Another Iranian Coup

11 December 2011

Sunday


Captured RQ-170 on display in Iran.

More than a year ago, in An Iranian Coup written in August 2010, I discussed the Iranian production of a drone UCAV (unmanned combat air vehicle) bomber, the Karrar. One of the consequences of developing an innovative weapons systems, in addition to the obvious effort to push technologies as far as they can be pushed, is the development of expertise in design, construction, maintenance, and operations of the weapons system in question. Thus even if Iran’s UCAV Karrar is not terribly sophisticated, simply engaging in production and operation of the drone is fostering a team of experienced UCAV experts.

Iran has now put this expertise to good use, having apparently taken control of a Lockheed Martin RQ-170 Sentinel, also called “The Beast of Kandahar,” brought it down to the ground in one piece, and now have put it on display. There is no agreement on exactly how Iran obtained possession of the RQ-170 Sentinel. Many news stories only suggested scenarios of the drone coming down of its own accord on Iranian territory, the result of a “falling leaf” descent, or “flat spin.” I judge this scenario to be unlikely, though I am apparently in the minority on this. I think that the Iranians viewed US drones over their territory as a potential gold mine, like the US trying the recover Soviet submarines from the bottom of the ocean during the Cold War. It is there for the taking, if only you can get your hands on it.

It seems to me by far the most likely story that the Iranians managed to take over the controls of the RC-170 — albeit imperfectly — and guide it down in a less than perfect landing that caused some damage but which left the craft mostly intact. Why should this be more likely that the US losing control of the craft and it coming down of its own accord within Iran? Because of the nature of the technology. I will try to explain what I mean by this using an analogy with a classic situation in which technology changed the battlefield.

One of the most perfect examples in history of changing the classic equation of a battlefield favoring the initiative was the introduction of machine guns and barbed wire during the First World War. Machine guns and barbed wire overwhelmingly favored the defense, and as a result the First World War turned into a standoff in which major operations taking the initiative came at such a great cost for such a small result that any victory was a Pyrrhic victory. This situation was not changed until another technology came along — actually a combination of hardware technologies and social technologies of military doctrine — during the Second World War, when massed mechanized armor was employed according to infiltration tactics and Blitzkrieg was born. The initiative shifted back from the defense to the offense, and the Second World War as in consequence a very different war than the First World War.

The introduction of computer technology to the battlefield is one of those technological innovations that rapidly changes the battlefield equation. Here, it is not that the initiative has shifted from the attack to the defense, but rather that battlefield exploitation of computer technologies has shifted the initiative from regular to irregular forces, or, if you prefer, the overwhelming superiority of conventional military forces can be nullified under certain circumstances so that unconventional forces and unconventional methods of offense can be disproportionately effective.

What are these circumstances in which the initiative goes to irregular forces? Particular individuals with a special genius for programming. That’s all it takes: a clever sixteen year old with a good idea and reasonably current equipment — maybe not cutting edge technology, but pretty good technology, such that is within the grasp of second- and even third-tier nation-states today, as well as within the realm of possibility for well-funded non-state actors — could be sufficient to defeat the institutionalized hardware and software systems of conventional forces.

In the C4ISR networked battlespace of the near future, the weapons systems will be awe-inspiring in their complexity and precision, but all of them, however impressive, with have an Achilles heel, and that Achilles heel will be the network itself and wireless communication within the network. The wireless network is available for all to eavesdrop, and the only thing keeping you out of another’s network is their encryption.

This situation is not new; we have been here before. After the explosion of the first atomic bombs, several of the scientists who worked on the project, and especially Oppenheimer, emphasized that there was no “secret” of atomic weapons. His point was that the bombs were the results of science, physics, and technology. In principle, any determined agent could master the science, the physics, and the technology, producing an atomic bomb for themselves. The same is true of most of our high technology weapons systems: there are no secrets per se, only an incremental advantage of one side having slightly more advanced technology than the other side, and this advantage will be nullified in time. And so it is today with the networked battlespace: the possibilities of radio-frequency transmission are known to all, as are the basic ideas behind remote operation of drones. In this context, the only skill that matters is hacking, and hackers of genius are as likely to emerge in Iran, China, or Russia as in the US, the UK, or Canada.

Encryption is key to the electronic battlefield, and encryption is not 'big science,' but rather idiosyncratic and individual science. At some time in the future, when quantum computers are brought to bear upon encryption this may change, but that is further down the road.

The technology onboard the RQ-170 is likely to be greatly in advance of Iran’s own Karrar, but thanks to the growing expertise the Iranians are cultivating, they have a good chance of exploiting this captured technology and improving their own future UCAV iterations. It would be interesting to know if US UCAVs have some kind of device that destroys their inner mechanisms if they fail to remain in contact with their proper handlers. If they do not as yet have this feature, I suspect that they will have something like it in the near future.

Electronic countermeasures will need to become much more sophisticated, but with their sophistication will come complexity, and with complexity will come weaknesses that can be exploited by an adversary.

In the meantime, the Iranians can be expected to exploit the captured RQ-170 to the limit, as Russia exploited the B-29 that fell into its possession at the end of the Second World War, and as the US exploited its captured MiGs during the Cold War, studying them (and, in the case of the Russians, copying them) in painstaking detail. And the Americans will be working on counter-measures to having their drones hijacked. Encryption will be the key technology in this battle of technologies, with cleverness and innovation figuring more significantly than institutional and organizational rationality.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Advertisements

One Response to “Another Iranian Coup”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: