Two Counterfactual Classes of Civilizations

26 November 2016


Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior social intelligence.

Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior ‘social intelligence.’

In a couple of blog posts, Is encephalization the great filter? and Of Filters, Great and Small, I argued that encephalization is the great filter — clearly implying that this is a single filter that is more significant than another filters, and that encephalization is the great filter. The “great filter” is an idea due to Robin Hanson, according to whom, “The Great Silence implies that one or more of these steps [to visible colonization] are very improbable; there is a ‘Great Filter’ along the path between simple dead stuff and explosive life. The vast vast majority of stuff that starts along this path never makes it. In fact, so far nothing among the billion trillion stars in our whole past universe has made it all the way along this path.”

In the second of the two blog posts noted above, Of Filters, Great and Small, I considered the different possible structures that filters might take, and this is a more nuanced view of the great filter that departs from the idea that a single element of the great filter is uniquely responsible for the great silence and the Fermi paradox. The journey to higher forms of emergent complexity seems to be robust, and therefore likely to have been repeated elsewhere, but it is also a long journey of later emergent complexities multiply supervening upon earlier emergent complexities. This structure of emergent complexities over time is itself a structure more complex than any one of the emergent complexities taken in isolation. In so far as we understand the great filter in this content, we understand a more nuanced view than the idea of one step among many steps along this journey being the unique hurdle to the aggressive expansion of life in the universe, and therefore its visible traces discoverable through cosmology.

Even given this more nuanced view of the great filter, later forms of emergent complexity will be less common than earlier forms, and within the structure of the great filter we can identify particular emergent complexities where the iterated structure falters. If we place this stalling point at exponential encephalization, we might find a universe filled with complex life, but with few or no other intelligent species capable of building a civilization. This is the sense in which I wish my claim that encephalization is the great filter to be understood.

Recently I have had reason to revisit the idea that encephalization is the great filter, and this is primarily due to having read The Social Conquest of Earth by E. O. Wilson, which emphasizes the role of eusociality in the construction of complex societies. I think that Wilson is right about this. Wilson notes that eusociality has emerged on Earth only a handful of times, making it a rare form of emergent complexity: “Eusociality arose in ants once, three times independently in wasps, and at least four times — probably more, but it is hard to tell — in bees.” (p. 136) We can compare this rarity of eusociality as an adaptation to the rarity of intelligence as an adaptation.

The insects that have achieved robust eusociality — perhaps I should say arthropods — are very different from mammals. We must go back more than 500 million years to the split between protostomes and dueterostomes to find the last common ancestor of the two. With the arthropods we share being bilaterally symmetrical, but the split between us — hence the split between our brains and central nervous systems (CNS) — is about as old as the split between mammals and molluscs: chordata, mollusca, and arthropoda are distinct phyla. On the one hand, we know from a recent fossil find something about the CNS of the earliest chordates, which we thus have in common with most other terrestrial animalia (cf. How early a mind?); on the other hand, we also know that neural structures have evolved independently on Earth (cf. The ctenophore genome and the evolutionary origins of neural systems), so that we might speak of neurodiversity among terrestrial animalia. Different brains, when sufficiently complex, are substrates for different forms of emergent consciousness, i.e., different forms of mind.

It is not only dramatically different kinds of minds that might give rise to dramatically different forms of encephalization, and thus intelligence and civilization. Part of the differentness of eusocial insects is their reproductive specialization, which goes along with a genetic structure of a colony in which the superorganism of the colony benefits overall from a majority of individuals not reproducing. This is also dramatically different from human societies. It has been objected to Wilson’s thesis of the eusociality of human beings that human beings are not eusocial, but rather prosocial, and that human cooperative societies cannot be compared to insect cooperative societies because there is no parallel to reproductive specialization among human beings. This, I think, is an unnecessarily narrow conception of eusociality. All we have to do is to recognize that eusociality can take multiple forms (as minds and intelligence can take multiple forms, supervening upon multiple distinct neural structures), some of which involve reproductive specialization and some of which do not, in order for us to recognize human cooperative societies as eusocial.

The most developed brain of the molluscs is that of the octopus, a solitary hunter. Octopi have been hunting in the depths of the sea for hundreds of millions of years, and, apparently, they have never experienced competition on the basis of intelligence, and, perhaps because of this, have never experienced an encephalization event. (Recently in How early a mind? I quoted E. O. Wilson to the effect that, “A Homo sapiens level of intelligence can arise only on land, whether here on Earth or on any other conceivable planet.” ) So octopi have a respectable level of intelligence, but are far from being eusocial. The eusocial insects have a much less powerful brain than octopi or mammals, but they did make the breakthrough to eusociality. Only human beings made the breakthrough to both eusociality and high individual intelligence.

Since reading Wilson on the eusociality of human societies, I can come to think that human civilization is what happens when eusociality coincides with intelligence. Termite mounds and bee hives are what happens when eusociality coincides with insect-level intelligence. And this observation of the interaction of eusociality and intelligence immediately suggests two possible counterfactuals to human civilzation, which I will sketch below. Understand that, in this context, when I use the term “human civilization” I am using this is in its most generic signification, covering all the many different human civilizations that have existed, i.e., the class of all human civilizations (which is the class of all known civilizations constructed by a biological being both eusocial and intelligent).

I noted above that we can employ a conception of eusociality less narrow than that restricted to eusocial insects with reproductive specialization. Similarly, the other element in civilization — intelligence — ought also to be construed broadly. Many different kinds of intelligence interacting with many different kinds of eusociality suggest many different possibilities for civilization distinct from the class of human civilizations. At the present time I am not going to consider kinds of eusociality and intelligence as much as degrees of eusociality and intelligence, and I will assume that the insect transition to reproductive specialization represents eusociality taken to a higher degree than eusociality has progressed in human beings. Similarly, I will assume that human intelligence represents a higher degree of intelligence than now-extinct branches of the genus homo, i.e., our ancestors with lower degrees of encephalization and lower intelligence.

From these assumptions about degrees of eusociality and intelligence, two counterfactual classes of civilization are suggested:

High Eusociality/Low Intelligence

A species might be less intelligent than human beings (i.e., possess a lower degree of encephalization) but more eusocial than human beings, and be able to build a civilization.

Low Eusociality/High Intelligence

A species might be more intelligent than human beings (i.e., possessing a higher degree of encephalization, or a thicker neocortex) but less eusocial than human beings, and be able to build a civilization.

This formulation has the virtue of existing human civilization embodying the principle of mediocrity: our eusociality and intelligence are balanced; we are not as eusocial or as individualistic as we might have been, and we are not as intelligence or as unintelligent as we might have been. We are in the “Goldilocks zone” of coinciding eusociality and intelligence, and this human “sweet spot” for civilization may account for the fact that civilization emerged independently in widely separated geographical regions, not as a result of idea diffusion, but rather as a consequence of independent invention.

In the High Eusociality/Low Intelligence class of civilizations, we would see somewhat individually intelligent beings capable of a high degree of cooperation through eusociality forming socieites (superorganisms) quite early in their history. We can see the degree to which bees and ants and termites can develop societies based on eusociality and an almost negligible individual intelligence; with a degree of eusociality approaching this, but in a species endowed with more cognitive capacity, cities might be built that look like something between a human city and a termite mound, and this might happen spontaneously. If this had happened with an earlier human ancestor — a counterfactual ancestor with greater eusociality than any actual human ancestor — it could have preempted the emergence of human civilization by occurring millions of years earlier.

In the Low Eusociality/High Intelligence class of civilizations, civilization may have come about at the level of scattered bands of hunter-gatherers, or, at least, human beings in small groups may have been able to develop science and technology without large social institutions such as governments, universities, and corporations, which discipline unruly human beings and make it possible for them to work cooperatively together. One can imagine that a more intelligent (counterfactual) species of the genus homo might have been sufficiently intelligent to pursue science at a much earlier period of its history, and one can imagine members of such a species coming together for scientific purposes much as our ancestors came together at Göbekli Tepe (which I first wrote about in The Birth of Agriculture from the Spirit of Religion) possibly for religious rituals, even before they gathered in settlements for agriculture.

Both counterfactual scenarios I have described above could have resulted in civilization on Earth emerging tens of thousands or hundreds of thousands of years earlier than it did in fact emerge. I suppose it would be equally possible to formulate counterfactuals in which different classes of civilization emerged much later.

Each of the three classes of civilizations considered here — moderate eusociality/moderate intelligence, high eusociality/low intelligence, and low eusociality/high intelligence — have distinct advantages and disadvantages, in terms of the viability of the civilization that results. However, cognitive capability begins to play a much greater role in civilization after industrialization when civilization becomes technological and scientific. If a given civilization can survive to make the breakthrough to science-driven technology, all other things being equal, the species with the greatest intelligence will have the greatest advantage in deploying science to further the ends of that species. I suspect that a high eusociality/low intelligence civilization would be stagnant, and possibly so stagnant that the breakthrough to industrialization never occurs. I also suspect that human beings were just smart enough to make that breakthrough, as indicated by the single point of origin of the industrial revolution. Short of that threshold, any civilization remains cosmologically invisible, exclusively bound to its homeworld, and incapable of long-term existential risk mitigation. This scenario is consistent with the great silence, and may constitute another approach to the Fermi paradox.

The research questions that follow from these considerations include: Are there intrinsic limits to eusociality among beings whose biology is not consistent with reproductive specialization? Are there intrinsic limits to intelligence for biological beings of known biochemistry? How do eusociality and intelligence interact biologically and ecologically? Does either constitute a check upon the other?

. . . . .

Cooperation among human beings has its limits -- as illustrated by the story of the Tower of Babel -- and one limit to cooperation is our level of eusociality.  With a higher or lower level of eusociality, civilization would have had a different structure.

Cooperation among human beings has its limits — as illustrated by the story of the Tower of Babel — and one limit to cooperation is our level of eusociality. With a higher or lower level of eusociality, civilization would have had a different structure.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


4 Responses to “Two Counterfactual Classes of Civilizations”

  1. Xcalibur said

    I’ve long been fascinated by the eusocial insects. They are a very different kind of life, but one that is wildly successful. And it’s true, the eusocial breakthrough has only been made a few times. Perhaps eusociality is comparable to civilization. In that case, human civilization represents a balance of individual intelligence and eusociality, and insect colonies represent high eusociality with low individual intelligence, as you said. The fact that ants/bees/termites have biological castes (queens, workers, soldiers, males, etc.) is proof of their high achievements in eusociality.

    The parallels are there. Humans are interdependent; we spontaneously form societies; we construct large-scale institutions and infrastructure; we have specialized classes of labor (soldiers, priests, bureaucrats, farmers, slaves, etc.); our societies are robust and adaptable. However, there are differences in all these categories too, e.g. different social classes do not differ biologically.

    Gobleki Tepe is interesting, it reminds me of Stonehenge.

    While there seems to be a sliding scale here, I’d like to point out that high intelligence/high eusociality is another possibility, which ties into the questions of the last paragraph. I believe a number of sci-fi works have imagined intelligent beings (maybe even modified humans) living in eusocial colonies.

    • geopolicraticus said

      You’re right — high eusociality with high intelligence is a permutation that I did not consider, and it might result in a markedly different kind of civilization. Low eusociality with low intelligence is another permutation, but it is the null case that does not allow for the emergence of civilization.

      Best wishes,


  2. I think it might be useful to distinguish between highly prosocial beings with lower reproductive specialization vs highly prosocial beings high reproductive specialization. Although both would be capable of highly harmonious instinctive cooperation on a local scale(within the city, hive, whatever), the more reproductively specialized beings might be found to be far less capable of extending that cooperation beyond close kin. Although there are probably advantages that make evolution of high prosociality more likely with high sexual specialization, the probability of avoiding massive conflicts outside of smaller groups, that at high levels of technological development could be an extinction threat, is increased with less reproductive specialization.

    Higher levels of prosociality will tend to decrease the likelihood of “criminal” violence between individuals, but the likelihood of warfare may be far higher with high levels of sexual specialization as the evolution of social instincts is much less likely to be adaptable beyond close kinship groups.

    • geopolicraticus said

      Good point. One could establish the distinction between the prosocial and the eusocial at the threshold of reproductive specialization.

      You wrote, “…more reproductively specialized beings might be found to be far less capable of extending that cooperation beyond close kin.” This isn’t necessarily a limiting factor on the growth of a society as long as the reproductively specialized beings can produce enough drones to drive the economy of their society, and the apex leadership (the queen, in a bee or ant colony) can successfully reproduce itself. One can imagine a counter-factual civilization of reproductively specialized beings where each city consists almost entirely of close kin. The political structure of this society would be based on the city-state, which we know from classical antiquity is a workable and sustainable model.

      I would expect that civilizations (or societies) emergent from different beings along the biological spectrum of prosociality and eusociality would exhibit different rates of criminality and warfare, among other measures of social cooperation or defection. As long as the criminality doesn’t escalate to the threshold of destroyed society from within, and as long as warfare does not escalatae to the threshold of destroying society from without, these are all potentially successful models of social organization. A certain degree of social conflict is likely to be a source of creativity, hence innovation.

      Best wishes,


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: