The Overview Effect over the longue durée

20 January 2016


Saturn with astronaut

Our first view of Earth was from its surface; every other planet human beings eventually visit will be first perceived by a human being at a great distance, then from orbit, and last of all from its surface. We will descend from orbit to visit a new world, rather than, as on Earth, emerging from the surface of that world and, only later, much later, seeing it from orbit, and then as a pale blue dot, from a great distance.

With our homeworld, the effect of looking up from the surface of our planet precedes the overview effect; with every other world, the overview effect precedes the surface standpoint. We might call this the homeworld effect, which is a consequence of what I now call planetary endemism (and which, when I was first exploring the concept, I called planetary constraint). We have already initiated this process when human beings visited the moon, and for the first time in human history descended to a new world, never before visited by human beings. With this first tentative experience of spacefaring, humanity knows one world from its surface (Earth) and one world from above (the moon). Every subsequent planetary visit will increase the relative proportion of the overview effect in contradistinction to the homeworld effect.

In the fullness of time, our normative assumptions about originating on a plant and leaving it by ascending in to orbit will be displaced by a “new normal” of approaching worlds from a great distance, worlds perhaps first perceived as a pale blue dot, and then only later descending to familiarize ourselves with surface features. If we endure for a period of time sufficient for further human evolution under the selection pressure of spacefaring civilization, this new normal will eventually replace the instincts formed in the environment of evolutionary adaptedness (EEA) when humanity as a species branched off from other primates. The EEA of our successor species will be spacefaring civilization and the many worlds to which we travel, and this experience will shape our minds as well, producing an evolutionary psychology adapted not to survival on the surface of a planet, but to survival on any planet whatever, or no planet at all.

The Copernican principle is the first hint we have of the mind of a species adapted to spacefaring. It is a characteristic of Copernicanism to call the perspective borne of planetary endemism, the homeworld effect, into question. We have learned that the Copernican principle continually unfolds, always offering more comprehensive perspectives that place humanity and our world in a context that subsumes our previous perspective. Similarly, the overview effect will unfold over the development of spacefaring civilization that takes human beings progressively farther into space, providing ever more distant overviews of our world, until that world becomes lost among countless other worlds.

In my Centauri Dreams post The Scientific Imperative of Human Spaceflight, I discussed the possibility of further overview effects resulting from attaining ever more distant perspectives on our cosmic home — thus attaining an ever more rigorous Copernican perspective. For example, although it is far beyond contemporary technology, it is possible to imagine we might someday have the ability to go so far outside the Milky Way that we could see our own galaxy in overview, and point out the location of the sun in the Orion Spur of the Milky Way.

There is, however, another sense in which additional overview effects may manifest themselves in human experience, and this would be due less to greater technical abilities that would allow for further first person human perspectives on our homeworld and on our universe, and rather due more to cumulative human experience in space as a spacefaring civilization. With accumulated experience comes “know how,” expertise, practical skill, and intuitive mastery — perhaps what might be thought of as the physical equivalent of acculturation.

We achieve this physical acculturation to the world through our bodies, and we express it through a steadily improving facility in accomplishing practical tasks. One such practical task is the ability to estimate sizes, distances, and movements of other bodies in relation to our own body. An astronaut floating in space in orbit around a planet or a moon (i.e., on a spacewalk) would naturally (i.e., intuitively) compare himself as a body floating in space with the planet or moon, also a body floating in space. Frank White has pointed out to me that, in interviews with astronauts, the astronauts themselves have noted the difference between being inside a spacecraft and being outside on a spacewalk, when one is essentially a satellite of Earth, on a par with other satellites.

The human body is an imperfectly uniform, imperfectly “standard” standard ruler that we use to judge the comparative sizes of the objects around us. Despite its imperfection as a measuring instrument, the human body has the advantage of being more intimately familiar to us than any other measuring device, which makes it possible to achieve a visceral understanding of quantities measured in comparison to our own body. At first perceptions of comparative sizes of bodies in space would be highly inaccurate and subject to optical illusions and cognitive biases, but with time and accumulated experience an astronaut would develop a more-or-less accurate “feel” for the size of the planetary body about which he is orbiting. With accumulated experience one would gain an ability to judge distance in space by eye, estimate how rapidly one was orbiting the celestial body in question, and perhaps even familiarize oneself with minute differences in microgravity environments, perceptible only on an intuitive level below the threshold of explicit consciousness — like the reflexes one acquires in learning how to ride a bicycle.

This idea came to me recently as I was reading a NASA article about Saturn, Saturn the Mighty, and I was struck by the opening sentences:

“It is easy to forget just how large Saturn is, at around 10 times the diameter of Earth. And with a diameter of about 72,400 miles (116,500 kilometers), the planet simply dwarfs its retinue of moons.”

How large is Saturn? We can approach the question scientifically and familiarize ourselves with the facts of matter, expressed quantitatively, and we learn that Saturn has an equatorial radius of 60,268 ± 4 km (or 9.4492 Earths), a polar radius of 54,364 ± 10 km (or 8.5521 Earths), a flattening of 0.09796 ± 0.00018, a surface area of 4.27 × 1010 km2 (or 83.703 Earths), a volume of 8.2713 × 1014 km3 (or 763.59 Earths), and a mass of 5.6836 × 1026 kg (or 95.159 Earths) — all figures that I have taken from the Wikipedia entry on Saturn. We could follow up on this scientific knowledge by refining our measurements and by going more deeply in to planetary science, and this gives us a certain kind of knowledge of how large Saturn is.

Notice that the figures I have taken from Wikipedia for the size of Saturn notes Earth equivalents where relevant: this points to another way of “knowing” how large Saturn is: by way of comparative concepts, in contradistinction to quantitative concepts. When I read the sentence quoted above about Saturn I instantly imagined an astronaut floating above Saturn who had also floated above the Earth, feeling on a visceral level the enormous size of the planet below. In the same way, an astronaut floating above the moon or Mars would feel the smallness of both in comparison to Earth. This is significant because the comparative judgement is exactly what a photograph does not communicate. A picture of the Earth as “blue marble” may be presented to us in the same size format as a picture of Mars or Saturn, but the immediate experience of seeing these planets from orbit would be perceived very differently by an orbiting astronaut because the human body always has itself to compare to its ambient environment.

This is kind of experience could only come about once a spacefaring civilization had developed to the point that individuals could acquire diverse experiences of sufficient duration to build up a background knowledge that is distinct from the initial “Aha!” moment of first experiencing a new perspective, so one might think of the example I have given above as a “long term” overview effect, in contradistinction to the immediate impact of the overview effect for those who see Earth from orbit for the first time.

The overview effect over the longue durée, then, will continually transform our perceptions both by progressively greater overviews resulting from greater distances, and by cumulative experience as a spacefaring species that becomes accustomed to viewing worlds from an overview, and immediately grasps the salient features of worlds seen first from without and from above. In transforming our perceptions, our minds will also be transformed, and new forms of consciousness will become possible. This alone ought to be reason enough to justify human spaceflight.

The possibility of new forms of consciousness unprecedented in the history of terrestrial life poses an interesting question: suppose a species — for the sake of simplicity, let us say that this species is us, i.e., humanity — achieves forms of consciousness through the overview effect cultivated in the way I have described here, and that these forms of consciousness are unattainable prior to the broad and deep experience of the overview effect that would characterize a spacefaring civilization. Suppose also, for the sake of the argument, that the species that attains these forms of consciousness is sufficiently biologically continuous that there has been no speciation in the biological sense. There would be a gulf between earlier and later iterations of the same species, but could we call this gulf speciation? Another way to pose this question is to ask whether there can be cognitive speciation. Can a species at least partly defined in terms of its cognitive functions be said to speciate on a cognitive level, even when no strictly biological speciation has taken place?

I will not attempt to answer this question at present — I consider the question entirely open — but I would like to suggest that the idea of cognitive speciation, i.e., a form of speciation unique to conscious beings, is deserving of further inquiry, and should be of special interest to the field of cognitive astrobiology.

. . . . .

The Overview Effect

The Epistemic Overview Effect

Hegel and the Overview Effect

The Overview Effect and Perspective Taking

The Overview Effect in Formal Thought

Our Knowledge of the Internal World

The Human Overview

Personal Experience and Empirical Knowledge

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

The Overview Effect over the longue durée

Civilizations of Planetary Endemism

. . . . .

deep field astronaut 3

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: