Saturday


Recently in The Space Age turns 60! I wrote, “We are still in the very early stages of the Space Age; the inflection point of this developmental sequence has not yet arrived, so we are today still in the same shallow end of the exponential growth curve that was initiated sixty years ago.” What do I mean by an inflection point, and what is (or what would be) the inflection point for spacefaring civilization?

In a curve, an inflection point (according to Wolfram Mathworld) is, “…a point on a curve at which the sign of the curvature (i.e., the concavity) changes.” In this technical sense, then, I have misused “inflection point,” but it has become commonplace to speak of the inflection point of an exponential (or sigmoid) curve as the point at which the transition occurs from the long, shallow part of the curve, only incrementally growing over time, to the exponential growth part of the curve. In this sense, the inflection point is the transition from slow (sometimes very slow), incremental development to rapid, exponential development.

We have some good examples of inflection points from human history. The industrial revolution is a nearly perfect example of an inflection point. Human beings have been developing technologies since long before civilization. Pre-human ancestors were using stone tools more than two million years ago. However, technological development began to accelerate with the industrial revolution, and continues to develop at an expanding and increasing rate. Technological growth — both in terms of technological complexity and large-scale industrial application — has been exponential since the industrial revolution. Is something like this possible with spacefaring?

In Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen and Stagnant Supercivilizations and Interstellar Travel I discussed one of my favorite themes, namely, that spacefaring civilization might have experienced its inflection point in the wake of the Apollo program, which latter demonstrated what was possible when significant resources are expended on a difficult goal. More recently, on The Unseen Podcast Episode We, Martians? I said that if we had gone to Mars as NASA once planned, building immediately following Apollo, it would have been a different mission than any mission to Mars undertaken at the present time. It would have been, in short, a mission much like the Apollo mission, meaning a transient presence on Mars sufficient to plant the flag of the sponsoring nation-state and to collect some samples to bring back to Earth. Paul Carr called this a “Flags and Footprints” mission, which is a good way to phrase this, and I subsequently heard this from others, so apparently it’s a thing.

These counterfactuals did not occur, so that they represent a permanently lost opportunity for human civilization. The door has closed on this particular shape for human history, but the door remains open for different shapes for human history if spacefaring technologies are eventually adopted, and when they are adopted (if they are adopted), will decisively and definitively alter the shape of human history — or the history of any intelligent species able to build spacefaring technologies. To consider this a little more carefully I am going to delineate three generic scenarios for the breakout to spacefaring civilization that might be experienced by a civilization that develops spacefaring technology. These three scenarios are as follows:

● Early Inflection Point when spacefaring is pursued with exponential frequency immediately upon the technology being available.

● Middling Inflection Point when spacefaring is pursued with exponential frequency only after it has been available for a substantial period of time, but within the longue durée in which the technology became available.

● Late Inflection Point when spacefaring is pursued with exponential frequency after the technology has been available throughout a longue durée period of history.

No great store need be placed on the time frames I have implied above; sufficient to our purposes is that spacefaring may become routine immediately upon, sometime after, or long after the technology is available. Each of these spacefaring inflection points can be taken separately, since each represents a different civilization as defined by the relationship between the civilizations of planetary endemism and spacefaring civilization. Moreover, we can justify the significance of the position of the spacefaring inflection point in the overall history of civilization by reference to the infinitistic possibilities available to a spacefaring civilization

Early Inflection Point

On several occasions I have written about the possibility of a spacefaring civilization emerging immediately upon the technology of the Space Race being available, specifically in Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen. In this post I suggested that industrial-technological civilization as it has been known from the industrial revolution up to the advent of the Space Age might have been suddenly “preempted” by the emergence of a new kind of civilization — a spacefaring civilization — that changed the conditions of human life as radically as the industrial revolution changed the conditions of human life. This is what did, in fact, happen with the industrial revolution: as soon as the technology to drive machinery by fossil fuels became available, it was rapidly exploited, and western societies passed through a series of rapid social changes driven by industrialization.

While an early inflection point did not occur on Earth with the initial availability of spacefaring technology, we must consider the possibility that this is could occur with any civilization that passes the spacefaring technology threshold. I explored some of these possibilities in my Centauri Dreams post, Stagnant Supercivilizations and Interstellar Travel. In so far as an early spacefaring breakout would encourage a focus on spacefaring technologies (the relative neglect of other technologies being an opportunity cost of this alternative focus), the developmental trajectory of such a civilization might involve continual and rapid development of spacefaring technologies even while other technologies (say, for example, computing technologies) remain relatively undeveloped. Thus the technological profile of a given civilization is going to reflect the existential opportunities it has pursued, and when it pursues them.

We may also observe that, along with early-adoption spacefaring scenarios that did not occur with human civilization, it is also the case that a variety of counterfactual existential risk scenarios also did not occur. What I mean by this is that, once nuclear weapons were invented (shortly before the advent of the Space Age), human beings immediately realized that this gave us the power to destroy our own civilization. A number of novels were written and films were made in which human beings or human civilization went extinct shortly after the technology was available for this. These scenarios did not occur, just as the scenarios of early spacefaring adoption did not occur.

Middling Inflection Point

It has become a commonplace to speak of the recent development of space industries as “NewSpace.” If the technologies of NewSpace come to maturity in the coming decades and results in the following decades in a spacefaring breakout and the establishment of a truly spacefaring civilization, this would constitute an instance of a mediocre spacefaring inflection point. Given that the Space Age is now sixty years old, a few more decades of development would mean that spacefaring technologies will have been available for a century before they come to be fully exploited for a spacefaring breakout and a spacefaring civilization. In other words, the spacefaring inflection point did not occur immediately after spacefaring technology was available, but it also did not have to wait for an entirely new epoch of human history to come to pass for the spacefaring breakout to occur. (In terms of human civilization, we might identify a period of 100-300 years from advent to breakout as a mediocre spacefaring inflection point.)

As implied above, the current nominal spacefaring capacity of our civilization today is consistent with a middling spacefaring inflection point, if spacfaring expands rapidly in the wake of the maturity of NewSpace industries and technologies. Among these technologies we may count reusable spacecraft (Sierra Nevada’s Dream Chaser), including the booster stages of multi-stage rockets (SpaceX and Blue Origin), hybrid rocket engines (Reaction Engines LTD), and ion and plasma rockets (Ad Astra’s VASIMR), inter alia. These are the actual technologies of spacefaring; many industries that seek to exploit space for commercial and industrial uses are focused on technologies to be employed in space, but which are not necessarily technologies of spacefaring that will result in a spacefaring breakout.

Late Inflection Point

Say that the NewSpace technologies noted above come to maturity, but they prove to be impractical, or too expensive, or simply uninteresting to the better part of humanity. If this opportunity arises and then is passed over without a spacefaring breakout, like the initial existential opportunity presented by spacefaring technologies, the middling spacefaring inflection point will pass and humanity will remain with its nominal spacefaring capacity but no spacefaring breakout and no spacefaring civilization. In this case, if there is to be an eventual spacefaring breakout for human civilization, it will be a late spacefaring inflection point, and human civilization will change considerably in the period of time that passes between the initial availability of spacefaring technology and its eventual exploitation for a spacefaring breakout.

Just as in the meantime from initial availability of spacefaring technology to the present day, computer technology exponentially improved, a late spacefaring inflection point would mean that many technologies would emerge and come to maturity and industrial exploitation even as spacefaring technologies are neglected and experience little development (perhaps as an opportunity cost of the development of alternative technologies). Thus a late-adopter spacefaring civilization may develop a variety of fusion technologies, alternative energy technologies, genetic engineering technologies, quantum computing, human-machine interface technologies (or xenomorph-machine interface, as the case may be), artificial consciousness, and so on. Once a civilization possesses something akin to technological maturity on its homeworld, its historical experience will be radically different from the historical experience of a species that pursues an early spacefaring inflection point.

I can imagine a civilization that becomes so advanced that spacefaring technologies become cheap and easily available simply because the technological infrastructure of the civilization is so advanced. Thus even if there is no large-scale social interest in spacefaring, small groups of interested individuals can have spacefaring technologies for the asking, and these individuals and small groups will leave the planet one or two at a time, a dozen at a time, and so on. The homeworld civilization would be unaffected by this small scale spacefaring diaspora, since the technological and financial investment will have become so marginal as to be negligible, but these individuals and groups will take with them an advanced technology that will allow them to survive and prosper even at this small scale.

The worlds these small groups pioneer will grow slowly, but they will grow, regardless of whether the homeworld notices. Under these conditions, an ongoing nominal spacefaring capacity could develop over longer scales of time into a spacefaring capacity that is no longer nominal, though we would never be able to say exactly when this changeover occurred; this would be an evolutionary rather than a revolutionary transition. However, once these other worlds began to grow in population, eventually these populations would exceed the population of Earth, and at this point we could say with confidence that the late spacefaring inflection point had been reached, without spacefaring per se ever becoming a great civilizational-scale undertaking.

The Null Case

In addition to these three scenarios, there is also the null case, i.e., spacefaring technology is initially developed, but it is not further pursued, so that it is either forgotten or regarded with disinterest. A civilization that develops spacefaring technology and then either fails to pursue the development, or loses the capacity due to other factors (such as civilizational collapse), never achieves a spacefaring breakout and never becomes a spacefaring civilization. As I make a distinction between the nominal spacefaring capacity we now possess, and a spacefaring civilization proper, our contemporary civilization remains consistent with the null case scenario unless or until it experiences a spacefaring breakout.

The null case is the trajectory of a civilization toward permanent stagnation. Even if many technologies are developed and come to maturity and industrial exploitation, nothing essential will have changed in the human relationship to the cosmos (or the relation of any intelligent species that develops spacefaring technology but which does not exploit these technology for a spacefaring breakout). Spacefaring technologies, if exploited for a spacefaring breakout that results in a spacefaring civilization, would change the relationship of a species to the cosmos, as the species in question then has the opportunity to develop separately from its homeworld, and is therefore no longer tightly-coupled to the natural history of its homeworld. Without a spacefaring breakout, an intelligent species remains tightly-coupled to the natural history of its homeworld, and necessarily goes extinct when its homeworld biosphere is rendered uninhabitable.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

The Space Age turns 60!

4 October 2017

Wednesday


Sixty years ago today, on 04 October 1957, Sputnik 1 (Спутник-1) became the first object of human manufacture to orbit the Earth. Thus began the Space Race, driven by Cold War competition, but transcending that Cold War competition and being transformed into a triumph of the human spirit (not to mention being a triumph of human engineering, but here engineering expresses the human spirit).

A few years ago, on 12 April 2011, I wrote A Half Century of Human Spaceflight to celebrate the 50th anniversary of Yuri Gagarin’s first human spaceflight in orbit around the Earth; in just a few years, 2021, we will be able to celebrate sixty years of human spaceflight. The anniversaries of all the important dates for the technologies that have shaped the world today remind us how rapidly the world was transformed from thousands of years of settled agriculturalism, preceded by tens of thousands of years of hunter-gatherer nomadism, into the technological civilization of today. Progress has been dizzying, and the very institutions of civilization that brought us to this point have not yet caught up with the changes wrought by them; even now they labor under the strain of this forced social change.

We are still in the very early stages of the Space Age; the inflection point of this developmental sequence has not yet arrived, so we are today still in the same shallow end of the exponential growth curve that was initiated sixty years ago. In the earliest years of the Space Age (and the Space Race, since the two coincided at least until 1969, when the Space Race as “won”) it became commonplace to speak of the “conquest of space,” as though our first tentative, exploratory foray beyond the atmosphere of our homeworld were a triumphant affirmation of human power. Carl Sagan was nearer to the truth when he wrote in Cosmos that our first few decades of space exploration have been only an incremental step in an endless journey:

“The surface of the Earth is the shore of the cosmic ocean. From it we have learned most of what we know. Recently, we have waded a little out to sea, enough to dampen our toes or, at most, wet our ankles. The water seems inviting. The ocean calls. Some part of our being knows this is from where we came. We long to return. These aspirations are not, I think, irreverent, although they may trouble whatever gods may be.”

It is likely that we will continue on in the shallow end of the space exploration curve for some time yet. Perched as we are on the edge of the cosmos, able to see far more than we can explore, like Stout Cortez, silent upon a peak in Darien, it is something akin to madness for those of us who wish to explore, but whose lives will remain Earthbound. We must learn patience, even if that is the least of our virtues. I may not live to see the inflection point, but I know that it is out there, and that the task for us is to keep civilization moving in that direction so that the inflection point will be reached, and that we do not fail before we have reached it. To take heart during this sometimes demoralizing struggle, we have the vision before us of what civilization can become when it is liberated from planetary endemism. “Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?”

. . . . .

The Space Age began with Sputnik.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Worlds of Convenience

24 August 2017

Thursday


Three Worlds, Three Civilizations

In August of this year I spoke at the Icarus Interstellar Starship Congress 2017. One of the themes of the congress was “The Moon as a Stepping Stone to the Stars” so I attempted to speak directly to this theme with a presentation titled, “The Role of Lunar Civilization in Interstellar Buildout.” The intention was to bring together the possible development of the moon as part of the infrastructure of spacefaring civilization within our solar system with the role that the moon could play in the further buildout of spacefaring civilization toward an interstellar spacefaring capacity.

Most of our spacefaring infrastructure at present is in low Earth orbit.

In preparing my presentation I worked through a lot of ideas related to this theme, and even though Icarus Interstellar was very generous with the time they gave me to speak, I couldn’t develop all of the ideas that I had been working on. One of these ideas was that of the moon and Mars as worlds of convenience. By this I mean that the moon and Mars are small, rocky worlds that might be useful to human beings because of their constitution and their proximity to Earth.

Any agriculture on the moon will of necessity be confined to artificial conditions.

The moon, as the closest large celestial body to Earth, is a “world of convenience”: It is an island in space within easy reach of Earth, and might well play a role in terrestrial civilization not unlike the role of the Azores or the Canary Islands played in the history of western civilization, which, as it began to explore farther afield down the coast of Africa and into the Atlantic (and eventually to the new world), made use of the facilities offered by these island chains. Whether as a supply depot, a source of materials from mining operations, a place for R&R for crews, or as a hub of scientific activity, the moon could be a crucial component of spacefaring infrastructure in the solar system, and, as such, could serve to facilitate the growth and development of spacefaring civilization.

Because Mars is a bit more like Earth than the moon, conditions on Mars may be less artificial than on the moon.

Mars is also a world of convenience. While farther from Earth than the moon, it is still within our present technology to get to Mars — i.e., it is within the technological capability of a rudimentary spacefaring capacity to travel to a neighboring planet within the same planetary system — and Mars is more like Earth than is the moon. Mars has an atmosphere (albeit thin), because it has an atmosphere its temperatures are moderated, its day is similar to the terrestrial day, and its gravity is closer to that of Earth’s gravity than is the gravity on the moon. Mars, then, is close enough to Earth to be settled by human beings, and the conditions are friendlier to human beings than the closer and more convenient moon. These factors make Mars a potentially important center for the exploration of the outer solar system.

The further buildout of our spacefaring infrastructure will probably include both space-based assets and planetary assets, but it is on planets that we will feel at home.

We can easily imagine a future for humanity within our own solar system in which mature civilizations are found not only on Earth but also on the moon and Mars. Since the moon and Mars are both “worlds of convenience” for us — places unlike the Earth, but not so unlike the Earth that we could not make use of them in the buildout of human civilization as a spacefaring civilization — we would expect them to naturally be part of human plans for the future of the solar system. Because we are biological beings emergent from a biosphere associated with the surface of Earth (a condition I call planetary endemism), we are likely to favor other planetary surfaces even as human civilization expands into space; it is on planetary surfaces that we will feel familiar and comfortable as a legacy of our evolutionary psychology.

Our planetary endemism predisposes us to favor planetary surfaces for human habitation.

These three inhabited worlds — Earth, the moon, and Mars — would each have a human civilization, but also a distinctive civilization different from the others, and each would stand in distinctive relationships to the other two. Earth and the moon are always going to be tightly bound, perhaps even bound by the same central project, because of their proximity. Mars will be a bit distant, but more Earth-like, and so more likely to give rise to an Earth-like civilization, but a civilization that will be built under selection pressures distinct from those on Earth. The moon will never have an Earth-like civilization because it will almost certainly never have an atmosphere, and it will never have a greater gravitational field, so Lunar civilization will depart from terrestrial civilization even while being tightly-coupled to Earth due to its proximity.

The moon will always be an ‘offshore balancer’ for Earth, but conditions on the moon are so different from those of Earth that any Lunar civilization would diverge from terrestrial civilization.

The presence of worlds of convenience within our solar system does not mean that we must or will forgo other opportunities for the development of spacefaring civilization. Just as Icarus Interstellar holds that there is no one way to the stars, so too there is no one buildout for the infrastructure of a spacefaring civilization. One of the themes of my presentation as delivered was the different possibilities for infrastructure buildout within the solar system, how these different infrastructures could interact, and how they would figure in future human projects like interstellar missions. Thus the three worlds and the three civilizations of Earth, the moon, and Mars may be joined by distinctive civilizations based on artificial habitats or on settlements based on asteroids or the more distant moons of the outer planets. But Earth, the moon, and Mars are likely to remain tightly-coupled in ongoing relationships of cooperation, competition, and conflict because of their status as worlds of convenience.

The worlds of convenience within our solar system may be joined by artificial habitats.

The possibility of multiple human civilizations within our solar system presents the possibility of what I call “distributed development” (cf. Mass Extinction in the West Asian Cluster and Emergent Complexity in Multi-Planetary Ecosystems). In the earliest history of human civilization distributed development could only extend as far as the technologies of transportation allowed. With transportation and communication limited to walking, shipping, horses, or chariots, the civilizations of west Asia could participate in mutual ideal diffusion, but the other centers of civilization at this time — in China, India, Peru, Mexico, and elsewhere — lay beyond the scope of easy communication by these means of transportation and communication. As the technologies of transportation and communication became more sophisticated, idea diffusion is now planetary, and this planetary-scale idea diffusion is converging upon a planetary civilization.

An interplanetary internet would facilitate idea diffusion between the worlds of our solar system.

Today, our planetary civilization has instantaneous communication and rapid transportation between any and all parts of the planet, and planetary scale idea diffusion is the rule. We enjoy this planetary scale idea diffusion because our technologies of communication and transportation — jets, high speed trains, fiber optic cables, the internet, satellites, and so on — allow for it. So fast forward to a solar system of three planetary civilizations — i.e., three distinct and independent civilizations, though coupled by relationships of trade and communication — and with an interplanetary network of communication and transportation that allows for idea diffusion on an interplanetary scale. The pattern of distributed development among multiple civilizations that characterized the west Asian cluster of civilization could be iterated at an interplanetary scale, driving these civilizations forward as they borrow from each other, and no one civilization must make every breakthrough in order for the others to enjoy the benefits of innovation.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


Looking down on Earth from above may not only make us reevaluate out relationship to the planet, but may also help us to understand the planet better.

Science is a way to better understand the world, but science itself is not always easy to understand, and we often find that, after clarifying some problem through science, we must then clarify the science so that the science makes sense to us. Some call this science communication; I call it the pursuit of intuitive tractability.

While it is not part of science proper to seek intuitively tractable formulations, it is part of human nature to seek intuitively tractable formulations, as we are more satisfied with science formulated in intuitively tractable forms than with science that is not intuitively tractable. For example, there is, as yet, no intuitively tractable formulation of quantum theory, and this may be why Einstein famously wrote in a letter to Max Born that, “Quantum Mechanics is very impressive. But an inner voice tells me that it is not yet the real thing.”

When the concept of zero was introduced into mathematics, it was thought to be an advanced and difficult idea, but we now teach a number system starting with zero to children in primary school. In a similar way, the Hindu-Arabic system of numbers has displaced almost every other system of numbers because it is what I would paradoxically call an intuitive formalism, i.e., it is a formalization of the number concept that is both adequate to mathematics and closely follows our intuitive conception of number. Mathematics is easier with Hindu-Arabic numerals than other numbering systems because this numbering system is intuitively tractable. There are other formalisms for number that are equally valid and equally correct, but not as intuitively tractable.

The pursuit of intuitive tractability has also been evident in geometry, and especially the axiomatic exposition of geometry that begins with postulates accepted ab initio as self-evident, and which has been the model of rigorous mathematics ever since Euclid. Euclid’s fifth postulate, the famous parallel postulate, is difficult to understand and was a theoretical problem for geometry until its independence was proved, but whether or not the fifth postulate was demonstrably independent of the other postulates, Euclid’s opaque exposition did not help. Here is Euclid’s parallel axiom from the Elements:

“If a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.”

Almost two thousand years later, in 1846, John Playfair formulated what we now call “Playfair’s axiom,” which tells us everything that Euclid’s postulate sought to communicate, but in a far more intuitively tractable form: “In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.” Once this more intuitively tractable formulation of the parallel postulate was available, Euclid’s formulation was largely abandoned. There is, then, a process of cognitive selection, whereby the most intuitively tractable formulations are preserved and the less intuitively tractable formulations are abandoned.

Those concepts that are the most intuitively tractable are those concepts that are familiar to us all and which are seamlessly integrated into ordinary thought and language. I have called such concepts “folk concepts.” Folk concepts that have persisted from their origins in our earliest evolutionary psychology up into the present have been subjected to the cognitive equivalent of natural selection, so that we can reasonably speak of folk concepts as having been refined and elaborated by the experience of many generations.

In a series of posts — Folk Astrobiology, Folk Concepts of Scientific Civilization, and Folk Concepts and Scientific Progress — I have considered the nature of “folk” concepts as they have been frequently invoked, and it is natural to ask, in the light of such an inquiry, whether there is a “folk Weltanschauung” that is constituted by a cluster of folk concepts that naturally hang together, and which inform the pre-scientific (or non-scientific) way of thinking about the world.

Arguably, the idea of a folk Weltanschauung is already familiar by a number of different terms that philosophers have employed to identify the concept (or something like the concept) — naïve realism or common sense realism, for example. What Husserl called “natürliche Einstellung” and which Boyce Gibson translated as “natural standpoint” and Fred Kersten translated as “natural attitude” could be said to approximate a folk Weltanschauung. Here is how Husserl describes the natürliche Einstellung:

“I am conscious of a world endlessly spread out in space, endlessly becoming and having endlessly become in time. I am conscious of it: that signifies, above all, that intuitively I find it immediately, that I experience it. By my seeing, touching, hearing, and so forth, and in the different modes of sensuous perception, corporeal physical things with some spatial distribution or other are simply there for me, ‘on hand’ in the literal or the figurative sense, whether or not I am particularly heedful of them and busied with them in my considering, thinking, feeling, or willing.”

Edmund Husserl, Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy: First Book: General Introduction to a Pure Phenomenology, translated by Fred Kersten, section 27

Husserl characterizes the natural attitude as a “thesis” — a thesis consisting of a series of posits of the unproblematic existence of ordinary objects — that can be suspended, set aside, as it were, by the phenomenological procedure of “bracketing.” These posits could be identified with folk concepts, making the thesis of the natural standpoint into a folk Weltanschauung, but I think this interpretation is a bit forced and not exactly what Husserl had in mind.

Perhaps closer to what I am getting at than the Husserlian natural attitude is what Wilfrid Sellars has called the manifest image of man-in-the-world, or simply the manifest image. Sellars’ thought is no easier to get a handle on than Husserl’s thought, so that one never quite knows if one has gotten it right, and one can easily imagine being lectured by a specialist in the inadequacies of one’s interpretation. Nevertheless, I think that Sellers’ manifest image is closer to what I am trying to get at than Husserl’s natürliche Einstellung. Closer, but still not the same.

Sellars develops the idea of the manifest image in contrast to the scientific image, and this distinction is especially given exposition in his essay Philosophy and the Scientific Image of Man. After initially characterizing the philosophical quest such that, “[i]t is… the ‘eye on the whole’ which distinguishes the philosophical enterprise,” and distinguishing several different senses in which philosophy could be said to be a synoptic effort at understanding the world as a whole, Sellars introduces terms for contrasting two distinct ways of seeing the world whole:

“…the philosopher is confronted not by one complex many dimensional picture, the unity of which, such as it is, he must come to appreciate; but by two pictures of essentially the same order of complexity, each of which purports to be a complete picture of man-in-the-world, and which, after separate scrutiny, he must fuse into one vision. Let me refer to these two perspectives, respectively, as the manifest and the scientific images of man-in-the-world.”

Wilfrid Sellars, Philosophy and the Scientific Image of Man, section 1

Sellars’ distinction between the manifest image and the scientific image has been quite influential. A special issue of the journal Humana Mente, Between Two Images: The Manifest and Scientific Conceptions of the Human Being, 50 Years On, focused on the two images. Bas C. van Fraassen in particular has written a lot about Sellars, devoting an entire book to one of the two images, The Scientific Image, and has also written several relevant papers, such as “On the Radical Incompleteness of the Manifest Image” (Proceedings of the Biennial Meeting of the Philosophy of Science Association,Vol. 1976, Volume Two: Symposia and Invited Papers 1976, pp. 335-343). All of this material is well worth reading.

Sellars is at pains to point out that his distinction between manifest image and scientific image is not intended to be a distinction between pre-scientific and scientific worldviews (“…what I mean by the manifest image is a refinement or sophistication of what might be called the ‘original’ image…”), though it is clear from this exposition that the manifest image, however refined and up-to-date, has its origins in a pre-scientific conception of the world. (“It is, first, the framework in terms of which man came to be aware of himself as man-in-the-world.”) The essence of this distinction between the manifest image and the scientific image is that the manifest image is correlational while the scientific image is postulational. What this means is that the manifest image “explains” the world (in so far as it could be said to explain the world at all) by correlations among observables, while the scientific image explains the world by positing unobservables that connect observables “under the surface” of things, as it were (involving, “…the postulation of imperceptible entities”). Sellars also maintains that the manifest image cannot postulate in this way, and therefore cannot be improved or refined by science, although it can improve on itself by its own correlational methods.

I do not yet understand Sellars well enough to say why he insists that the manifest image cannot incorporate insights from the scientific image, and this is a key point of divergence between Sellars’ manifest image and what I above called a folk Weltanschauung. If a folk Weltanschauung consists of a cluster of tightly-coupled folk concepts (and perhaps a wide penumbra of associated but loosely-coupled folk concepts), then the generation of refined scientific concepts can slowly, one-by-one, replace folk concepts, so that the folk Weltanschauung gradually evolves into a more scientific Weltanschauung, even if it is not entirely transformed under the influence of scientific concepts. Science, too, consists of a cluster of tightly-coupled concepts, and these two distinct clusters of concepts — the folk and the scientific — might well resist mixing for a time, but the human mind cannot keep such matters rigorously separate, and it is inevitable that each will bleed over into the other. Sometimes this “bleeding over” is intentional, as when science reaches for metaphors or non-scientific language as a way to make its findings understood to a wider audience. This is part of the pursuit of intuitively tractable formulations, but it can also go very wrong, as when scientists adopt theological language in an attempt at a popular exposition that will not be rejected out-of-hand by the Great Unwashed.

Despite my differences with Sellars, I am going to here adopt his terminology of the manifest image and the scientific image, and I will hope that I don’t make too much of a mess of it. I will have more to say on this use of Sellars’ concepts below (especially in relation to the postulational character of the scientific image). In the meantime, I want to use Sellars’ concepts in a exposition of intuitive tractability. Sellars’ uses the metaphor of “stereoscopic vision” as the proper way to understand how we must bring together the manifest image and the scientific image as a single way of understanding the world (“…the most appropriate analogy is stereoscopic vision, where two differing perspectives on a landscape are fused into one coherent experience”). I think, on the contrary, that intuitively tractable formulations of scientific concepts can make the manifest image and the scientific image coincide, so that they are one and the same, and not two distinct images fused together. A slightly weaker formulation of this is to assert that intuitively tractable formulations allow us to integrate the manifest image and the scientific image.

Now I want to illustrate this by reference to the overview effect, that is to say, the cognitive effect of seeing our planet whole — preferably from orbit, but, if not from orbit, in photographs and film that make the point as unmistakably as though one were there, in orbit, seeing it with one’s own eyes.

Before the overview effect, we saw our planet with the same eyes, but even after it is proved to us that the planet is (roughly) a sphere, hanging suspended in space, it is difficult to believe this. All manner of scientific proofs of the world as a spherical planet can be adduced, but the science lacks intuitive tractability and we have a difficult time bringing together our scientific concepts and our folk concepts of the world — or, if you will, we have difficulty reconciling the manifest image and the scientific image. The two are distinct. Until we achieve the overview effect, there is an apparent contradiction between what we experience of the world and our scientific knowledge of the world. Our senses tell us that the world is flat and solid and unmoving; scientific knowledge tells us that the world is round and moving and hanging in space.

Once we attain the overview effect, this changes, and the apparent contradiction is revealed as apparent. The overview effect shows how the manifest image and the scientific image coincide. The things we know about ordinary objects, which shapes the manifest image, now applies to Earth, which is seen as an object rather than as surrounding us as an environment with an horizon that we can never reach, and which therefore feels endless to us. Seen from orbit, this explains itself intuitively, and an explicit explanation now appears superfluous (as is ideally the case with an axiom — it is seen to be true as soon as it is understood). The overview effect makes the scientific knowledge of our planet as a planet intuitively tractable, transforming scientific truths into visceral truths. One might say that the overview effect is the lived experience of the scientific truth of our homeworld. In this particular case, we have replaced a folk concept with a scientific concept, and the scientific concept is correct even as intuition is satisfied.

The use of the overview effect to illustrate the manifest and scientific images, and their possible coincidence in a single experience, is especially interesting in light of Sellars’ insistence that the scientific image is distinctive because it is postulational, and more particularly that it postulates unobservables as a way to explain observables. When, in a scientific context, someone speaks of unobservables or “imperceptible entities” the assumption is that we are talking about entities that are too small to see with the naked eye. The germ theory of disease and the atomic theory of matter both exemplify this idea of unobservables being observable because they are smaller than the resolution of unaided human vision. We can only observe these unobservables with instruments, and then this experience is mediated by complex instruments and an even more complex conceptual framework so that no one ever speaks of the “lived experience” of particle physics or microbiology.

In contrast to this, the Earth is unobservable to the human eye not because it is too small, but because it is too large. When shown scientific demonstrations that the world is round, we must posit an unobservable planet, and then identify this unobservable entity with the actual ground under our feet. This is difficult to do, intuitively speaking. We see the world at all times, but we do not see it as a planet. We do not see enough of the world at any one moment to see it as a planet. Enter the overview effect. Seeing the Earth whole from space reveals the entity that is planet Earth, and if one has the good fortune to lift off from Earth and experience the process of departing from its surface to then see the same from space, this makes a previously unobservable postulate into a concretely experienced entity.

We are in the same position now vis-à-vis our place within the Milky Way galaxy, and our place within the larger universe, as we were once in relation to the spherical Earth. Our accumulated scientific knowledge tells us where we are at in the universe, and where we are at in the Milky Way. We can even see a portion of the Milky Way when we look up into the night sky, but we cannot stand back and see the whole from a distance, taking in the Milky Way and pointing of the position of our solar system within one of the spiral arms of our galaxy. We know it, but we haven’t yet experienced it viscerally. We have to posit the Milky Way galaxy as a whole, the Virgo supercluster, and the filaments of galaxies that stretch through the cosmos, because they are too large for us to observe at present. They are partially observed, in the way we might say that an atom is partially observed when we look at a piece of ordinary material composed of atoms.

Our postulational scientific image of the universe in which we live is redeemed for intuition by experiences that put us in a position to view these entities with our own eyes, and so to see them in an intuitively tractable manner. Perhaps one of the reasons that quantum theory remains intuitively intractable is that the unobservables that it posits are so small that we have no hope of ever seeing them, even with an electron microscope.

Ultimately, intuitively tractable formulations of formerly difficult if not opaque scientific ideas is a function of the conceptual framework that we employ, and this is ultimately a philosophical concern. Sellars suggests that the manifest and scientific conceptual framework might be harmonized in stereoscopic vision, but he doesn’t hold out any hope that the manifest image can be integrated with the scientific image. I think that the example of the overview effect demonstrates that there are at least some cases when manifest image and scientific image can be shown to coincide, and therefore these two ways of grasping the world are not entirely alien from each other. Cosmology may be the point of contact at which the two images coincide and through which the two images can communicate.

The pursuit of intuitive tractability is, I submit, a central concern of scientific civilization. If there ever is to be a fully scientific civilization, in which scientific ways of knowing and scientific approaches to problems and their solutions are the pervasively held view, this scientific civilization will come about because we have been successful in our pursuit of intuitive tractability, and we are able to make advanced scientific concepts as familiar as the idea of zero is now familiar to us. Since the question of a conceptual framework in which rigorous science and intuitively tractable concepts can be brought together is not a scientific question, but a philosophical question, the contemporary contempt for philosophy in the special sciences is invidious to the effective pursuit of intuitive tractability. The fate of scientific civilization lies with philosophy.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Planetary Endemism and the Overview Effect

The Overview Effect and Intuitive Tractability

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Friday


figure-against-stars

A Conceptual Overview

What is the relationship between planetary endemism and the overview effect? This is the sort of question that might be given a definitive formulation, once once we have gotten sufficiently clear in our understanding of these ideas and their ramifications. I’m not yet at the point of formulating a definitive expression of this relationship, but I’m getting closer to it, so this post will be about formulating relationships among these and related concepts in a way that is hopefully clear and illuminating, while avoiding the ambiguities inherent in novel concepts.

This post is itself a kind of overview, attempting to show in brief compass how a number of interrelated concepts neatly dovetail and provide us with a rough outline of a conceptual overview for understanding the origins, development, distribution, and destiny of civilization (or some other form of emergent complexity) in the universe.

stars-0

The Stelliferous Era

The Stelliferous Era is that period of cosmological history after the formation of the first stars and before the last stars burn out and leave a cold and dark universe. In the cosmological periodization formulated by Fred Adams and Greg Laughlin, the Stelliferous Era is preceded by the Primordial Era and followed by the Degenerate Era. During the Primordial Era stars have not yet formed, but matter condenses out of the primordial soup; during the Degenerate Era, the degenerate remains of stars, black holes, and some exotic cosmological objects are to the found, but the era of brightly burning stars is over.

What typifies the Stelliferous Era is its many stars, radiating light and heat, and whose nucleosynthesis and supernova explosions forge heavier forms of matter, and therefore the chemical and minerological complexity from which later generations of (high metallicity) stars and planets will form. (A Brief History of the Stelliferous Era is an older post about the Stelliferous Era that needs to be revised and updated.)

In comparison to the later Degenerate Era, Black Hole Era, and Dark Era of cosmological history, the Stelliferous Era is rather brief, extending from 106 to 1014 years from the origins of the universe, and almost everything that concerns us can be further reduced to the eleventh cosmological decade (from 10 billion to 100 billion years since the origin of the universe). Since this cosmological periodization is logarithmic, the later periods are even longer in duration than they initially appear to be.

Our interest in the Stelliferous Era, and, more narrowly, our interest in the eleventh decade of the Stelliferous Era, does not rule out interesting cosmological events in other eras of cosmological history, and it is possible that civilizations and other forms of emergent complexity that appear during the Stelliferous Era may be able to make the transition to survive into the Degenerate Era (cf. Addendum on Degenerate Era Civilization), but this brief period of starlight in cosmological history is the Stelliferous Era window in which it is possible for peer planetary systems, peer species, and peer civilization to exist.

planetary surfaces

Planetary Endemism

Planetary Endemism is the condition of life during the Stelliferous Era as being unique to planetary surfaces and their biospheres. Given the parameters of the Stelliferous Era — a universe with planets, stars, and galaxies, in which both water (cf. The Solar System and Beyond is Awash in Water) and carbon-based organic molecules (cf. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features by Sun Kwok and Yong Zhang) are common — planetary surfaces are a “sweet spot” for emergent complexities, as it is on planetary surfaces that energy from stellar insolation can drive chemical processes on mineral- and chemical-rich surfaces. The chemical and geological complexity of the interface between atmosphere, ocean, and land surfaces provide an opportunity for further emergent complexities to arise, and so it is on planetary surfaces that life has its best opportunity during the Stelliferous Era.

Planetary endemism does not rule out exotic forms of life not derived from water and organic macro-molecules, nor does it rule out life arising in locations other than planetary surfaces, but the nature of the Stelliferous Era and the conditions of the universe we observe points to planetary surfaces being the most common locations for life during the Stelliferous Era. Also, the “planetary” in “planetary endemism” should not be construed too narrowly: moons, planetesimals, asteroids, comets and other bodies within a planetary system are also chemically complex loci where stellar insolation can drive further chemical processes, with the possibility of emergent complexities arising in these contexts as well.

21refPicsSORT

The Homeworld Effect

The homeworld effect is the perspective of intelligent agents still subject to planetary endemism. When the emergent complexities fostered by planetary endemism rise to the level of biological complexity necessary to the emergence of consciousness, there are then biological beings with a point of view, i.e., there is something that it is like to be such a biological being (to draw on Nagel’s formulation from “What is it like to be a bat?”). The first being on Earth to open its eyes and look out onto the world possessed the physical and optical perspective dictated by planetary endemism. As biological beings develop in complexity, adding cognitive faculties, and eventually giving rise to further emergent complexities, such as art, technology, and civilization, embedded in these activities and institutions is a perspective rooted in the homeworld effect.

The emergent complexities arising from the action of intelligent agents are, like the biological beings who create them, derived from the biosphere in which the intelligent agent acts. Thus civilization begins as a biocentric institution, embodying the biophilia that is the cognitive expression of biocentrism, which is, in turn, an expression of planetary endemism and the nature of the intelligent agents of planetary endemism being biological beings among other biological beings.

The homeworld effect does not rule out the possibility of exotic forms of life or unusual physical dispositions for life that would not evolve with the homeworld effect as a selection pressure, but given that planetary endemism is the most likely existential condition of biological beings during the Stelliferous Era, it is to be expected that the greater part of biological beings during the Stelliferous Era are products of planetary endemism and so will be subject to the homeworld effect.

surface-earth-space

The Overview Effect

The overview effect is a consequence of transcending planetary endemism. As biocentric civilizations increase in complexity and sophistication, deriving ever more energy from their homeworld biosphere, biocentric institutions and practices begin to be incrementally replaced by technocentric institutions and practices and civilization starts to approximate a technocentric institution. The turning point in this development is the industrial revolution.

Within two hundred years of the industrial revolution, human beings had set foot on a neighboring body of our planetary system. If a civilization experiences an industrial revolution, it will do so on the basis of already advancing scientific knowledge, and within an historically short period of time that civilization will experience the overview effect. But the unfolding of the overview effect is likely to be a long-term historical process, like the scientific revolution. Transcending planetary endemism means transcending the homeworld effect, but as the homeworld effect has shaped the biology and evolutionary psychology of biological beings subject to planetary endemism, the homeworld effect cannot be transcended as easily as the homeworld itself can be transcended.

For biological beings of planetary endemism, the overview effect occurs only once, though its impact may be gradual and spread out over an extended period of time. An intelligent agent that has evolved on the surface of its homeworld leaves that homeworld only once; every subsequent world studied, explored, or appropriated (or expropriated) by such beings will be first encountered from afar, over astronomical distances, and known to be a planet among planets. A homeworld is transcended only once, and is not initially experienced as a planet among planets, but rather as the ground of all being.

The uniqueness of the overview effect to the homeworld of biological beings of planetary endemism does not rule out further overview effects that could be experienced by a spacefaring civilization, as it eventually is able to see its planetary system, its home galaxy, and its supercluster as isolated wholes. However, following the same line of argument above — stars and their planetary systems being common during the Stelliferous Era, emergent complexities appearing on planetary surfaces characterizing planetary endemism, organisms and minds evolving under the selection pressure of the homeworld effect embodying geocentrism in their sinews and their ideas — it is to be expected that the overview effect of an intelligent agent first understanding, and then actually seeing, its homeworld as a planet among other planets, is the decisive intellectual turning point.

starship-john-harris

Bifurcation of Planetary and Spacefaring Civilizations

What I have tried to explain here is the tightly-coupled nature of these concepts, each of which implicates the others. Indeed, the four concepts outlined above — the Stelliferous Era, planetary endemism, the homeworld effect, and the overview effect — could be used as the basis of a periodization that should, within certain limits, characterize the emergence of intelligence and civilization in any universe such as ours. Peer civlizations would emerge during the Stelliferous Era subject to planetary endemism, and passing from the homeworld effect to the overview effect.

If such a civilization continues to develop, fully conscious of the overview effect, it would develop as a spacefaring civilization evolving under the (intellectual) selection pressure of the overview effect, and such a civilization would birfurcate significantly from civilizations of planetary endemism still exclusively planetary and still subject to the homeworld effect. These two circumstances represent radically different selection pressures, so that we would expect spacefaring civilizations to rapidly speciate and adaptively radiate once exposed to these novel selection pressures. I have previously called this speciation and adaptive radiation the great voluntaristic divergence.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Fast or Slow to Mars?

27 September 2016

Tuesday


Now that Elon Musk has delivered his highly anticipated talk “Making Humans a Multiplanetary Species,” providing an overview of his plan for a Martian settlement sufficiently large to be self-sustaining (he mentioned a million persons moving to Mars in a fleet of 1,000 spacecraft leaving Earth en masse), the detailed analysis of this mission architecture can begin. Musk said in his talk that he thought it was a good idea that there should be many different approaches, so he clearly was not making any claim that his plan was the one and only workable mission architecture.

As both public space agencies and private space companies go beyond the talking phase and begin the design, testing, and construction of a Mars mission (or missions), these designs will embody assumptions about the best way to get to Mars with contemporary technology (there are many ways to do this). The assumptions, as usual, aren’t often explicitly discussed, because assumptions are foundational, and you have to have a community of individuals who share the same or similar assumptions even to begin designing something as complex as a human mission to Mars. Foundational assumptions may be challenged in initial “brainstorming” sessions, but once we get to sketches and calculations, the assumptions are already built into the design.

One of the most important assumptions about Mars mission design is whether that mission should be slow or fast. In this context. “slow” means following one of the well-established gravitational transfer trajectories (Hohmann Transfer Orbits) that many uncrewed missions to Mars have followed, which requires a minimum of fuel use and little or no braking upon arrival, but instead requires time.

A Hohmann transfer orbit to Mars would require many months (six months or more; cf. Flight to Mars: How Long? Along what Path?, which gives a figure of 8.5 months), the window to make the journey only occurs every 25 months, and during a long voyage such as this the crew would have to be maintained in good health, protected from radiation, and have enough space onboard to keep from going stir crazy. A Mars cycler configuration would involve travel times on the order of years. This is definitely a “slow” option, but also an option that minimizes propellant use.

The Mars Design Reference Mission (which I recently quoted in A Distinctive Signature of an Early Spacefaring Civilization), a design document produced by NASA in July 2009 (the full title is Human Exploration of Mars: Design Reference Architecture 5.0), characterizes their mission architecture as “fast” (the document repeatedly cites “fast transit trajectory”), but involves a one-way transit time of 6 to 7.5 months:

“…the flight crew would be injected on the appropriate fast-transit trajectory towards Mars. The length of this outbound transfer to Mars is dependent on the mission date, and ranges from 175 to 225 days.”

A “slow” mission to Mars such as this (which NASA calls a “fast” mission) ought to be designed about a large, rotating habitat that can simulate gravity (this has featured in films, such as The Martian). No one wants to spend six months in a “capsule.” An additional benefit of a large and slow Mars mission is that the rotating habitat sent to Mars could be maintained in Mars orbit as a Martian space station (such as I wrote about in A Martian Space Station and A Passage to Mars) and subsequent missions could add to this Martian space station.

Alternatively, instead of a large and comfortable habitat in which to travel, a slow mission to Mars might involve induced torpor in the crew (effectively, human hibernation), and while this would require far less food and water for the journey, this option, too, might be best achieved with simulated gravity. Human bodies evolved in a gravity field, and don’t do well outside that gravity field (cf. Hibernation for Long-term Manned Space Exploration by Shen Ge, which includes many links to resources on induced torpor).

A “fast” mission to Mars I will identify as anything faster that the six months or so required for a Hohmann transfer orbit. Fast journeys could be anything from a gentle ion thrust, using very little propellant and only cutting a little time off the trip, to powering half way to Mars (preferably at 1 g acceleration in order to again simulate gravity) and then decelerating for the second half of the trip. Musk’s mission design as presented in his IAC talk called for initial transfer times “as low as” 80 days (i.e., less than three months; his graphic for this section of the talk showed transit durations from 80-150 days), perhaps improving to as little as 30 days further in the future, but little detail was offered on this part of the mission architecture.

The quickest “fast” trips to Mars contemplated with contemporary technology would be about two weeks. A nuclear-powered ion engine might make the trip in three months, which is a lot better than six months, and might be considered “fast,” but Musk’s 30-80 day transit times are all designed around well-known chemical rocket technology, which makes the effort much closer to being practical in the near term. If you have enough rocket engines, big enough engines, and enough fuel, you can make the trip to Mars more quickly with chemical rockets than is usually contemplated, and that seems to be the SpaceX approach; much of the talk was taken up with concerns of propellant, fuel transfer in Earth orbit, and producing fuel on Mars.

It is important to point out that most of the technologies I have mentioned above — rotating spacecraft, induced torpor, nuclear rockets, and so on — have been the object of much study, but little practical experience. (An early version of the Nerva nuclear rocket was built and tested, but it wasn’t flown into space; cf. Secrecy and the STEM Cycle.) However, we have a pretty good grasp of the science involved in these technologies, so building actual spacecraft incorporating them is primarily an engineering challenge, not a science challenge (except in so far as there is a science of technology design and engineering application; cf. Testing Technology as a Scientific Research Program: A Practical Exercise in the Philosophy of Technology). In other words, we don’t need any scientific breakthroughs for a mission to Mars, but we need a lot of technological development and engineering solutions.

Hearing a presentation such as Elon Musk gave today is exciting, and definitely communicates that this project can be done, and even that it can be done on a grand scale. This is invigorating, and stokes what Keynes called our “animal spirits” for a voyage to Mars. If the momentum can be maintained, the development of a spacefaring civilization can be a practical reality within decades rather then centuries. Musk discussed the “forcing function” of having a settlement on Mars, and he is correct that this human outpost away from Earth would entail continual improvements in space transportation, and moreover it would extend human consciousness to include Mars as a human concern.

Once humanity begins to make itself a home on Mars, and human beings can call themselves “Martians” (perhaps even with a certain sense of pride) and adopt a genuinely Martian standpoint, humanity will be a multiplanetary species, a multiplanetary human civilization will begin to emerge, and this multiplanetary civilization will be distinct from our planetary civilization of today. Mars, in this scenario, would be a point of bifurcation, the origin of a new kind of civilization, localized in the same way that the industrial revolution can be localized to England.

. . . . .

Human Exploration of Mars: Design Reference Architecture 5.0

Human Exploration of Mars: Design Reference Architecture 5.0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


An artificial habitat orbiting Mars.

An artificial habitat orbiting Mars.

Introduction

There may be more justification, in the short term, for building an artificial habitat in Mars orbit rather than Earth orbit. Before I discuss the reasons for this, I will give some background on the near-term prospects for Mars missions.

Landing on Mars in the 1925 German film Wunder der Schöpfung. Mars has long been the stuff of dreams.

Landing on Mars in the 1925 German film Wunder der Schöpfung. Mars has long been the stuff of dreams.

The Mars Race

It is, once again, an exciting time in space exploration. After decades in the doldrums, we are on the cusp of private industry commercial space exploration. Both Blue Origin and Space X have landed rockets on their tails, just like in early science fiction films, and with increased re-usability comes lower costs. Many other technologies are in development that may further lower costs, but right now we are already seeing private space technology companies with capabilities not possessed by the space program of any nation-state. This is remarkable and unprecedented. Partly this is a result of the exponential improvements in technology in recent decades, especially computing technologies, which in turn improve the performance of other technologies. Partly this is also the result of the concentration of wealth at the top of the income pyramid. I previously mentioned this in The Social Context of SETI, where I noted Yuri Milner’s investment in Breakthrough Listen, a SETI project. Billionaires are now in a position to personally finance enterprises once the exclusive remit of nation-states. With the funding available, only the motivation is needed.

It looks increasingly like a human mission to Mars will be realized by private industry rather than by a government space program. For space exploration enthusiasts, Mars is such stuff as dreams are made on. Mars is another world almost within our grasp. For all practical purposes, we have the technology to get there, only the funding has been lacking. As technology improves, becomes cheaper, and great capital is concentrated into the hands of a few, it becomes possible to undertake what was not possible just a few years earlier. The most visible figure in this recent spate of space activity has been Elon Musk of Space X, who has been explicit about his intention to develop rockets capable of human missions to Mars. In a recently announced time table, Space X may be able to mount a Martian mission in 2024, i.e., within ten years (this announcement was made at Code Conference 2016 in Los Angeles; cf., e.g., Elon Musk Is Sending Humans To Mars In 2024 by Evan Gough, 03 June 2016).

Musk has also been explicit that his interest is in creating an ongoing settlement on Mars. NASA plans for human missions to Mars cover exploration but not settlement, and their timetable is further in the future than Musk’s. It will be interesting to see if the model of the Space Race will portend for Mars what happened on the moon — once one side got there, the other gave up trying — or whether we will see multiple human missions to Mars, some purely for scientific exploration, and others bringing settlers with a plan to stay.

Wernher von Braun's mission design for Mars involved re-configuring spacecraft in Mars orbit for descent to the surface.

Wernher von Braun’s mission design for Mars involved re-configuring spacecraft in Mars orbit for descent to the surface.

Martian Extraplanetary Infrastructure

With the possibility of multiple human missions to Mars, and with a population of settlers on Mars, the need and uses for Martian extraplanetary infrastructure becomes obvious. The crucial piece of the puzzle of Martian extraplanetary infrastructure would be a Martian space station. By a Martian space station I don’t mean something like the International Space Station (ISS) now orbiting Earth, though this would be better than nothing, to be sure; I mean an enormous Gerard K. O’Neill style space habitat, such as an O’Neill cylinder, a Stanford Torus, or a Bernal sphere. Such an artificial habitat could serve a variety of functions in Mars orbit.

We have all heard that any Martian settlers would be dead within a few months’ time from suffocation and “starvation, dehydration, or incineration in an oxygen-rich atmosphere” — cf. the widely discussed MIT study An independent assessment of the technical feasibility of the Mars One mission plan – Updated analysis, by Sydney Do, Andrew Owens, Koki Ho, Samuel Schreiner, and Olivier de Weck. The MIT analysis concludes that Mars settlers would not be self-sufficient and so their survival would require continual re-supply from Earth. Part of this analysis hinges on what technologies are “existing, validated and available.” Needless to say, technologies can advance rapidly given the necessary expenditure of resources upon them. The analysis does not address how quickly innovative technologies can be brought online, and it is important to understand that the MIT report does not argue that human self-sufficiency on Mars is impossible, only that there are problems with the Mars One mission architecture.

Many of the shortcomings of the Mars One mission architecture, or the shortcomings of any other proposed mission to Mars (Mars One is the most detailed proposal to date, so it has received the most detailed criticism), could be addressed by a large, self-sustaining artificial habitat in Mars orbit. We should expect that the settlement of a sterile and hostile environment will be a difficult undertaking, but we could make this difficult undertaking much less difficult with the resources that might be needed positioned nearby, in orbit of Mars.

With large enough mirrors to capture sunlight, the interior of an artificial habitat even at the far edge of the habitable zone in our solar system would be able to concentrate sufficient sunlight for electrical power generation, growing crops, and the maintenance of comfortable conditions for residents. In orbit around Mars, an artificial habitat could provide a steady source of food produced under controlled conditions (under perfect greenhouse conditions, and far more amenable to control that any environment initially set up on the surface of Mars), before large scale food production is possible on the surface of Mars itself. The industrial infrastructure and processes necessary to maintain the lives of early Martian settlers could probably be maintained in orbit more cheaply and more efficiently than on the surface.

Some other considerations for Martian extraplanetary infrastructure include:

● Martian dirt It would be cheaper and easier to lift Martian dirt off Mars than to lift dirt off Earth in order to begin large scale agricultural production in a large artificial habitat. Having an artificial habitat in orbit around Mars would make it relatively easy to transfer significant quantities of Martian soil into Mars orbit. Using Martian soil for farming under controlled conditions, moreover, would provide valuable experience in Martian agronomy.

● Gravity A large artificial habitat in orbit around Mars could provide simulated full Earth gravity. This could be very valuable for long term settlers on Mars, who may experience health problems due to the low surface gravity on Mars. Settlers could be rotated through an artificial habitat on a regular basis. This would also be an opportunity to study how rapidly the human body could recover any lost bone mass, etc., after living in lower than Earth gravity conditions. It might also be valuable to experiment with slightly more than Earth gravity to see if this can compensate for extended periods of time in lower gravity environments. On an artificial habitat, simulated gravity can be tailored to the specific needs of the crew by spinning the habitat faster or slower.

● Way Station A Martian space station would also be a stepping stone for human missions farther along into the outer solar system. With all the resources necessary to preserve the lives of Martian settlers, such a way station could also serve to preserve the lives of deep space travelers. This would also provide an opportunity for space travelers to experience time “planetside” before and after missions into the outer solar system or beyond. The first human mission to the stars might be launched not from Earth, but from Mars orbit, or from similar habitats even more distant in the outer solar system.

Martian extraplanetary infrastructure could prove to be one of the greatest investments in space exploration ever made. We will likely have the technology to build a space elevator between the Martian surface and Mars orbit before we can build a space elevator between Earth’s surface and Earth orbit. Linking the Martian surface directly with Martian extraplanetary infrastructure will make possible economic opportunities that will not yet be available on Earth when they are available on Mars, with consequent economic growth likely integral with growth in science and technology. This will drive forward the STEM cycle more rapidly, and it will happen first on Mars.

Another planet awaits us...

Another planet awaits us…

The Martian Future

The first stage of an interplanetary civilization will be a human civilization that spans both Earth and Mars. In going to Mars, we will learn a great deal about living and working both in space and on other words. This knowledge and experience is a necessary condition of establishing the redundancy that human beings, our civilization, and the terrestrial biosphere require in order to overcome existential risks that could mean our extinction if we remain an exclusively terrestrial species.

The human future on Mars, then, is an essential element in expanding human experience so that we are not indefinitely subject to the planetary constraints native to planetary endemism. We need to experience the Martian standpoint in order to develop both as a species and as a civilization, and then to go beyond Mars.

After interplanetary civilization will come interstellar civilization, and we will need to begin with the experience of Mars, our planetary neighbor, in order to take the next step on to more distant worlds. The way to ensure the initial success and eventual expansion of an interplanetary civilization within our planetary system is through the construction of an artificial habitat in Mars orbit. One such artificial habitat could mean the difference between the life and death of the earliest settlers, and, in the long term, the success of these earliest settlers on another world will mean the difference between life and death for our civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


hunter-gatherers in outer space

What happens when you take a being whose mind was shaped by hunting and gathering in Africa over the past five million years or so, dress that individual in a spacesuit, and put that individual into a spaceship, sending them beyond the planet from which they evolved? What happens to hunter-gatherers in outer space?

As I pointed out in The Homeworld Effect and the Hunter-Gatherer Weltanschauung, the human environment of evolutionary adaptedness (EEA) shapes a worldview based on the standpoint of a planetary surface. Moreover, because the hunter-gatherer lives (or dies) by his attentiveness to his immediate environment, his immediate experience of leaving his planet of origin will make a disproportionate impact upon him. Whereas the hunter-gatherer may intellectually prepare himself, and may know on an intellectual level what to expect, the actual first person experience of leaving his planet of origin and seeing it whole — what Frank Drake calls the overview effect — may have an immediate and transformative impact.

The impact of the overview effect would force the hunter-gatherer to re-examine a number of ideas previously unquestioned, but his reactions, his instincts, would, for the time being, remain untouched. Of course, for a hunter-gatherer to have experienced the overview effect, he will have had to have achieved at least an orbital standpoint, and to achieve an orbital standpoint requires that the hunter-gatherer will have passed through a period of technological development that takes place over a civilizational scale of time — far longer than the scale of time of the individual life, but far shorter than the scale of biological time that could have modified the evolutionary psychology of the hunter-gatherer.

In the particular case of human beings, this period of technological development meant about ten thousand years of agricultural civilization, followed by a short burst of industrialized civilization that made the achievement of an orbital standpoint possible. While it is obvious that the short period of industrialized civilization will have left almost no trace of influence on human behavior, it is possible that the ten thousand years of acculturation to agricultural civilization (and the coevolution with a tightly-coupled cohort of species, as entailed by the biological conception of civilization) did leave some kind of imprint on the human psyche. Thus we might also inquire into the fate of agriculturalists in outer space, and how this might differ from the fate of hunter-gatherers in outer space. It is at least arguable that our interest in finding another planet to inhabit, or even terraforming other planets in our planetary system, is a function of our development of agricultural instincts, which are stronger in some than in others. Some individuals feel a very close connection to the soil, and have a special relationship to farming and food to be had by farming. However, the argument could be made equally well that our search for an “Earth twin” is a function of the homeworld effect more than a specifically agricultural outlook.

The principles to which I am appealing can be extrapolated, and we might consider what could happen in the event of a civilization with a very different history and its relationship to spacefaring, and how it makes the transition to a spacefaring civilization if that civilization is going to survival for cosmologically significant periods of time. Recently in Late-Adopter Spacefaring Civilizations: The Preemption That Didn’t Happen I suggested that terrestrial civilization might have been preempted in the second half of the twentieth century by the sudden emergence of a spacefaring civilization, though this did not in fact happen. Late-adopter spacefaring civilizations might indefinitely postpone the threshold presented by spacefaring, which is difficult, dangerous, and expensive — but also an intellectual challenge, and therefore a stimulus. It is entirely conceivable that, on a planet that remains habitable for a cosmologically significant period of time, that an intelligent species might choose to forgo the challenge and the stimulus of a spacefaring breakout from their homeworld, continuing to embody the homeworld effect even after the means to transcend the homeworld effect are available. What would the consequences be for civilization in this case?

In The Waiting Gambit I discussed the rationalizations and justifications employed to make excuses for waiting for the right moment to initiate a new undertaking, and especially waiting until conditions are “right” for making the transition from a planetary civilization to a spacefaring civilization. These justifications are typically formulated in moral terms, e.g., that we must “get things right” on Earth first before we can make the transition to spacefaring civilization, or, more insidiously, that we don’t deserve to become a spacefaring civlization (as though the Earth deserves to suffer from our presence for a few more million years). It would be easy to dismiss the waiting gambit as a relatively harmless cognitive bias favoring the status quo (a special case of status quo bias), except that there are real biological and civilizational consequences to waiting without limit.

The most obvious consequence of playing along with the waiting gambit is that civilization, or even the whole of humanity, might be wiped out on Earth before we ever achieve the promised moment when we can legitimately expand beyond Earth. This is the existential risk of the waiting gambit as a strategy for human history. But even if we could be assured of the survival of humanity on Earth for the foreseeable future (although no such assurance could be given that was not purely illusory), the waiting gambit still has profound consequences. In so far as civilization is a process of domestication (and in Transhumanism and Adaptive Radiation I suggested a biological conception of civilization based on a cohort of co-evolving species, which I elaborated in The Biological Conception of Civilization), the longer that human beings live in a planetary-bound, biocentric civilization the more domesticated we become. In other words, we are changed by remaining on Earth in the circumstances of civilization, because civilization itself is selective.

If the time between the advent of civilization and the advent of spacefaring is too short to be selective, then the hunter-gatherer mind is maintained because the genome on which this mind supervenes is essentially unchanged. But if the elapsed time between the advent of civilization and the advent of spacefaring is sufficiently extended so that civilizational selection of the intelligent species takes place, the mind is changed along with the genome upon which it supervenes. At some point, neither known nor knowable today, we will have self-selected ourselves (although not knowingly) for settled planetary endemism and we will lose the capacity to live as nomadic hunter-gatherers. This is an here-to-fore unrecognized consequence of long-lived planetary civilizations. If, on the other hand, human beings do make the transition to spacefaring civilization while retaining the evolutionary psychology of hunter-gatherers, the temporary phase of settled civilization (ten thousand years, more or less) will be seen as a temporary aberration, during which historical period the bulk of humanity lived in circumstances greatly at variance with the human EEA.

One aspect of the homeworld effect is acculturation to planetary endemism. This acculturation to planetary endemism helps to explain the waiting gambit and status quo bias, and if perpetuated it would explain the possibility of an advanced technological civilization that remains endemic to a single planet, attaining a full transition from biocentric to technocentric civilization without however making the transition to spacefaring civilization. This would present a radical break from the past, and thus presents us with the difficulty of conceiving a radically different human way of life — a way of life radically disconnected from the biocentric paradigm — but this is a radical difference from the biocentric paradigm that would in turn be radically different from a nomadic civilization with the entirety of the universe in which to roam. In both cases, traces of the biocentric paradigm are preserved, but different traces in each case. The planetary civilization would preserve continuity with the planet and thus a robust continuity with the homeworld effect; a spacefaring nomadic civilization would preserve continuity with the evolutionary psychology of our long hunter-gatherer past. A successor species to humanity, adapted to life in space, and choosing to live in space rather than upon planetary surfaces, would experience the overview effect exclusively, the overview effect supplanting the homeworld effect, and the homeworld effect might experience historical effacement, disappearing from human (or, rather, post-human) experience altogether.

If nomads were to go into space — that is to say, hunter-gatherers in outer space — they probably wouldn’t speak of “settling” a planet, because they would not assume that they would adopt a planetary mode of life for the sake of settling in one place. Perhaps they would speak of the “pastoralization” of a world (cf. Pastoralization, The Argument for Pastoralization, and The Pastoralist Challenge to Agriculturalism), or they might use some other term. The particular term doesn’t really matter, but the concept that the term is used to indicate does matter. Nomadic peoples have very different conceptions of private property, governmental institutions, social hierarchy, soteriology, and eschatology than do settled peoples; the transplantation (note the agricultural language here) of nomadic and settled conceptions to a spacefaring civilization would yield fascinating differences, and the universe is large enough for the embodiment of both conceptions in concrete institutions of spacefaring civilization — whereas Earth alone is not large enough.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Martian Standpoint

31 March 2016

Thursday


Mars 0

Red Planet Perspectives

It is difficult to discuss human habitation of Mars scientifically because Mars has for so long played an disproportionate role in fiction, and any future human habitation of Mars will take place against this imaginative background. Future human inhabitants of Mars will themselves read this cultural legacy of fiction centered on Mars, and while some of it will be laughable, there are also likely to be passages that start heads nodding, however dated and inaccurate the portrayal of human life on Mars. And this human future on Mars is seeming increasingly likely as private space enterprises vie with national space agencies, and both public and private space programs are publicly discussing the possibility of sending human beings to Mars.

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site.  (NASA/JPL-Caltech/USGS/Cornell)

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site. (NASA/JPL-Caltech/USGS/Cornell)

A human population on Mars would eventually come to identify as Martians, even though entirely human — Ray Bradbury already said as much decades ago — and it would be expected that the Martian perspective would be different in detail from the terrestrial perspective, though scientifically literate persons in both communities would share the Copernican perspective. There would be countless small differences — Martians would come to number their lives both in Terrestrial years and Martian years, for example — that would cumulatively and over time come to constitute a distinctively Martian way of looking at the world. There would also be unavoidably important differences — being separated from the bulk of humanity, having no large cities at first, not being able to go outside without protective gear, and so on — that would define the lives of Martian human beings.

Wernher von Braun's Mars mission concept as imagined by Chesley Bonestell

Wernher von Braun’s Mars mission concept as imagined by Chesley Bonestell

At what point will Martians come to understand themselves as Martians? At what point will Mars become a homeworld? There will be a first human being to set foot on Mars, a first human being born on Mars, a first human being to die on Mars and be buried in its red soil, a first crime committed on Mars, and so on. Any of these “firsts” might come to be identified as a crucial turning point, the moment at which a distinctively Martian consciousness emerges among Mars residents, but any such symbolic turning point can only come about against the background of the countless small differences that accumulate over time. Given human settlement on Mars, this Martian consciousness will surely emerge in time, but the Martian conscious that perceives Mars as a homeworld will differ from the sense in which Earth is perceived as our homeworld.

An actual, and not a mythical, canal on Mars.

An actual, and not a mythical, canal on Mars.

Human beings lived on Earth for more than a hundred thousand years without knowing that we lived on a planet among planets. We have only known ourselves as a planetary species for two or three thousand years, and it is only in the past century that we have learned what it means, in a scientific sense, to be a planet among countless planets in the universe. A consequence of our terrestrial endemism is that we as a species can only transcend our homeworld once. Once and once only we ascend into the cosmos at large; every other celestial body we visit thereafter we will see first from afar, and we will descend to its surface after having first seen that celestial body as a planet among planets. Thus when we arrive at Mars, we will arrive at Mars knowing that we arrive at a planet, and knowing that, if we settle there, we settle on a planet among planets — and not even the most hospitable planet for life in our planetary system. In the case of Mars, our knowledge of our circumstances will precede our experience, whereas on Earth our experience of our circumstances preceded our knowledge. This reversal in the order of experience and knowledge follows from planetary endemism — that civilizations during the Stelliferous Era emerge on planetary surfaces, and only if they become spacefaring civilizations do they leave these planetary surfaces to visit other celestial bodies.

A sunset on Mars photographed by NASA's Mars Exploration Rover Spirit

A sunset on Mars photographed by NASA’s Mars Exploration Rover Spirit

What is it like, or what will it be like, to be a Martian? The question immediately reminds us of Thomas Nagel’s well known paper, “What is it like to be a bat?” (I have previously discussed this famous philosophical paper in What is it like to be a serpent? and Computational Omniscience, inter alia.) Nagel holds that, “…the fact that an organism has conscious experience at all means, basically, that there is something it is like to be that organism.” A generalization of Nagel’s contention that there is something that it is like to be a bat suggests that there is something that it is like to be a conscious being that perceives the world. If we narrow our conception somewhat from this pure generalization, we arrive at level of generality at which there is something that it is like to be a Terrestrial being. That there is something that it is like to be a bat, or a human being, are further constrictions on the conception of being a consciousness being that perceives the world. But at the same level of generality that there is something that it is like to be a Terrestrial being, there is also something that it is like to be a Martian. Let us call this the Martian standpoint.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

To stand on the surface of Mars would be to experience the Martian standpoint. I am here adopting the term “standpoint” to refer to the actual physical point of view of an intelligent being capable of looking out into the world and understanding themselves as a part of the world in which they find themselves. Every intelligent being emergent from life as we know it has such a standpoint as a consequence of being embodied. Being an embodied mind that acquires knowledge through particular senses means that our evolutionary history has furnished us with the particular sensory endowments with which we view the world. Being an embodied intelligence also means having a particular spatio-temporal location and having a perspective on the world determined by this location and the sensory locus of embodiment. The perspective we have in virtue of being a being on the surface of a planet at the bottom of a gravity well might be understood as a yet deeper level of cosmological evolution than the terrestrial evolutionary process that resulted in our particular suite of sensory endowments, because all life as we know it during the Stelliferous Era originates on planetary surfaces, and this precedes in evolutionary order the evolution of particular senses.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Mars, like Earth, will offer a planetary perspective. Someday there may be great cities and extensive industries on the moon, supporting a burgeoning population, but, even with cities and industries, the moon will not be a world like Earth, with an atmosphere, and therefore a sky and a landscape in which a human being can feel at home. For those native to Mars — for eventually there will be human beings native to Mars — Mars will be their homeworld. As such, Mars will have a certain homeworld effect, though limited in comparison to Earth. Even those born on Mars will carry a genome that is the result of natural selection on Earth; they will have a body created by the selection pressures of Earth, and their minds will function according to an inherited evolutionary psychology formed on Earth. Mars will be a homeworld, then, but it will not produce a homeworld effect — or, at least, no homeworld effect equivalent to that experienced due to the origins of humanity on Earth. The homeworld effect of Mars, then, will be ontogenic and not phylogenic.

The von Braun Mars mission concept was visionary for its time.

The von Braun Mars mission concept was visionary for its time.

If, however, human beings were to reside on Mars for an evolutionarily significant period of time, the ontogenic homeworld effect of individual development on Mars would be transformed into a phylogenic homeworld effect as Mars became an environment of evolutionary adaptedness. As the idea of million-year-old or even billion-year-old civilizations is a familiar theme of SETI, we should not reject this possibility out of hand. If human civilization comes to maturity within our planetary system and conforms to the SETI paradigm (i.e., that civilizations are trapped within their planetary systems and communicate rather than travel), we should expect such an eventuality, though over these time scales we will probably change Mars more than Mars will change us. At this point, Mars would become a homeworld among homeworlds — one of many for humanity. But it would still be a homeworld absent the homeworld effect specific to human origins on Earth — unless human beings settled Mars, civilization utterly collapsed, resulting in a total ellipsis of knowledge, and humanity had to rediscover itself as a species living on a planetary surface. For this to happen, Mars would have to be Terraformed in order for human beings to live on Mars without the preservation of knowledge sufficient to maintain an advanced technology, and this, too, is possible over time scales of a million years or more. Thus Mars could eventually be a homeworld for humanity in a sense parallel to Earth being a homeworld, though for civilization to continue its development based on cumulative knowledge implies consciousness of only a single homeworld, which we might call the singular homeworld thesis.

. . . . .

The descent to the surface of Mars will shape our perception of the planet.

The descent to the surface of Mars will shape our perception of the planet.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


Saturn with astronaut

Our first view of Earth was from its surface; every other planet human beings eventually visit will be first perceived by a human being at a great distance, then from orbit, and last of all from its surface. We will descend from orbit to visit a new world, rather than, as on Earth, emerging from the surface of that world and, only later, much later, seeing it from orbit, and then as a pale blue dot, from a great distance.

With our homeworld, the effect of looking up from the surface of our planet precedes the overview effect; with every other world, the overview effect precedes the surface standpoint. We might call this the homeworld effect, which is a consequence of what I now call planetary endemism (and which, when I was first exploring the concept, I called planetary constraint). We have already initiated this process when human beings visited the moon, and for the first time in human history descended to a new world, never before visited by human beings. With this first tentative experience of spacefaring, humanity knows one world from its surface (Earth) and one world from above (the moon). Every subsequent planetary visit will increase the relative proportion of the overview effect in contradistinction to the homeworld effect.

In the fullness of time, our normative assumptions about originating on a plant and leaving it by ascending in to orbit will be displaced by a “new normal” of approaching worlds from a great distance, worlds perhaps first perceived as a pale blue dot, and then only later descending to familiarize ourselves with surface features. If we endure for a period of time sufficient for further human evolution under the selection pressure of spacefaring civilization, this new normal will eventually replace the instincts formed in the environment of evolutionary adaptedness (EEA) when humanity as a species branched off from other primates. The EEA of our successor species will be spacefaring civilization and the many worlds to which we travel, and this experience will shape our minds as well, producing an evolutionary psychology adapted not to survival on the surface of a planet, but to survival on any planet whatever, or no planet at all.

The Copernican principle is the first hint we have of the mind of a species adapted to spacefaring. It is a characteristic of Copernicanism to call the perspective borne of planetary endemism, the homeworld effect, into question. We have learned that the Copernican principle continually unfolds, always offering more comprehensive perspectives that place humanity and our world in a context that subsumes our previous perspective. Similarly, the overview effect will unfold over the development of spacefaring civilization that takes human beings progressively farther into space, providing ever more distant overviews of our world, until that world becomes lost among countless other worlds.

In my Centauri Dreams post The Scientific Imperative of Human Spaceflight, I discussed the possibility of further overview effects resulting from attaining ever more distant perspectives on our cosmic home — thus attaining an ever more rigorous Copernican perspective. For example, although it is far beyond contemporary technology, it is possible to imagine we might someday have the ability to go so far outside the Milky Way that we could see our own galaxy in overview, and point out the location of the sun in the Orion Spur of the Milky Way.

There is, however, another sense in which additional overview effects may manifest themselves in human experience, and this would be due less to greater technical abilities that would allow for further first person human perspectives on our homeworld and on our universe, and rather due more to cumulative human experience in space as a spacefaring civilization. With accumulated experience comes “know how,” expertise, practical skill, and intuitive mastery — perhaps what might be thought of as the physical equivalent of acculturation.

We achieve this physical acculturation to the world through our bodies, and we express it through a steadily improving facility in accomplishing practical tasks. One such practical task is the ability to estimate sizes, distances, and movements of other bodies in relation to our own body. An astronaut floating in space in orbit around a planet or a moon (i.e., on a spacewalk) would naturally (i.e., intuitively) compare himself as a body floating in space with the planet or moon, also a body floating in space. Frank White has pointed out to me that, in interviews with astronauts, the astronauts themselves have noted the difference between being inside a spacecraft and being outside on a spacewalk, when one is essentially a satellite of Earth, on a par with other satellites.

The human body is an imperfectly uniform, imperfectly “standard” standard ruler that we use to judge the comparative sizes of the objects around us. Despite its imperfection as a measuring instrument, the human body has the advantage of being more intimately familiar to us than any other measuring device, which makes it possible to achieve a visceral understanding of quantities measured in comparison to our own body. At first perceptions of comparative sizes of bodies in space would be highly inaccurate and subject to optical illusions and cognitive biases, but with time and accumulated experience an astronaut would develop a more-or-less accurate “feel” for the size of the planetary body about which he is orbiting. With accumulated experience one would gain an ability to judge distance in space by eye, estimate how rapidly one was orbiting the celestial body in question, and perhaps even familiarize oneself with minute differences in microgravity environments, perceptible only on an intuitive level below the threshold of explicit consciousness — like the reflexes one acquires in learning how to ride a bicycle.

This idea came to me recently as I was reading a NASA article about Saturn, Saturn the Mighty, and I was struck by the opening sentences:

“It is easy to forget just how large Saturn is, at around 10 times the diameter of Earth. And with a diameter of about 72,400 miles (116,500 kilometers), the planet simply dwarfs its retinue of moons.”

How large is Saturn? We can approach the question scientifically and familiarize ourselves with the facts of matter, expressed quantitatively, and we learn that Saturn has an equatorial radius of 60,268 ± 4 km (or 9.4492 Earths), a polar radius of 54,364 ± 10 km (or 8.5521 Earths), a flattening of 0.09796 ± 0.00018, a surface area of 4.27 × 1010 km2 (or 83.703 Earths), a volume of 8.2713 × 1014 km3 (or 763.59 Earths), and a mass of 5.6836 × 1026 kg (or 95.159 Earths) — all figures that I have taken from the Wikipedia entry on Saturn. We could follow up on this scientific knowledge by refining our measurements and by going more deeply in to planetary science, and this gives us a certain kind of knowledge of how large Saturn is.

Notice that the figures I have taken from Wikipedia for the size of Saturn notes Earth equivalents where relevant: this points to another way of “knowing” how large Saturn is: by way of comparative concepts, in contradistinction to quantitative concepts. When I read the sentence quoted above about Saturn I instantly imagined an astronaut floating above Saturn who had also floated above the Earth, feeling on a visceral level the enormous size of the planet below. In the same way, an astronaut floating above the moon or Mars would feel the smallness of both in comparison to Earth. This is significant because the comparative judgement is exactly what a photograph does not communicate. A picture of the Earth as “blue marble” may be presented to us in the same size format as a picture of Mars or Saturn, but the immediate experience of seeing these planets from orbit would be perceived very differently by an orbiting astronaut because the human body always has itself to compare to its ambient environment.

This is kind of experience could only come about once a spacefaring civilization had developed to the point that individuals could acquire diverse experiences of sufficient duration to build up a background knowledge that is distinct from the initial “Aha!” moment of first experiencing a new perspective, so one might think of the example I have given above as a “long term” overview effect, in contradistinction to the immediate impact of the overview effect for those who see Earth from orbit for the first time.

The overview effect over the longue durée, then, will continually transform our perceptions both by progressively greater overviews resulting from greater distances, and by cumulative experience as a spacefaring species that becomes accustomed to viewing worlds from an overview, and immediately grasps the salient features of worlds seen first from without and from above. In transforming our perceptions, our minds will also be transformed, and new forms of consciousness will become possible. This alone ought to be reason enough to justify human spaceflight.

The possibility of new forms of consciousness unprecedented in the history of terrestrial life poses an interesting question: suppose a species — for the sake of simplicity, let us say that this species is us, i.e., humanity — achieves forms of consciousness through the overview effect cultivated in the way I have described here, and that these forms of consciousness are unattainable prior to the broad and deep experience of the overview effect that would characterize a spacefaring civilization. Suppose also, for the sake of the argument, that the species that attains these forms of consciousness is sufficiently biologically continuous that there has been no speciation in the biological sense. There would be a gulf between earlier and later iterations of the same species, but could we call this gulf speciation? Another way to pose this question is to ask whether there can be cognitive speciation. Can a species at least partly defined in terms of its cognitive functions be said to speciate on a cognitive level, even when no strictly biological speciation has taken place?

I will not attempt to answer this question at present — I consider the question entirely open — but I would like to suggest that the idea of cognitive speciation, i.e., a form of speciation unique to conscious beings, is deserving of further inquiry, and should be of special interest to the field of cognitive astrobiology.

. . . . .

The Overview Effect

The Epistemic Overview Effect

Hegel and the Overview Effect

The Overview Effect and Perspective Taking

The Overview Effect in Formal Thought

Our Knowledge of the Internal World

The Human Overview

Personal Experience and Empirical Knowledge

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

The Overview Effect over the longue durée

Civilizations of Planetary Endemism

. . . . .

deep field astronaut 3

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .