechnium, one would expect the same to be the case: I would expect a systematic relationship to hold between xenobiology and a xenotechnium, such that an alien eobiology would facilitate the emergence of an alien eotechnium. And, extending this naturalistic line of thought, that assumes similar patterns of development to hold for peer industrial-technological civilizations, I would further assume that a xenotechnium would not always coincide with the xenocivilization with which it is associated. If there is a “first contact” between terrestrial civilization and a xenocivilization, it is likely that it will be rather a contact between the expanding terrestrial technium (which is, technically, no longer terrestrial precisely because it is expanding extraterrestrially) and an expanding xenotechnium.

There remains much conceptual work to be done here, as the reader will have realized. I’ll continue to work on these formulations, keeping in mind the imperatives of generality and formality, and perhaps someday converging on a foundationalist account of biology, civilization, and the technium that is at once both fully comprehensive and fully articulated.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

The Kantian Continuum

19 September 2012

Wednesday


Immanuel Kant (1724–1804) is the central figure in modern philosophy. He synthesized early modern rationalism and empiricism, set the terms for much of nineteenth and twentieth century philosophy, and continues to exercise a significant influence today in metaphysics, epistemology, ethics, political philosophy, aesthetics, and other fields. (from the Stanford Encyclopedia of Philosophy)

The Kantian Continuum of Means and Ends in Personhood

While Kant’s second critique, the Critique of Practical Reason, gives a systematic account of his moral philosophy, not surprisingly it is Kant’s shorter work of 1785, his Fundamental Principles of the Metaphysics of Morals, that has been the more widely read and influential. In this little book Kant has this to say about our relation to other persons:

“Now I say: man and generally any rational being exists as an end in himself, not merely as a means to be arbitrarily used by this or that will, but in all his actions, whether they concern himself or other rational beings, must be always regarded at the same time as an end.”

And…

“For all rational beings come under the law that each of them must treat itself and all others never merely as means, but in every case at the same time as ends in themselves.”

Immanuel Kant, Fundamental Principles of the Metaphysics of Morals, translated by Thomas Kingsmill Abbott, 1785

I have cited this passage previously (in Being Valued by the Other) and noted that while we cannot avoid using other persons as means to an end in the ordinary business of life, the crucial sense of this passage is that even when we are forced to deal with other persons as a means, that they must also also be considered as ends in themselves. This is simply a philosophical formulation of the intuitive idea that all persons are due respect and dignity regardless of their condition, and if we must routinely use others as a means to obtaining our contingent ends, we also have a moral responsibility to acknowledge at the same time that these others are ends in themselves, so that our contingent business with them must be conducted with respect and dignity.

When I was thinking about this passage from Kant this morning I thought of it in relation to Edith Wyschogrod’s conception of sainthood in her book Saints and Postmodernism:

“I shall, however, define the saint — the subject of hagiographic narrative — as one whose adult life in its entirety is devoted to the alleviation of sorrow (the psychological suffering) and pain (the physical suffering) that afflicts other persons without distinction of rank or group or, alternatively, that afflicts sentient beings, whatever the cost to the saint in pain or sorrow.”

Edith Wyschogrod, Saints and Postmodernism: Revisioning Moral Philosophy, p. 34

In brief, the saint is that individual who has devoted his or her life to the other. The Kantian formulation of his would be that the saint always regards the other as an end in himself, to the exclusion of the use of the other as a means to an end.

It seems to me that, whether or not we are skeptical of sainthood, and whether or not we accept Wyschogrod’s definition of the saint, we must at least recognize the theoretical possibility of acting purely on the other’s personhood as an end in itself. As soon as we recognize this ideal possibility recognizing others as ends in themselves, we immediately see the all-too-real possibility of the anti-saint who acts purely on the other’s personhood as a means to an end (and which end is entirely independent of the other’s personhood).

The extremes of the as-an-end-only relation to others and the as-a-means-only relation to others defines a continuum of possibilities, along which continuum the ordinary business of life can be located as it approximates one extreme or the other, or balances the two and inhabits the middle portion of the continuum. Thus what I am here calling the Kantian continuum is that continuum of gradations between relating to others purely as as ends in themselves through relating to others purely as means to an end. Between these two extremes are circumstances when we mostly treat others as ends but also a little as means, when we treat others equally as ends and means, and when we primarily treat others as means to an end and only as an afterthought also treat them as ends in themselves.

Think of the situations and circumstances that one routinely encounters in the course of the ordinary business of life, as, for example, when one enters an establishment that still has living human clerks (as opposed to automated check out terminals) and you conduct a mundane exchange of money for goods, and perhaps acknowledge the clerk with a nod or a few scraps of conversation. This is a relationship that is primarily instrumental, and only as an afterthought do we knowledge the personhood of the other. While the purely instrumental approach to life probably belongs to pathology and is gratifyingly rare, the sort of transaction I have described is quite common in industrial-technological civilization.

At the other end of the scale, short of ideal sainthood but still at the altruistic end of the spectrum, our relationships with friends and family are primarily person-centered relationships that are very much constituted by the meaning and value that these others have for us as persons. It is only as an afterthought that we ask them to do something for us, and the doing of the task is usually accomplished in a way the the personhood of all involved is fully engaged. In fact, in so far as we ask something of those who love us, they may well enjoy serving us or be eager to provide for our needs, and vice versa if we are being asked to provide for those that we love.

One of the central concepts of Kant’s ethics is that of the “kingdom of ends.” Kant characterizes the kingdom of ends in this way:

“By a kingdom I understand the union of different rational beings in a system by common laws. Now since it is by laws that ends are determined as regards their universal validity, hence, if we abstract from the personal differences of rational beings and likewise from all the content of their private ends, we shall be able to conceive all ends combined in a systematic whole (including both rational beings as ends in themselves, and also the special ends which each may propose to himself), that is to say, we can conceive a kingdom of ends, which on the preceding principles is possible.”

Immanuel Kant, Fundamental Principles of the Metaphysics of Morals, translated by Thomas Kingsmill Abbott, 1785

It seems to me that Kant’s kingdom of ends comprises the whole of the Kantian continuum with the exception of the extreme end point of using persons exclusively as means and not at the same time as an end in themselves. Clearly, it is using others that is excluded in Kantian ethics. While I suspect that most will follow Kant in this, the implicit sanctioning of personhood as an afterthought, near the as-a-means-only end of the Kantian continuum, contains in embryo much of that which has made life in industrial-technological civilization so dehumanizing and depersonalizing.

I am not here trying to censure Kant, or to find him responsible for the failings of modern society — there are a great many philosophers who have vigorously taken up the critique of Kantian ethics, and ably so — but I only wish to illustration how the Enlightenment universalism of Kant so easily passes over into its other. The very off-handedness of a recognition of one’s personhood as an afterthought is itself something less than full personhood — and, often, we feel it, but at the same time we understand it, so it does not often injure us.

It is difficult to point a finger at any individual as particularly responsible for the affronts to human dignity that assail us every day in industrial-technological civilization, since it is all-too-easy to understand how things became the way that they are now, and how difficult it would be to change them.

If, when engaged in some trivial transaction of contemporary life, one were to attempt to engage with the other first as a person, one’s actions would probably immediately elicit suspicion. Some few have the gift of engaging in a genuine way with others, even for a brief period of time, but it is not found all that often.

The bureaucratization of society that so marks industrial-technological civilization incorporates a pro forma recognition of the personhood of the other, in deference to our moral intuitions of the respect and dignity due to all persons, but it is precisely the pro forma character of the recognition that drains it of human meaning. Many have commented on the formalism of Kant’s ethics, and in the passage I quoted above Kant says we must, “abstract from the personal differences of rational beings,” yet it is the personal touch that most often breaks through as a recognition of personhood in otherwise anonymous transactions.

How many times in life does it happen that we are engaged in the formal courtesies required of us by society when someone accidentally goes “off script” and all present laugh at the deviation and suddenly there is a more relaxed feeling and people feel freer to be themselves and to express themselves? This, too, is a mutual recognition of personhood — of the concrete and fallible dimension of personhood that makes us human — and it is perhaps this kind of recognition of personhood that is most valued informally because it doesn’t come across as odd or strained like some ham-handed attempts to engage others.

This reminds me of one of my favorite quotes from Pascal:

“When we see a natural style, we are astonished and delighted; for we expected to see an author, and we find a man. Whereas those who have good taste, and who seeing a book expect to find a man, are quite surprised to find an author. Plus poetice quam humane locutus es.”

There is not only a natural style in literature, but also a natural style in personal comportment, and when we encounter this natural style in manners we are astonished and delighted, for we expected to find a type, a cipher, an official, a bureaucrat, and instead we find a man. We also find ourselves, and feel a little freer to be human in the presence of such an other.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Saturday


Truncated sphere: can we appeal to any principle in our truncations?

We can make a distinction among distinctions between ad hoc and principled distinctions. The former category — ad hoc distinctions — may ultimately prove to be based on a principle, but that principle is unknown as long as the distinction remains an ad hoc distinction. This suggests a further distinction among distinctions between ad hoc distinctions that really are ad hoc, and which are based on no principle, and ad hoc distinctions that are really principled distinctions but the principle in question is not yet known, or not yet formulated, at the time the distinction is made. So there you have a principled distinction between distinctions.

A perfect evocation of ad hoc distinctions is to be found in the opening paragraph of the Preface to Foucault’s The Order of Things:

This book first arose out of a passage in Borges, out of the laughter that shattered, as I read the passage, all the familiar landmarks of my thought — our thought, the thought that bears the stamp of our age and our geography — breaking up all the ordered surfaces and all the planes with which we are accustomed to tame the wild profusion of existing things, and continuing long afterwards to disturb and threaten with collapse our age-old distinction between the Same and the Other. This passage quotes a ‘certain Chinese encyclopedia’ in which it is written that ‘animals are divided into: (a) belonging to the Emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray dogs, (h) included in the present classification, (i) frenzied, (j) innumerable, (k) drawn with a very fine camelhair brush, (1) et cetera, (m) having just broken the water pitcher, (n) that from a long way off look like flies’. In the wonderment of this taxonomy, the thing we apprehend in one great leap, the thing that, by means of the fable, is demonstrated as the exotic charm of another system of thought, is the limitation of our own, the stark impossibility of thinking that.

Such distinctions are comic, though Foucault recognizes that our laughter is uneasy: even as we immediately recognize the ad hoc character of these distinctions, we realize that the principled distinctions we routinely employ may not be so principled as we supposed.

Foucault continues this theme for several pages, and then gives another formulation — perhaps, given his interest in mental illness, an illustration that is closer to reality than Borges’ Chinese dictionary:

“It appears that certain aphasiacs, when shown various differently coloured skeins of wool on a table top, are consistently unable to arrange them into any coherent pattern; as though that simple rectangle were unable to serve in their case as a homogeneous and neutral space in which things could be placed so as to display at the same time the continuous order of their identities or differences as well as the semantic field of their denomination. Within this simple space in which things are normally arranged and given names, the aphasiac will create a multiplicity of tiny, fragmented regions in which nameless resemblances agglutinate things into unconnected islets; in one corner, they will place the lightest-coloured skeins, in another the red ones, somewhere else those that are softest in texture, in yet another place the longest, or those that have a tinge of purple or those that have been wound up into a ball. But no sooner have they been adumbrated than all these groupings dissolve again, for the field of identity that sustains them, however limited it may be, is still too wide not to be unstable; and so the sick mind continues to infinity, creating groups then dispersing them again, heaping up diverse similarities, destroying those that seem clearest, splitting up things that are identical, superimposing different criteria, frenziedly beginning all over again, becoming more and more disturbed, and teetering finally on the brink of anxiety.”

Foucault here writes that, “the sick mind continues to infinity,” in other words, the process does not terminate in a definite state-of-affairs. This implies that the healthy mind does not continue to infinity: rational thought must make concessions to human finitude. While I find the use of the concept of the pathological in this context questionable, and I have to wonder if Foucault was unwittingly drawn into the continental anti-Cantorian tradition (Brouwerian intuitionism and the like, though I will leave this aside for now), there is some value to the idea that a scientific process (such as classification) must terminate in a finite state-of-affairs, even if only tentatively. I will try to show, moreover, that there is an implicit principle in this attitude, and that it is in fact a principle that I have discussed previously.

The quantification of continuous data requires certain compromises. Two of these compromises include finite precision errors (also called rounding errors) and finite dimension errors (also called truncation). Rounding errors should be pretty obvious: finite parameters cannot abide infinite decimal expansions, and so we set a limit of six decimal places, or twenty, or more — but we must set a limit. The difference between actual figures and limited decimal expansions of the same figure is called a finite precision error. Finite dimension errors result from the need to arbitrarily introduce gradations into a continuum. Using the real number system, any continuum can be faithfully represented, but this representation would require infinite decimal expansions, so we see that there is a deep consonance between finite precision errors and finite dimension errors. Thus, for example, we measure temperature by degrees, and the arbitrariness of this measure is driven home to us by the different scales we can use for this measurement. And if we could specify temperature using real numbers (including transcendental numbers) we would not have to compromise. But engineering and computers and even human minds need to break things up into manageable finite quantities, so we speak of 3 degrees C, or even 3.14 degrees C, but we don’t try to work with pi degrees C. Thus the increments of temperature, or of any another measurement, involve both finite precision errors and finite dimension errors.

In so far as quantification is necessary to the scientific method, finite dimension errors are necessary to the scientific method. In several posts (e.g., Axioms and Postulates in Strategy) I have cited Carnap’s tripartite distinction among scientific concepts, the three being classificatory, comparative, and quantitative concepts. Carnap characterizes the emergence of quantitative scientific concepts as the most sophisticated form of scientific thought, but in reviewing Carnap’s scientific concepts in the light of finite precision errors and finite dimension errors, it is immediately obvious that classificatory concepts and comparative concepts do not necessarily involve finite precision errors and finite dimension errors. It is only with the introduction of quantitative concepts that science becomes sufficiently precise that its precision forces compromises upon us. However, I should point out that classificatory concepts routinely force us to accept finite dimension errors, although they do not involve finite precision errors. The example given by Foucault, quoted above, illustrates the inherent tension in classificatory concepts.

We accept finite precision errors and finite dimension errors as the price of doing science, and indeed as the price of engaging in rational thought. As Foucault implied in the above quote, the healthy and sane mind must draw lines and define limits and call a halt to things. Sometimes these limits are close to being arbitrary. We retain the ambition of “carving nature at the joints,” but we accept that we can’t always locate the joint but at times must cleave the carcass of nature regardless.

For this willingness to draw lines and establish limits and to call a halt to proceedings I will give the name The Truncation Principle, since it is in virtue to cutting off some portion of the world and treating it as though it were a unified whole that we are able to reason about the world.

As I mentioned above, I have discussed this problem previously, and in my discussion I noted that I wanted to give an exposition of a principle and a fallacy, but that I did not have a name for it yet, so I called it An Unnamed Principle and an Unnamed Fallacy. Now I have a name for it, and I will use this name, i.e., the truncation principle, from now on.

Note: I was tempted to call this principle the “baby retention principle” or even the “hang on to your baby principle” since it is all about the commonsense notion of not throwing out the baby with the bathwater.

In An Unnamed Principle and an Unnamed Fallacy I initially formulated the principle as follows:

The principle is simply this: for any distinction that is made, there will be cases in which the distinction is problematic, but there will also be cases when the distinction is not problematic. The correlative unnamed fallacy is the failure to recognize this principle.

What I most want to highlight is that when someone points out there are gray areas that seem to elude classification by any clear cut distinction, this is sometimes used as a skeptical argument intended to undercut the possibility of making any distinctions whatsoever. The point is that the existence of gray areas and problematic cases does not address the other cases (possibly even the majority of the cases) for which the distinction isn’t in the least problematic.

A distinction that that admits of problematic cases not clearly falling on one side of the distinction or the other, may yet have other cases that are clearly decided by the distinction in question. This might seem too obvious to mention, but distinctions that admit of problematic instances are often impugned and rejected for this reason. Admitting of no exceptions whatsoever is an unrealistic standard for a distinction.

I hope to be able to elaborate on this formulation as I continue to think about the truncation principle and its applications in philosophical, formal, and scientific thought.

Usually when we hear “truncation” we immediately think of the geometrical exercise of regularly cutting away parts of the regular (Platonic) solids, yielding truncated polyhedra and converging on rectified polyhedra. This is truncation in space. Truncation in time, on the other hand, is what is more commonly known as historical periodization. How exactly one historical period is to be cut off from another is always problematic, not least due to the complexity of history and the sheer number of outliers that seem to falsify any attempt at periodization. And yet, we need to break history up into comprehensible chunks. When we do so, we engage in temporal truncation.

All the problems of philosophical logic that present themselves to the subtle and perceptive mind when contemplating a spatial truncation, as, for example, in defining the Pacific Ocean — where exactly does it end in relation to the Indian Ocean? — occur in spades in making a temporal truncation. Yet if rational inquiry is to begin (and here we do not even raise the question of where rational inquiry ends) we must make such truncations, and our initial truncations are crude and mostly ad hoc concessions to human finitude. Thus I introduce the truncation principle as an explicit justification of truncations as we employ them throughout reasoning.

And, as if we hadn’t already laid up enough principles and distinctions for today, here is a principle of principles of distinctions: every principled distinction implies a fallacy that takes the form of neglecting this distinction. With an ad hoc distinction there is no question of fallacy, because there is no principle to violate. Where there is a principle involved, however, the violation of the principle constitutes a fallacy.

Contrariwise, every fallacy implies a principled distinction that ought to have been made. If we observe the appropriate principled distinctions, we avoid fallacies, and if we avoid fallacies we appropriately distinguish that which ought to be distinguished.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Friday


The very idea of the “human condition” is one that we might call an “existential idea,” since in the best existentialist fashion it tries to get to the root of existence. When thinkers engage with the idea of the human condition they often enter into an existentialist idiom, wittingly or (more likely) unwittingly. And it’s not just philosophers — or moderns. Pope Innocent III devoted a whole book to the misery of the human condition, in which he wrote:

Who therefore will give my eyes a fountain of tears so that I may bewail the miserable beginning of the human condition, the culpable progress of human behavior, the damnable ending of human dissoluteness. With tears I might consider what man is made of, what man does, what man will be. Man is indeed formed from earth, conceived in sin, born to pain. He does depraved things that are unlawful, shameful things that are indecent, vain things that are unprofitable. He becomes fuel for the fire, food for worms, a mass of putridness. I shall show this more clearly; I shall analyze more fully. Man is formed of dust, of clay, of ashes: what is more vile, from the filthiest sperm. He is conceived in the heat of desire, in the fervor of the flesh, in the stench of lust: what is worse, in the blemish of sin. He is born to labor, fear, sorrow: what is more miserable, to death. He does depraved things by which he offends God, offends his neighbors, offends himself. He does vain and shameful things by which he pollutes his fame, pollutes his person, pollutes his conscience. He does vain things by which he neglects serious things, neglects profitable things, neglects necessary things. He will become fuel for the inextinguishable fire that always flames and burns; food for the immortal worm that always eats and consumes; a mass of horrible putridness that always stinks and is filthy.

Pope Innocent III (Lotario de Segni, before he was Pope), De miseria condicionis humane

This passage reminds me of Sartre’s analysis of slime in Being and Nothingness. It is difficult to be optimistic about the human condition when it is phrased in terms like these.

Pope Innocent III: something of a pessimist on the human condition.

Recently in Banishing Despair I wrote the following:

In order to “cure” the episodic and transient melancholia that is native to the human condition, and which everyone feels in those moments when their vital energies are at a low ebb, we would need to change the human condition itself, and there are definite limits on the extent to which we can change the human condition.

Indeed, in order to eliminate the possibility of existential despair one would have to eliminate the very possibility of Miserable and Unhappy Civilizations, which might well come about as a result of what comes after civilization, but these latter concepts constitute civilization as an historical idea; civilization as a political idea is problematic. Human agency has its limits, and in fact the same limits to human agency that make it difficult if not impossible to alter civilization by political fiat also are the source of transient despair and despondency. After all, did not Alexander the Great cry because he had no more worlds to conquer? (Or, in the alternative version, because, of the infinity of worlds, he had not conquered even one?)

The latter part of this quote invokes a distinction that I recently made in Globalization as Political Idea and as Historical Idea. I haven’t yet arrived at an elegant formulation of this distinction between the historical and the political, but even in its nascent and inchoate state I find that I can make use of it to bring a little analytical clarity to my thoughts, and in the above I have used it to distinguish between the historical and the political senses of civilization. One might also think of these as, respectively, the descriptive and the prescriptive senses of civilization. Civilization did not come about as a consequence of an explicit decision and action taken, yet the idea has a certain usefulness to describe what in fact human beings have done, even if they didn’t know what they were doing as they did it.

We can also distinguish the historical and the political aspects of both human nature and the human condition — or, if you like, the descriptive and prescriptive aspects of human nature and the human condition. This latter formulation immediately clarifies one source of disagreement over human nature. In several posts I have discussed skeptics of human nature, Sartre chief among them. The subtext of many skeptical accounts of human nature is that, if there is a human nature, this limits our freedom. Furthermore, if the limitation of human freedom is a bad thing, then assumptions about human nature that limit freedom are undesirable. Therefore, we must deny that there is a human nature in order to defend human liberty.

Please note that I am not defending this reasoning; I am only observing that this seems to be a common subtext of critiques of human nature, and even here the reasoning remains implicit, and therefore retains the philosophical equivalent of plausible deniability. Nevertheless, I believe I am right in this, and if I am right in my analysis I need only to further observe that one can explicitly deny a prescriptive human nature that constitutes an aim toward which human being inevitably converges while accepting a descriptive human nature based only on what humans beings have been in actual fact. Even then, it is obvious that the dedicated human nature skeptic may well continue to maintain that even a descriptive account of human nature implies a continuing condition that ought to be fulfilled in the future, but if such an objection is made, it becomes even more obvious that the motivation of the objection to human nature is not based on logic or ontology, but upon a moral objection.

In another context (Human Nature and Homo Economicus) I have managed to refine my formulation of the human condition into a few (six, to be precise) reasonably clear theses:

Human nature is a function of the human condition.
The human condition is a function of la longue durée.
Therefore, human nature is a function of la longue durée.
La longue durée endures, but is not permanent.
Therefore, human nature endures, but is not permanent.
Human nature, as a function of la longue durée, reflects the paradigm of metaphysical history within which it takes shape.

In these theses I have attempted to show that way in which human nature and the human condition are inextricably linked, but returning to the problem of human nature from the perspective of the distinction between descriptive and prescriptive concepts, we need to separate the two again in order to ask four questions:

1. What is human nature descriptively? (What is human nature in fact?)

2. What is human nature prescriptively? (What ought human nature to be ideally?)

3. What is the human condition descriptively? (What is human nature in fact?)

4. What is the human condition prescriptively? (What ought the human condition to be ideally?)

While these are very large and very general questions that could not be satisfactorily answered short of several treatises, we can, however, get a sense of what is usually assumed by these modalities of human life, and we can do so in one or two words each, as follows:

1. moral corruption

2. moral perfection

3. misery

4. utopia

Some immediate observations can be made about this rather schematic summary. If the misery of the human condition follows from the moral corruption inherent in human beings, we call this original sin. If, on the other hand, the moral corruption of human beings follows from the misery of the human condition, then we have a position more or less like that of Rousseau, which is sometimes identified with the perfectibility of humanity. Further, if a utopian human condition would follow from the moral perfection possible for human beings, this is an affirmation of individual agency, and thus, in a sense, the antithesis of the idea of original sin and of the doctrine of salvation through grace alone. If, on the other hand, the moral perfection of human beings would follow from a utopian human condition, then we have something like behaviorism.

Now, of course I realize that by using “loaded” religious terminology like “original sin” that I am inviting misunderstanding, but I am willing to take this risk in order to place these concepts in historical context, which is to say, to place them in a larger context than that of our immediate concerns today. I want to get at the root of the idea, and sometimes the quickest way to the root is to use the term that will he instantly understood and which has the strongest emotional impact. From my point of view, the idea of original sin is just one of many exemplifications throughout human history of a conception of human nature as essentially evil. Many have believed this, but many also have believed that human nature is essentially good.

Similarly, there have always been those who believe that human beings are utterly at the mercy of circumstances (this position could be identified with what I have elsewhere called the cataclysmic conception of history) and who may therefore be considered behaviorists, since they believe that individuals and human nature are shaped by larger forces. Similarly again, there are always those who believe in the power of individuals not only to change their own lives, but also to change the lives of others. In its pure form, I have called this the political conception of history. There are all, then, differing conceptions of human agency, and therefore exrpessions of agent-centered metaphysics.

Whether or not you think it is worthwhile to attempt to change the human condition will have a lot to do with your attitudes to these questions, which I strongly suspect is largely a function of temperament. If you instinctively believe that human beings are at the mercy of forces we do not control, then you are more likely to believe that the human condition changes us than that we can change the human condition. But further complications arise, since the world may not be uniformly open to change; there may be things that we can change, and things that we cannot change, and so forth.

A distinction must be made between that which is amenable to change and that which can be changed. The difference here is the difference of agency. That which is merely amenable to change may or may not be changed as the result of the intervention of human agency (or the agency of any sentient being, human or otherwise, including successor species). That which can be changed is susceptible to human agency and admits of definite results. The future is amenable to change, but anything that we do to change the future may or may not have the intended consequences. topography can be changed; human agency can devise and carry out changes to the landscape in which intentions are concretely realized with a high degree of accuracy. These two examples are not picked at random: history and geography together are the unavoidable concomitants of political science; history is merely amenable to change, while geography (at least in some instances) can be changed.

We can and do change topography every time we build a highway or blast a tunnel. This changes our relationship to the land, but it does not change the arrangement of the world’s land masses. However, the combined effect of our construction of a transportation infrastructure may have the practical consequence of annihilating distance and thus making geography nearly irrelevant to the further development of human affairs. In this sense, even geography changes. Certainly human geography changes as rapid transit and mass transit moves populations. Here we have effected social change as a result of our ability to nullify geography.

With history, we are much less free, much less in control. History is infinitely flexible and highly amenable to change, but we cannot change history and walk away, expecting everything to remain the same. Even when we remain continuously and constantly engaged in the process of history (i.e., even when we don’t walk away), unintended consequences may pile up to the point that we simply cannot sustain our effort and we must surrender before the forces of history, allowing ourselves to be changed by it, rather than effecting the intended change. Here we have failed to effect social change as a result of our inability to nullify history.

Implicit within the idea of social change in the interest of social justice (and this is usually how the idea of social change is framed) is the idea that effecting a change in the human condition will effect a change in human nature. The possibility that the human condition might be changed and human beings would persist in stubbornly acting out their human nature regardless of circumstances is incoherent from this point of view. In other words, the idea of social change is antithetical to that of original sin.

. . . . .

Four conceptions of history - human nature and human condition

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Thursday


There is passage in Foucault, in the preface to the English language of The Order of Things, after the more famous passage about the “Chinese dictionary” in Borges, in which he discusses a pathological failure of taxonomy. The theme of Foucault’s book, restated compellingly in this preface, is taxonomy — taxonomy in its most general (and therefore its most philosophical) signification. Taxonomy is a problem.

It appears that certain aphasiacs, when shown various differently coloured skeins of wool on a table top, are consistently unable to arrange them into any coherent pattern; as though that simple rectangle were unable to serve in their case as a homogeneous and neutral space in which things could be placed so as to display at the same time the continuous order of their identities or differences as well as the semantic field of their denomination. Within this simple space in which things are normally arranged and given names, the aphasiac will create a multiplicity of tiny, fragmented regions in which nameless resemblances agglutinate things into unconnected islets; in one corner, they will place the lightest-coloured skeins, in another the red ones, somewhere else those that are softest in texture, in yet another place the longest, or those that have a tinge of purple or those that have been wound up into a ball. But no sooner have they been adumbrated than all these groupings dissolve again, for the field of identity that sustains them, however limited it may be, is still too wide not to be unstable; and so the sick mind continues to infinity, creating groups then dispersing them again, heaping up diverse similarities, destroying those that seem clearest, splitting up things that are identical, superimposing different criteria, frenziedly beginning all over again, becoming more and more disturbed, and teetering finally on the brink of anxiety.

THE ORDER OF THINGS: An Archaeology of the Human Sciences, MICHEL FOUCAULT, A translation of Les Mots et les choses, VINTAGE BOOKS, A Division of Random House, Inc., New York, Preface

Taxonomy is the intersection of words and things — and just this was the original title of Foucault’s book, i.e., words and things — and Foucault brilliantly illustrates both the possibilities and problems inherent in taxonomy. Foucault had an enduring concern for taxonomy, and, as is well known, named his chair at the Collège de France the “History of Systems of Thought” — as though he were seeking a master taxonomy of human knowledge.

Foucault found madness and mental illness in the inability of a test subject to systematically arrange skeins of wool, since each attempted scheme of classification breaks down when it overlaps within another system of classification pursued simultaneously. One suspects that if the task placed before Foucault’s aphasiac were limited in certain ways — perhaps in the number of colors of wool, or the number of categories that could be employed — the task might become practical once a sufficient number of constraints come into play. But the infinite universe investigated by contemporary science is the very antithesis of constraint. There is always more to investigate, and as the sciences themselves grow and fission, begetting new sciences, the task of bringing order to the sciences themselves (rather than to the empirical phenomena that the sciences seek to order) becomes progressively more difficult.

The taxonomy of the sciences is more problematic that usually recognized. Consider these possible categories of science, not all of which are current today:

● natural sciences It is still somewhat common to speak of the “natural sciences,” with our intuitive understanding of what is “natural” as sufficient to classify a given study as an investigation into “nature.” What, then, is not a natural science? At one time there was a strong distinction made between the natural sciences and the formal sciences (q.v.)

● formal sciences The phrase “formal sciences” is rarely used today, though it is still a useful idea, comprising at least mathematics and logic and (for those who know what it is) formal mereology. Today the formal sciences might also include computer science and information science, though I haven’t myself ever heard anyone refer to these sciences as formal sciences. Since the mathematization of the natural sciences beginning with the scientific revolution, the natural sciences have come more and more to approximate formal sciences, to the point that mathematical physics has, at times, only a tenuous relationship to experiments in physics, while it has a much more robust relationship with mathematics.

● moral sciences Philosopher J. R. Lucas has written of the moral sciences, “The University of Cambridge used to have a Faculty of Moral Sciences. It was originally set up in contrast to the Faculty of Natural Sciences, and was concerned with the mores of men rather than the phenomena of nature. But the humane disciplines were hived off to become separate subjects, and when the faculty was finally renamed the Faculty of Philosophy, philosophy was indeed the only subject studied.”

● earth sciences The earth sciences may be understood to be a subdivision of the natural sciences, and may be strongly distinguished from the space sciences, but the distinction between the earth sciences and the space sciences, as well as these two sciences themselves, is quite recent, dating to the advent of the Space Age in the middle of the twentieth century. While the idea behind the earth sciences is ancient, their explicit recognition as a special division within the sciences is recent. I suspect that the fact of seeing the earth from space, made possible by the technology of the space age, contributed greatly to understanding the earth as a unified object of investigation.

● space sciences The space sciences can be defined in contradistinction to the earth sciences, as though science had a need to recapitulate the distinction between the sublunary and the superlunary of Ptolemaic cosmology; however, I don’t think that this was the actual genesis of the idea of a category of space sciences. The emergence of the “Space Age” and its associated specialty technologies, and the sciences that produced these technologies, is the likely source, but the question becomes whether a haphazardly introduced concept roughly corresponding to a practical division of scientific labor constitutes a useful theoretical category.

● social sciences The social sciences would obviously include sociology and cultural anthropology, but would it include biological anthropology? History? Political science? Economics? The social sciences often come under assault for their methodology, which seems to be much less intrinsically quantitative than that of the natural sciences, but are not social communities as “natural” as biologically defined communities?

● human sciences In German there is a term — Geisteswissenschaften — that could be translated as the “spiritual sciences,” and which roughly corresponds to the traditional humanities, but it is not entirely clear whether the human sciences coincide perfectly either with Geisteswissenschaften or the humanities. Foucault’s The Order of Things, quoted above, is subtitled, “An Archaeology of the Human Sciences,” and the human sciences that Foucault examines in particular include philology and economics, inter alia.

● life sciences I assume that “life sciences” was formulated as a collective term for biological sciences, which would include studies like biogeography, which might also be called an instance of the earth sciences, or the natural sciences. But the life sciences would also include all of medicine, which gives us a taxonomy of the medical sciences, though it does not give us a clear demarcation between the life sciences and the natural sciences. Does medicine include all of psychiatry, or ought psychiatric inquiries to be thought of as belonging to the social sciences?

● historical sciences I have written about the historical sciences in several posts, since S. J. Gould often made the point that that historical sciences have a distinctive methodology. In Historical Sciences I argued that there is a sense in which all sciences can be considered historical sciences. Indeed, one of the distinctive aspects of the scientific revolution has been to force human beings to stop assuming the eternity and permanence of the world and to see the world and everything in it as having a natural history. If everything has a natural history, then all investigations are historical investigations and all sciences are historical sciences — but if this is true, then Gould’s claim that the historical sciences have a unique methodology collapses.

There are also, of course, informal distinctions such as that between the “hard” sciences and the “soft” sciences, which is sometimes taken to be the distinction between mathematicized sciences and non-mathematicized sciences, and so may correspond to the rough distinction between the natural sciences and the social sciences, except the that the social sciences are now dominated by statistical methods and can no longer be thought of a non-mathematicized. This leads to problems of classification such as whether economics, for example, is a natural science or a social science.

For each of the science categories above we could attempt either an extensional or an intensional definition, i.e., we could give a list of particular sciences that fall under the category in question, or we could attempt to define the meaning of the term, and the meaning would then govern what sciences are so identified. An extensional definition of the earth sciences might involve a list including geomorphology, biogeography, geology, oceanography, hydrology, climatology, and so forth. An intentional definition of the earth sciences might be something like, “those sciences that have as their object of study the planet earth, its subsystems, and its inhabitants.”

Today we employ the sciences to bring order to our world, but how do we bring order to the sciences? Ordering our scientific knowledge is problematic. It is complicated. It involves unanticipated difficulties that appear when we try to make any taxonomy for the sciences systematic. Each of the scientific categories above (as well as others that I did not include — my list makes no pretension of completeness) implies a principled distinction between the kind of sciences identified by the category and all other sciences, even if the principle by which the distinction is to be made is not entirely clear.

The implicit distinction between the earth sciences and the space sciences has a certain intuitive plausibility, and it is useful to a certain extent, though recently I have tried to point out in Eo-, Exo-, Astro- the importance of astrobiology as unifying terrestrial biology and exobiology in a truly Copernican framework. While the attempted task of a taxonomy of the sciences is important, the nature of the task itself suggests a certain compartmentalization, and too much thinking in terms of compartmentalization can distract us from seeing the larger synthesis. Concepts based on categorization that separates the sciences will be intrinsically different from extended conceptions that emerge from unification. An exclusive concern for the earth sciences, then, might have the subtle affect of reinforcing geocentric, Ptolemaic assumptions, though if we pause for a moment it will be obvious that the earth is a planet, and that the planetary sciences ought to include the earth, and the the planetary sciences might be construed as belonging to the space sciences.

The anxiety experience by Foucault’s aphasiac is likely to be experienced by anyone attempting a systematic taxonomy of the sciences, as here, any mind, whether sick or healthy, might continue to extrapolate distinctions to infinity and still not arrive at a satisfactory method for taking the measure of the sciences in way that contributes both to the clarity of the individual sciences and an understanding of how the various special sciences relate to each other.

On the one hand, perfect rigor of thought would seem to imply that all possible distinctions must be observed and respected, except that not all distinction can be made at the same time because some cut across each other, are mutually exclusive, order the world differently, and subdivide other categories and hierarchies in incompatible schemes. To use a Leibnizean term, not all distinctions are compossible.

To invoke Leibniz in this context is to suggest a Leibnizean approach to the resolution of the difficulty: a Leibnizean conception of conceptual rigor would appeal to the greatest number of distinctions that are compossible and yield a coherent body of knowledge.

A thorough-going taxonomic study of human bodies of knowledge would reveal a great many possible taxonomies, some with overlapping distinctions, but it is likely that there is an optimal arrangement of distinctions that would allow the greatest possible number of distinctions to be employed simultaneously while retaining the unity of knowledge. This would be a system of compossible taxonomy, which might have to reject a few distinctions but which makes use of the greater number of distinctions that are mutually possible within the framework of methodological naturalism as this defines the scientific enterprise.

There are not merely academic considerations. The place of science within industrial-technological civilization means that our conception of science is integral with our conception of civilization; thus to make a systematic taxonomy of the sciences is to make a systematic taxonomy of a civilization that is based upon science. Such conception categories extrapolated from science to civilization will have consequences for human self-understanding and human interaction, which latter does not always take the form of “cultural exchanges” (in the saccharine terminology if international relations). Industrial-technological civilization is in coevolution with industrial-technological warfare, so that a taxonomy of science is also a taxonomy of scientific warfare. Our conception of science will ultimately influence how we kill each other, and how we seek peace in order to stop killing each other.

One of the most distinctive forms of propaganda and social engineering of our time is the creation from whole cloth of artificial and fraudulent sciences. Since science is the condition of legitimacy in industrial-technological civilization, social movements seeking legitimacy seek scientific justification for their moral positions, but the more that science is seen as a means to an end, where the end is stipulated in advance, then science as a process must be compromised because any science that does not tend to the desired socio-political end will be subject to socio-political disapproval or dismissal. While there is a limit to this, the limits are more tolerant than we might suppose: large, complex societies with large and diverse economies can sustain non-survival behavior for a significant period of time — perhaps enough time to conceal the failure of the model employed until it is too late to save the society that has become a victim of its own illusion.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Monday


Geopolitics and Geostrategy

as a formal sciences


In a couple of posts — Formal Strategy and Philosophical Logic: Work in Progress and Axioms and Postulates of Strategy — I have explicitly discussed the possibility of a formal approach to strategy. This has been a consistent theme of my writing over the past three years, even when it is not made explicit. The posts that I wrote on theoretical geopolitics can also be considered an effort in the direction of formal strategy.

There is a sense in which formal thought is antithetical to the tradition of geopolitics, which latter seeks to immerse itself in the empirical facts of how history gets made, in contradistinction to the formalist’s desire to define, categorize, and clarify the concepts employed in analysis. Yet in so far as geopolitics takes the actual topographical structure of the land as its point of analytical departure, this physical structure becomes the form upon which the geopolitician constructs the logic of his or her analysis. Geopolitical thought is formal in so far as the forms to which it conforms itself are physical, topographical forms.

Most geopoliticians, however, have no inkling of the formal dimension of their analyses, and so this formal dimension remains implicit. I have commented elsewhere that one of the most common fallacies is the conflation of the formal and the informal. In Cartesian Formalism I wrote:

One of the biggest and yet one of the least recognized blunders in philosophy (and certainly not only in philosophy) is to conflate the formal and the informal, whether we are concerned with formal and informal objects, formal and informal methods, or formal and informal ideas, etc. (I recently treated this topic on my other blog in relation to the conflation of formal and informal strategy.)

Geopolitics, geostrategy, and in fact many of the so-called “soft” sciences that do not involve extensive mathematization are among the worst offenders when it comes to the conflation of the formal and the informal, often because the practitioners of the “soft” sciences do not themselves understand the implicit principles of form to which they appeal in their theories. Instead of theoretical formalisms we get informal narratives, many of which are compelling in terms of their human interest, but are lacking when it comes to analytical clarity. These narratives are primarily derived from historical studies within the discipline, so that when this method is followed in geopolitics we get a more-or-less quantified account of topographical forms that shape action and agency, with an overlay of narrative history to string together the meaning of names, dates, and places.

There is a sense in which geography and history cannot be separated, but there is another sense in which the two are separated. Because the ecological temporality of human agency is primarily operational at the levels of micro-temporality and meso-temporality, this agency is often exercised without reference to the historical scales of the exo-temporality of larger social institutions (like societies and civilizations) and the macro-historical scales of geology and geomorphology. That is to say, human beings usually act without reference to plate tectonics, the uplift of mountains, or seafloor spreading, except when these events act over micro- and meso-time scales as in the case of earthquakes and tsunamis generated by geological events that otherwise act so slowly that we never notice them in the course of a lifetime — or even in the course of the life of a civilization.

The greatest temporal disconnect occurs between the smallest scales (micro-temporality) and the largest scales (macro-temporality), while there is less disconnect across immediately adjacent divisions of ecological temporality. I can employ a distinction that I recently made in a discussion of Descartes, that between strong distinctions and weak distinctions (cf. Of Distinctions Weak and Strong). Immediately adjacent divisions of ecological temporality are weakly distinct, while those not immediately adjacent are strongly distinct.

We have traditionally recognized the abstraction of macroscopic history that does not descend into details, but it has not been customary to recognize the abstractness of microscopic history, immersed in details, that does not also place these events in relation to a macroscopic context. In order to attain to a comprehensive perspective that can place these more limited perspectives into a coherent context, it is important to understand the limitations of our conventional conceptions of history (such as the failure to understand the abstract character of micro-history) — and, for that matter, the limitations of our conventional conceptions of geography. One of these limitations is the abstractness of either geography or history taken in isolation.

The degree of abstractness of an inquiry can be quantified by the ecological scope of that inquiry; any one division of ecological temporality (or any one division of metaphysical ecology) taken in isolation from other divisions is abstract. It is only the whole of ecology taken together that a truly concrete theory is possible. To take into account the whole of ecological temporality in a study of history is a highly concrete undertaking which is nevertheless informed by the abstract theories that constitute each individual level of ecological temporality.

Geopolitics, despite its focus on the empirical conditions of history, is a highly abstract inquiry precisely because of its nearly-exclusive focus on one kind of structure as determinative in history. As I have argued elsewhere, and repeatedly, abstract theories are valuable and have their place. Given the complexity of a concrete theory that seeks to comprehend the movements of human history around the globe, an abstract theory is a necessary condition of any understanding. Nevertheless, we need to rest in our efforts with an abstract theory based exclusively in the material conditions of history, which is the perspective of geopolitics (and, incidentally, the perspective of Marxism).

Geopolitics focuses on the seemingly obvious influences on history following from the material conditions of geography, but the “obvious” can be misleading, and it is often just as important to see what is not obvious as to explicitly take into account what is obvious. Bertrand Russell once observed, in a passage both witty and wise, that:

“It is not easy for the lay mind to realise the importance of symbolism in discussing the foundations of mathematics, and the explanation may perhaps seem strangely paradoxical. The fact is that symbolism is useful because it makes things difficult. (This is not true of the advanced parts of mathematics, but only of the beginnings.) What we wish to know is, what can be deduced from what. Now, in the beginnings, everything is self-evident; and it is very hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we invent some new and difficult symbolism, in which nothing seems obvious. Then we set up certain rules for operating on the symbols, and the whole thing becomes mechanical. In this way we find out what must be taken as premiss and what can be demonstrated or defined. For instance, the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions. But without a symbolism it would have been very hard to find this out. It is so obvious that two and two are four, that we can hardly make ourselves sufficiently sceptical to doubt whether it can be proved. And the same holds in other cases where self-evident things are to be proved.”

Bertrand Russell, Mysticism and Logic, “Mathematics and the Metaphysicians”

Russell here expresses himself in terms of symbolism, but I think it would better to formulate this in terms of formalism. When Russell writes that, “we invent some new and difficult symbolism, in which nothing seems obvious,” the new and difficult symbolism he mentions is more than mere symbolism, it is a formal theory. Russell’s point, then, is that if we formalize a body of knowledge heretofore consisting of intuitively “obvious” truths, certain relationships between truths become obvious that were not obvious prior to formalization. Another way to formulate this is to say that formalization constitutes a shift in our intuition, so that truths once intuitively obvious become inobvious, while inobvious truths because intuitive. Thus formalization is the making intuitive of previously unintuitive (or even counter-intuitive) truths.

Russell devoted a substantial portion of his career to formalizing heretofore informal bodies of knowledge, and therefore had considerable experience with the process of formalization. Since Russell practiced formalization without often explaining exactly what he was doing (the passage quoted above is a rare exception), we must look to the example of his formal thought as a model, since Russell himself offered no systematic account of the formalization of any given body of knowledge. (Russell and Whitehead’s Principia Mathematica is a tour de force comprising the order of justification of its propositions, while remaining silent about the order of discovery.)

A formal theory of time would have the same advantages for time as the theoretical virtues that Russell identified in the formalization of mathematics. In fact, Russell himself formulated a formal theory of time, in his paper “On Order in Time,” which is, in Russell’s characteristic way, reductionist and over-simplified. Since I aim to formulate a theory of time that is explicitly and consciously non-reductionist, I will make no use of Russell’s formal theory of time, though it is interesting at least to note Russell’s effort. The theory of ecological temporality that I have been formulating here is a fragment of a full formal theory of time, and as such it can offer certain insights into time that are lost in a reductionist account (as in Russell) or hidden in an informal account (as in geography and history).

As noted above, a formalized theory brings about a shift in our intuition, so that the formerly intuitive becomes unintuitive while the formerly unintuitive becomes intuitive. A shift in our intuitions about time (and history) means that a formal theory of time makes intuitive temporal relationships less obvious, while making temporal relationships that are hidden by the “buzzing, blooming world” more obvious, and therefore more amenable to analysis — perhaps for the first time.

Ecological temporality gives us a framework in which we can demonstrate the interconnectedness of strongly distinct temporalities, since the panarchy the holds between levels of an ecological system is the presumption that each level of an ecosystem impacts every other level of an ecosystem. Given the distinction between strong distinctions and weak distinctions, it would seem that adjacent ecological levels are weakly distinct and therefore have a greater impact on each other, while non-adjacent ecological levels are strongly distinct and therefore have less of an impact on each other. In an ecological theory of time, all of these principles hold in parallel, so that, for example, micro-temporality is only weakly distinct from meso-temporality, while being strongly distinct from exo-temporality. As a consequence, a disturbance in micro-temporality has a greater impact upon meso-temporality than upon exo-temporality (and vice versa), but less of an impact does not mean no impact at all.

Another virtue of formal theories, in addition to the shift in intuition that Russell identified, is that it forces us to be explicit about our assumptions and presuppositions. The implicit theory of time held by a geostrategist matters, because that geostrategist will interpret history in terms of the categories of his or her theory of time. But most geostrategists never bother to make their theory of time explicit, so that we do not know what assumptions they are making about the structure of time, hence also the structure of history.

Sometimes, in some cases, these assumptions will become so obvious that they cannot be ignored. This is especially the case with supernaturalistic and soteriological conceptions of metaphysical history that ultimately touch on everything else that an individual believes. This very obviousness makes it possible to easily identify eschatological and theological bias; what is much more insidious is the subtle assumption that is difficult to discern and which only can be elucidated with great effort.

If one comes to one’s analytical work presupposing that every moment of time possesses absolute novelty, one will likely make very different judgments than if one comes to the same work presupposing that there is nothing new under the sun. Temporal novelty means historical novelty: anything can happen; whereas, on the contrary, the essential identity of temporality over historical scales — identity for all practical purposes — means historical repetition: very little can happen.

. . . . .

Note: Anglo-American political science implicitly takes geopolitics as its point of departure, but, as I have attempted to demonstrate in several posts, this tradition of mainstream geopolitics can be contrasted to a nascent movement of biopolitics. However, biopolitics too could be formulated in the manner of a theoretical biopolitics, and a theoretical biopolitics would be at risk of being as abstract as geopolitics and in need of supplementation by a more comprehensive ecological perspective.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Tuesday


Jean Piaget

One of the important ideas from Piaget’s influential conception of cognitive development is that of perspective taking. The ability to coordinate the perspectives of multiple observers of one and the same state of affairs is a cognitive skill that develops with time and practice, and the mastery of perspective taking coincides with cognitive maturity.

From a philosophical standpoint, the problem of perspective taking is closely related to the problem of appearance and reality, since one and the same state of affairs not only appears from different perspectives for different observers, it also appears from different perspectives for one and the same observer at different times. In other words, appearance changes — and presumably reality does not. It is interesting to note that developmental psychologists following Paiget’s lead have in fact conducted tests with children in order to understand at what stage of development that they can consistently distinguish between appearance and reality.

Just as perspective taking is a cognitive accomplishment — requiring time, training, and natural development — and not something that happens suddenly and all at once, the cognitive maturity of which perspective taking is an accomplishment does not occur all at once. Both maturity and perspective taking continue to develop as the individual develops — and I take this development continues beyond childhood proper.

While I find Piaget’s work quite congenial, the developmental psychology of Erik Erikson strikes me a greatly oversimplified, with its predictable crises at each stage of life, and the implicit assumption built in that if you aren’t undergoing some particular crisis that strikes most people at a given period of life, then there is something wrong with you. That being said, what I find of great value in Erikson’s work is his insistence that development continues throughout the human lifespan, and does not come to a halt after a particular accomplishment of cognitive maturity is achieved.

Piagetian cognitive development in terms of perspective taking can easily be extended throughout the human lifespan (and beyond) by the observation that there are always new perspectives to take. As civilization develops and grows, becoming ever more comprehensive as it does so, the human beings who constitute this civilization are forced to formulate always more comprehensive conceptions in order to take the measure of the world being progressively revealed to us. Each new idea that takes the measure of the world at a greater order of magnitude presents the possibility of a new perspective on the world, and therefore the possibility of a new achievement in terms of perspective taking.

The perspectives we attain constitute a hierarchy that begins with the first accomplishment of the self-aware mind, which is egocentric thought. Many developmental psychologists have described the egocentric thought patterns of young children, though the word “egocentric” is now widely avoided because of its moralizing connotations. I, however, will retain the term “egocentric,” because it helps to place this stage within a hierarchy of perspective taking.

The egocentric point of departure for human cognition does not necessarily disappear even when it is theoretically surpassed, because we know egocentric thinking so well from the nearly universal phenomenon of human selfishness, which is where the moralizing connotation of “egocentric” no doubt has its origin. An individual may become capable of coordinating multiple perspectives and still value the world exclusively from the perspective of self-interest.

In any case, the purely egocentric thought of early childhood confines the egocentric thinker to a tightly constrained circle defined by one’s personal perspective. While this is a personal perspective, it is also an impersonal perspective in so far as all individuals share this perspective. It is what Francis Bacon called the “idols of the cave,” since every human being, “has a cave or den of his own, which refracts and discolours the light of nature.” This has been well described in a passage from F. H. Bradley made famous by T. S. Eliot, because the latter quoted it in a footnote to The Waste Land:

My external sensations are no less private to myself than are my thoughts or my feelings. In either case my experience falls within my own circle, a circle closed on the outside; and, with all its elements alike, every sphere is opaque to the others which surround it… In brief, regarded as an existence which appears in a soul, the whole world for each is peculiar and private to that soul.

F. H. Bradley, Appearance and Reality, p. 346, quoted by T. S. Eliot in footnote 48 to The Waste Land, “What the Thunder Said”

I quote this passage here because, like my retention of the term “egocentric,” it can help us to see perspectives in perspective, and it helps us to do so because we can think of expanding and progressively more comprehensive perspectives as concentric circles. The egocentric perspective is located precisely at the center, and the circle described by F. H. Bradley is the circle within which the egocentric perspective prevails.

The next most comprehensive perspective taking beyond the transcendence of the egocentric perspective is the transcendence of the ethnocentric perspective. The ethnocentric perspective corresponds to what Bacon called the “idols of the marketplace,” such that this perspective is, “formed by the intercourse and association of men with each other.” The ethnocentric perspective can also be identified with the sociosphere, which I recently discussed in Eo-, Exo-, Astro- as an essentially geocentric conception which, in a Copernican context, should be overcome.

Beyond ethnocentrism and its corresponding sociosphere there is ideocentrism, which Bacon called the “idols of the theater,” and which we can identify with the noösphere. The ideocentric perspective, which Bacon well described in terms of philosophical systems, such that, “all the received systems are but so many stage-plays, representing worlds of their own creation after an unreal and scenic fashion.” Trans-ethnic communities of ideology and belief, like world’s major religions and political ideologies, represent the ideocentric perspective.

The transcendence of the ideocentric perspective by way of more comprehensive perspective taking brings us to the anthropocentric perspective, which can be identified with the anthroposphere (still a geocentric and pre-Copernican conception, as with the other -spheres mentioned above). The anthropocentric perspective corresponds to Bacon’s “idols of the tribe,” which Bacon described thus:

“The Idols of the Tribe have their foundation in human nature itself, and in the tribe or race of men. For it is a false assertion that the sense of man is the measure of things. On the contrary, all perceptions as well of the sense as of the mind are according to the measure of the individual and not according to the measure of the universe. And the human understanding is like a false mirror, which, receiving rays irregularly, distorts and discolours the nature of things by mingling its own nature with it.”

Bacon was limited by the cosmology of his time so that he could not readily identify further idols beyond the anthropocentric idols of the (human) tribe, just as we are limited by the cosmology of our time. Yet we do today have a more comprehensive perspective than Bacon, we can can identify a few more stages of more comprehensive perspective taking. Beyond the anthropocentric perspective there is the geocentric perspective, the heliocentric perspective, and even what we could call the galacticentric perspective — as when early twentieth century cosmologists argued over whether the Milky Way as the only galaxy and constituted an “island universe.” Now we know that there are other galaxies, and we can be said to have transcended the galacticentric perspective.

As I wrote above, as human knowledge has expanded and become more comprehensive, ever more comprehensive perspective taking has come about in order to grasp the concepts employed in expanding human knowledge. There is every reason to believe that this process will be iterated indefinitely into the future, which means that perspective taking also will be indefinitely iterated into the future. (I attempted to make a similar and related point in Gödel’s Lesson for Geopolitics.) Therefore, further levels of cognitive maturity wait for us in the distant future as accomplishments that we cannot yet attain at this time.

This last observation allows me to cite one more relevant developmental psychologist, namely Lev Vygotsky, whose cognitive mediation theory of human development makes use of the concept of a Zone of proximal development (ZPD). Human development, according to Vygotsky, takes place within a proximal zone, and not at any discrete point or stage. Within the ZPD, certain accomplishments of cognitive maturity are possible. In the lower ZPD there is the actual zone of development, while in the upper ZPD there lies the potential zone of development, which can be attained through cognitive mediation by the proper prompting of an already accomplished mentor. Beyond the upper ZPD, even if there are tasks yet to be accomplished, they cannot be accomplished within this particular ZPD.

With the development of human knowledge, we’re on our own. There is no cognitive mediator to help us over the hard parts and assist us in the more comprehensive perspective taking that will mark a new stage of cognitive maturity and possible also a new zone of proximal development in which new accomplishments will be possible. But this has always been true in the past, and yet we have managed to make these breakthroughs to more comprehensive perspectives of cognitive maturity.

I hope that the reader sees that this is both hopeful and sad. Hopeful because this way of looking at human knowledge suggests indefinite progress. Sad because we will not be around to see the the accomplishments of cognitive maturity that lie beyond our present zone of proximal development.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Follow

Get every new post delivered to your Inbox.

Join 332 other followers

%d bloggers like this: