## Benoît Mandelbrot, R.I.P.

### 17 October 2010

**Sunday **

**F**amed French mathematician Benoît Mandelbrot has passed away a few days ago at the age of 85. When someone dies who has lived such a productive life, it would sound a little odd to say that we have “lost” him. We haven’t lost Benoît Mandelbrot. His contribution is permanent. The Mandelbrot set will take its place in history beside Euclidean geometry and Cantorian transfinite numbers. And when I say “history” you might think that I am consigning it to the dead past, but what I mean by “history” is an ongoing tradition of which we are a part, and which spills out into the future, informing lives yet to be lived in unpredictable and unprecedented ways.

**M**andelbrot will be best remembered for having invented (discovered? formulated?) fractals and fractal geometry. By an odd coincidence, I have been thinking quite a bit about fractals lately. A few days ago I wrote **The Fractal Structure of Exponential Growth**, and I had recently obtained from the library the NOVA documentary **Fractals: Hunting the Hidden Dimension**. As with many NOVA documentaries, I have watched this through repeatedly to try to get all that I can out of it, much as I typically listen through recorded books multiple times.

**T**here are a couple of intuitive definitions of fractals to which I often refer when I think about them. You can say that a fractal is an object that retains its properties under magnification, or you can say that a fractal is an object that possesses self-similarity across orders of magnitude. But while these definitions informally capture some important properties of fractals, the really intuitive aspect of fractals is their astonishing appearance. Mandelbrot was unapologetically interested in the appearance of fractals. In the NOVA documentary he says in an interview, “I don’t play with formulas, I play with pictures. And that is what I’ve been doing all my life.”

**I**t is often said that mathematicians are platonists during the week and formalists on the weekend. In other words, while actively working with mathematics they feel themselves to be engaged with objects as real as themselves, but when engaged in philosophical banter over the weekend, the mathematician defends the idea of mathematics as a purely formal activity. This formulation reduced mathematical formalism to a mere rhetorical device. But if formalism is the mathematician’s rhetoric while platonism is the philosophy that he lives by in the day-to-day practice of his work, the rhetorical flourish of formalism has proved to be decisive in the direction that mathematics has taken. Perhaps we could say that mathematicians are strategic formalists and tactical platonists. In this case, we can see how the mathematician’s grand strategy of formalism has shaped the discipline.

**I**t was in the name of such formalism that “geometrical intuition” began to be seriously questioned at the turn of the nineteenth to the twentieth century, and several generations of mathematicians pursued the rigorization of analysis by way of taking arithmetization as a research program. (Gödel’s limitative theorems were an outgrowth of this arithmetization of analysis; Gödel produced his paradox by an arithmetization of mathematical syntax.) It is to this tacit research program that Mandelbrot implicitly referred when we said, “The eye had been banished out of science. The eye had been excommunicated.” (in an interview in the same documentary mentioned above) What Mandelbrot did was to rehabilitate the eye, to recall the eye from its scientific banishment, and for many this was liberating. To feel free to once again trust one’s geometrical intuition, to “run with it,” as it were, or — to take a platonic figure of thought — to follow the argument where it leads, set a new generation of mathematicians free to explore the visceral feeling of mathematical ideas that had gone underground for a hundred years.

**I**t is the astonishing appearance of fractals that made Mandelbrot famous. Since one could probably count the number of famous mathematicians in any one generation on one hand, this is an accomplishment of the first order. Mandelbrot more-or-less singlehandedly created a new branch of mathematics, working against institutionalized resistance, and this new branch of mathematics has led to a rethinking of physics as well as to concrete technological applications (such as cell phone antennas) in widespread use within a few years of fractals coming to the attention to scientists. Beyond this, fractals became a pop culture phenomenon, to the degree that a representation of the Mandelbrot set even appeared as a crop circle.

**W**hile the crop circle representation of the Mandelbrot set would seem to have brought us to the point of mere silliness, so much so that we seem to have passed from the sublime to the ridiculous, it does not take much thought to bring us back around to understanding the intellectual, mathematical, scientific, and technological significance of fractal geometry. This is Mandelbrot’s contribution to history, to civilization, to humankind.

**. . . . .**

**. . . . .**

Fractals and Geometrical Intuition

2. A Question for Philosophically Inclined Mathematicians

3. Fractals and the Banach-Tarski Paradox

4. A visceral feeling for epsilon zero

5. Adventures in Geometrical Intuition

**. . . . .**

**. . . . .**

**. . . . .**

**. . . . .**

**. . . . .**

**. . . . .**

**. . . . .**