Folk Astrobiology

6 August 2016


If some alien species had encountered Earth during one of its snowball periods, the planet would have resembled a biosphere with a single biome.

If some alien species had encountered Earth during one of its snowball periods, the planet would have resembled a biosphere with a single biome.

Can there be folk concepts in (and of) recent and sophisticated scientific thought, such as astrobiology? Astrobiology is a recent discipline, and as such is a beneficiary of a long history of the development of scientific disciplines; in other words, astrobiology stands on the shoulders of giants. In From an Astrobiological Point of View I characterized astrobiology as the fourth and latest of four revolutions in the life sciences, preceded by Darwinism, genetics, and evolutionary developmental biology (i.e., evo-devo). Can there be folk concepts that influence such a recent scientific discipline?

In Folk Concepts and Scientific Progress and Folk Concepts of Scientific Civilization I considered the possibility of folk concepts unique to a scientific civilization, and the folk concepts of recent sciences like astrobiology constitute paradigmatic examples of folk concepts unique to scientific civilization. The concepts of folk astrobiology, far being being rare, have proliferated as science fiction has proliferated and made a place for itself in contemporary culture, especially in film and television.

One idea of folk astrobiology that is familiar from countless science fiction films is that of planets the biosphere of which is dominated by a single biome. Both Frank Herbert’s planet Arrakis from the novel Dune and the planets Tatooine and Jakku from Star Wars are primarily desert planets, whereas the Star Wars planet Dagobah is primarily swamp, the planet Kamino is a global ocean, and the planet Hoth is primarily arctic. Two worlds that appear in the Alien films, Zeta Reticuli exomoon LV-426 in Alien and Aliens and LV-223 in Prometheus, are both desolate, rocky, and barren, like the landscapes we have come to expect from the robotic exploration of the other worlds in our own solar system.

The knowledge we have assembled of the long-term history of the biosphere of Earth, that our planet has passed through “hothouse” and “icehouse” stages, suggest it is reasonable to suppose that we will find similar conditions elsewhere in the universe, though Earth today has a wide variety of biomes that make up its biosphere. We should expect to find worlds both with diverse biospheres and with biospheres primarily constituted by a single biome. Perhaps this idea of folk astrobiology will someday be formalized, when we know more about the evolution of biospheres of multiple worlds, and we have the data to plot a bell curve of small, rocky, wet planets in the habitable zone of their star. This bell curve almost certainly exists, we just don’t know as yet where Earth falls on the curve and what kinds of worlds populate the remainder of the curve.

Biosphere diversity is thus a familiar concept of folk astrobiology. But let me backtrack a bit and try to formulate more clearly an explication of folk astrobiology.

In an earlier post I quoted the following definition of folk biology:

Folk biology is the cognitive study of how people classify and reason about the organic world. Humans everywhere classify animals and plants into species-like groups as obvious to a modern scientist as to a Maya Indian. Such groups are primary loci for thinking about biological causes and relations (Mayr 1969). Historically, they provided a transtheoretical base for scientific biology in that different theories — including evolutionary theory — have sought to account for the apparent constancy of “common species” and the organic processes centering on them. In addition, these preferred groups have “from the most remote period… been classed in groups under groups” (Darwin 1859: 431). This taxonomic array provides a natural framework for inference, and an inductive compendium of information, about organic categories and properties. It is not as conventional or arbitrary in structure and content, nor as variable across cultures, as the assembly of entities into cosmologies, materials, or social groups. From the vantage of EVOLUTIONARY PSYCHOLOGY, such natural systems are arguably routine “habits of mind,” in part a natural selection for grasping relevant and recurrent “habits of the world.”

Robert Andrew Wilson and Frank C. Keil, The MIT Encyclopedia of the Cognitive Sciences

And here is a NASA definition of astrobiology that I have previously quoted:

“Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. This multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System, the search for evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space.”

Drawing on both of these definitions — “Folk biology is the cognitive study of how people classify and reason about the organic world” and “Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe” — we can formulate a fairly succinct definition of folk astrobiology:

Folk astrobiology is the cognitive study of how people classify and reason about the origin, evolution, distribution, and future of life in the universe.

I hope that the reader immediately sees how common this exercise is, both in scientific and non-scientific thought. On the scientific side, folk astrobiology is pervasively present in the background assumptions of SETI, while on the non-scientific side, as we have seen above in examples drawn from scientific fiction films, folk astrobiology informs our depiction of other worlds and their inhabitants. These concepts of folk astrobiology are underdetermined by astrobiology, but well grounded in common sense and scientific knowledge as far as it extends today. We will only be able to fully redeem these ideas for science when we have empirical data from many worlds. We will begin to accumulate this data when, in the near future, we are able to get spectroscopic readings from exoplanet atmospheres, but that is only the thin edge of the wedge. Robust data sets for the evolution of multiple independent biospheres will have to await interstellar travel. (This is one reason that I suggested that a starship would be the ultimate scientific instrument; cf. The Interstellar Imperative.)

Folk astrobiology remains “folk” until its concepts are fully formalized as part of a rigorous scientific discipline. As few disciplines ever attain complete rigor (logic and mathematics have come closest to converging on that goal), there is always a trace of folk thought that survives in, and is even propagated along with, scientific thought. Folk concepts and scientific concepts, then, are not mutually exclusive, but rather they overlap and intersect in a Wittgensteinian fashion. However, the legacy of positivism has often encouraged us to see folk concepts and scientific concepts as mutually exclusive, and if one adopts the principle that scientific concepts must be reductionist, therefore no non-reductionist concepts are not scientific, then it follows that most folk concepts are eliminated when a body of knowledge is made scientifically rigorous (I will not further develop this idea at present, but I hope to return to it when I can formulate it with greater precision).

We have a sophisticated contemporary biological science, and thus scientific biological concepts are ready to hand to employ in astrobiology, so that astrobiology has an early advantage in converging upon scientific rigor. But if a science aspires to transcend its origins and to establish itself as a new science co-equal with its progenitors, it must be prepared to go beyond familiar concepts, and in this case this means going beyond the sophisticated concepts of contemporary biology in order to establish truly astrobiological scientific concepts, i.e., uniquely astrobiological concepts, and these distinctive and novel concepts must then, in their turn, converge on scientific rigor. In the case of astrobiology, this may mean formulating a “natural history” where “nature” is construed as to include the whole of the universe, and this idea transcends the familiar idea of natural history, forcing the astrobiologist to account for cosmology as well as biology.

As an example of an uniquely astrobiology concept I above suggested the idea of biosphere diversity. Biosphere diversity, in turn, is related to ideas of biosphere evolution, developmental stages on planets with later emergent complexities, and so on. The several posts I have written to date on planetary endemism (Part I, Part II, Part III, Part IV, Part V, and more to come) may be considered expositions of the folk astrobiological idea of planetary endemism. Similarly, the homeworld concept is both a folk concept of astrobiology and scientific civilization (cf. The Homeworld Effect and the Hunter-Gatherer Weltanschauung, Hunter-Gatherers in Outer Space, and The Martian Standpoint).

. . . . .

The idea of a homeworld is a folk concept of astrobiology and scientific civilization.

The idea of a homeworld is a folk concept of astrobiology and scientific civilization.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

2 Responses to “Folk Astrobiology”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: