How Kim Jong-un Learned to Stop Worrying and Love the H-Bomb

7 January 2016

Thursday


An official photograph of Kim Jong-un from a KCNA on 'WPK Central Committee Issues Order to Conduct First H-Bomb Test'

An official photograph of Kim Jong-un from a KCNA on ‘WPK Central Committee Issues Order to Conduct First H-Bomb Test’

An official announcement has been made that North Korea has successfully tested an H-Bomb; global response to this announcement has been both skeptical and critical. Here (in part) is the official announcement from the English language version of KCNA (Korean Central News Agency, run by the DPRK) from DPRK Proves Successful in H-bomb Test:

The first H-bomb test was successfully conducted in Juche Korea at 10:00 on Wednesday, Juche 105 (2016), pursuant to the strategic determination of the WPK. Through the test conducted with indigenous wisdom, technology and efforts the DPRK fully proved that the technological specifications of the newly developed H-bomb for the purpose of test were accurate and scientifically verified the power of smaller H-bomb. It was confirmed that the H-bomb test conducted in a safe and perfect manner had no adverse impact on the ecological environment. The test means a higher stage of the DPRK’s development of nuclear force.

It is thought unlikely that North Korea has the technological and engineering expertise to produce an H-bomb, but it is generally conceded that this is nevertheless possible, and, if the announcement is true, it is an unwelcome development that has already been officially denounced by the UN Security Council. Nation-states skeptical of the H-bomb claim made by North Korea have already moved to condemn the development, just in case it may be true.

There are good reasons for skepticism in the international community. Not only are the seismic signatures of the test smaller than would be expected from an H-bomb, but North Korea has a long history of bluster regarding its weapons systems. The DPRK relies as much on the bluster as on the weapons systems themselves for deterrent effect.

In How Scientists Know the North Korea Blast Probably Wasn’t an H-Bomb: It’s too similar to earlier explosions. we read regarding the DPRK nuclear weapon test:

“An actual hydrogen bomb has a seismic signature similar to an atomic weapon’s. But its explosive yield is in the much larger megaton range. It’s more likely North Korea ‘turbo-charged’ a normal atomic explosion by adding a small amount of tritium to the bomb’s core rather than inventing a miniature hydrogen bomb from scratch.”

There are several separable issues in this paragraph that should be distinguished. Miniaturization of a nuclear device is distinct from the capability of building the device, although the more progress a nation-state makes in miniaturization, the better the weaponization of a ballistic missile (another technology that North Korea has been pressing to develop). There is a first threshold of a nuclear device small enough to be delivered by an ICBM, and a second threshold of miniaturization when MIRVed ICBMs become possible. But presumably the reference to a “miniature” hydrogen bomb refers to the small size of the seismic signature and the DPRK’s own reference to the test being of a “smaller H-bomb.” A smaller fusion device is a greater technical and engineering challenge to build, but it does not require a distinct design (i.e., inventing from scratch). There have been several disputed nuclear tests (particularly those conducted by Pakistan) upon which nuclear scientists disagree whether the tests were “fizzles” or whether a more severe test was purposefully conducted in order to obtain a more rigorous result. Until actual test data are made publicly available (not likely for a hundred years or more) we cannot know the answer to this question, and we similarly cannot know the answer in relation to the DPRK tests.

In regard to what this article refers to as a “turbo-charged” fission device, boosted fission weapons are an important aspect of nuclear technology that any aspiring nuclear weapons power would want to master. It is entirely possible that North Korea’s most recent nuclear test is a boosted fission device that is more powerful than an unboosted fission device but less powerful than a “true” fusion device, and indeed there is a sense in which even “true” fusion devices are boosted fission bombs, as much of the yield even from a Teller-Ulam configuration device is from boosted fission, although the term “true” H-bomb is usually reserved for a fully scalable two-stage device.

As for inventing a hydrogen bomb from scratch, if Ulam and Sakharov could each independently converge upon essentially the same design sixty years ago, there is no reason that a North Korean nuclear scientist could not come up with essentially the same design again from “scratch” — except that is isn’t from scratch. Once the idea has had its proof of concept and everyone knows it can be built, it is only a question of whether a nation-state is going to invest the resources into building such a device.

The first Soviet fusion device was also controversial in its time: the US was skeptical that the Soviets had the technology and expertise to build a fusion device, and indeed the first Soviet fusion device was not a “true” fusion device like the Ivy Mike test of the US, but was rather Sakharov’s “sloika” or “layer cake” design — more powerful than a simple fission device, but less powerful than the first fusion device detonated by the US. But the Soviets rapidly closed the gap, and Sakharov eventually hit on the same design that Stanislaw Ulam had earlier and independently arrived at in the US.

The technology of an H-bomb is significantly more challenging than that of an A-bomb. To produce a simple fission weapon it is only necessary to possess a sufficient quantity of fissionable material and bring this material together into a critical mass. The basic idea is simple, though the engineering challenge is still difficult. While quite a few details of A-bomb design are available in open sources, exact details necessary to building a successful device are classified secrets of all nuclear weapons powers. A simple gun-type device achieves critical mass by using an explosive charge to rapidly drive together to sub-critical masses into a single critical mass (this is the design of the “Little Boy” bomb dropped on Hiroshima). A more difficult design to master is an implosion device, in which critical mass is achieved by a symmetrical implosion of concentrically layered fissionables (this is the design of the “Fat Man” bomb dropped on Nagisaki).

Constructing an H-bomb requires mastery of an implosion-type fission device that is used to trigger the more powerful fusion device. As with fission weapons, all the design ideas of fusion devices are available in open sources, and the only difficulty in constructing such a device is, firstly, obtaining the fissionables for the fission trigger, and, secondly, mastering the engineering details of compressing the fusion secondary by means of the fission trigger. We know that North Korea can produce a fission weapon, likely of an implosion type, so it is really only a matter of engineering before the North Koreans are able to employ their fission weapon technology to produce a fusion device. All of this requires time and effort and a dedicated work force, but there is nothing in principle secret about the production of an H-bomb.

In Weapons Systems in an Age of High Technology: Nothing is Hidden I emphasized, even in a time of escalating state security and the culture of the universal surveillance state, that there are no secrets in high technology weapons systems. High technology weapons systems are a function of advanced science and an industrial base that allows for the large scale application of scientific ideas in military technologies. Science itself functions through openness, so that the ideas behind even the most well-guarded weapons programs are developed out in the open, as it were.

Even if the largest and most powerful nation-states attempted to create a small cadre of scientists to develop new science in secret, this closed community would be out-paced in its scientific development by the open community of scientific researchers. It is almost impossible — not entirely impossible, but almost — to make high technology weaponry derived from “secret” scientific advances that cannot be bettered by weaponry designed and built on the principles of publicly available science. This is a reality of industrial-technological civilization that we cannot wish away. At a time when science was the province of isolated geniuses and no political entity in existence had a fully industrialized infrastructure, a secret weapon like Greek Fire could be maintained in secrecy for hundreds of years, but this is no longer the world that we live in.

The technology of the H-bomb is now more than sixty years old. If we consider the pace of technological change in other fields, sixty years is like ancient history, so we should not be surprised when sixty year old technology is developed by poor and backward nation-states. In the early and remarkably prescient anthology ONE WORLD or NONE: A Report to the Public on the Full Meaning of the Atomic Bomb Oppenheimer’s contribution noted that one of the effects of nuclear weapons was to make destruction far cheaper than in the past:

“In this past war it cost the United States about $10 a pound to deliver explosive to an enemy target. Fifty thousand tons of explosive would thus cost a billion dollars to deliver. Although no precise estimates of the costs of making an atomic bomb equivalent to 50,000 tons of ordinary explosive in energy release can now be given, it seems certain that such costs might be several hundred times less, possibly a thousand times less. Ton for equivalent ton, atomic explosives are vastly cheaper than ordinary explosives. Before conclusions can be drawn from this fact, a number of points must be looked at. But it will turn out that the immediate conclusion is right: Atomic explosives vastly increase the power of destruction per dollar spent, per man-hour invested; they profoundly upset the precarious balance between the effort necessary to destroy and the extent of the destruction.”

ONE WORLD or NONE: A Report to the Public on the Full Meaning of the Atomic Bomb, Edited by Dexter Masters and Katharine Way, 1946, “The New Weapon: The Turn of the Screw,” J. Robert Oppenheimer, p. 24

Oppenheimer’s observation remains true seventy years later, and what it means today is that even one of the most impoverished and mismanaged economies on the planet can afford to build nuclear weapons. Most nation-states do not build nuclear weapons because of the international pressure not to do so, but rogue states or pariahs of the international community are unconcerned about their standing among other nation-states, and pursue nuclear weapons programs in spite of sanctions and disapproval, valuing military power over international reputation.

In terms of international reputation, North Korea does not even scruple to offend its single ally and sponsor, China, and to do so at the expense of pet projects of the regime. The members of Moranbong Band, reportedly hand-picked by Kim Jong-un, canceled their first scheduled international concert in Beijing and returned to North Korea (North Korean pop band cancels Beijing concert, leaves for home) because the North Koreans would not remove images of North Korean missile launches from videos to be projected during their performance (cf. Kim Jong Un Spurns Xi’s Efforts to Bring Him in From the Cold by David Tweed), but probably also because North Korea knew that China would strongly object to their nuclear test.

Whether or not the North Koreans can build a “true” fusion device at present, whether or not they were lying about their nuclear test, is beside the point. What is relevant is that they have an active nuclear weapons research project and intend to continue with the development of nuclear weapons until they possess a credible nuclear deterrent as the ultimate expression of regime survivability. We can count on the DPRK continuing their development of nuclear weapons, ballistic missiles, and eventually even submarine-launched ballistic missiles. All of these are difficult and expensive yet decades old technologies that can eventually be mastered by a determined nation-state.

We know that the North Korean regime cannot survive indefinitely, because tyranny cannot endure, but we also know that tyranny always fails but democracy does not always prevail. While it is difficult to imagine that what follows the North Korean regime could be worse, China can easily imagine this: millions of North Koreans fleeing over the border and destabilizing parts of China, and eventually a unified Korea that is an ally of the US sharing a border with China. In this, the Chinese and the North Koreans can agree, as for both the “nightmare” scenario is regime collapse that destabilizes Chinese and ends in the removal of the ruling elite in North Korea. The “nightmare” scenario for Seoul and its allies is a North Korean nuclear strike against South Korea, Japan, or the US mainland.

Given the North Korean regime’s dedication to assuring its own survival through the possession of a nuclear deterrent (an imperative shared by the Communist Party elites in China), the interesting question is not the details of the present state of North Korea’s nuclear deterrent, but whether the North Korean regime can persist for a period of time sufficient to produce a truly robust and viable strategic deterrence, complete with MIRVed SLBMs. If the North Koreans can attain this level of technologically sophisticated deterrence within the next few decades, even if the regime fails (as with the Soviet Union) the successor power will still retain a powerful bargaining chip, and can present itself as Putin’s Russia today presents itself: as a world power, even if a world power of questionable stability. The privileged political and military families that run the country today could then count on retaining at least a part of their privileges for their descendants. If, on the other hand, the DPRK collapses ignominiously before converging upon a viable strategic deterrence, South Korea will likely manage the transition, privileged families will lose all of their power, and South Korea will almost certainly completely dismantle the strategic defense programs of the North Korean regime. Nothing will remain of the DPRK, under this scenario, except for the stories of the horrors of its rule.

The generals running the country, who present themselves in public as dutifully taking notes while the “Dear Leader” dispenses his wisdom, are looking out for themselves and their heirs. In any transition, the ruling Kim family will lose its position. The excesses of a dictatorship, then, are borne as the opportunity cost of ensuring the ongoing power and privileges of a ruling elite regardless of the details of the transition of power when the North Korean regime inevitably fails and falls. The military and their cronies in business and government are prepared to hang on to power for the long term, as they have seen similarly entrenched elites hang on to power in nation-states like Egypt, which have passed through revolution and regime change with little underlying change.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: