Saturday


The 50th anniversary of what exactly?

On 20 July 1969 the Apollo 11 mission landed two men on the moon and Neil Armstrong became the first human being to set foot on another astronomical body in the solar system. I was alive for the moon landings, and remember watching them on a black and white television. It was a triumph of science and technology and human aspiration all rolled into one.

What does the 50th anniversary of Apollo 11 mean? We cannot say, “Fifty Years of Lunar Voyages,” because fifty years of lunar voyages did not follow the Apollo program. Except for the handful of human beings who have been to the moon because of the Apollo program, no one else has been beyond low Earth orbit. We cannot say, “Fifty Years of Human Space Exploration Records,” because the achievement of reaching the moon was not followed by further achievements of human space exploration (except for long-duration stays on space stations — periods of time sufficient for exploration of the solar system, if only we had undertaken such missions). The human mission to the moon was not followed by a human mission to Mars and then further human missions to the farther reaches of the solar system.

I have heard it argued that there needed to be a pause in space exploration and development after Apollo, whether because the cost of the program was unsustainable (when people say this I remind them that the Apollo program didn’t tank the US economy; on the contrary, it stimulated the US economy) or because life on Earth simply had to “catch up” with the Space Age. Either we weren’t ready or (worse yet) weren’t worthy of following up on the Apollo Program with further and more ambitious programs. When I hear this I am reminded of Pascal’s following pensée:

“‘Why does God not show Himself?’ — ‘Are you worthy?’ — ‘Yes.’ — ‘You are very presumptuous, and thus unworthy.’ — ‘No.’ — ‘Then you are just unworthy.'”

This appears as no. 13 in the Penguin edition of the Pensées in the appendix, “Additional Pensées,” and attributed to Blaise Pascal, Textes inédits, Paris, Desclée de Brouwer, 1962 (i.e., you won’t find this in most editions of the Pensées.)

Regardless of your response, you’re going to be unworthy. There is always some reason that can be found that human beings don’t deserve any better than they have. This may sound like an eccentric point to make, but I believe it to be deeply rooted in human psychology, and we neglect this aspect of human psychology at our peril.

So if I ask, “Why do we not have a spacefaring civilization today?” Someone may respond, “Is humanity worthy of a spacefaring civilization?” I answer “Yes,” and I am told, “Humanity is very presumptuous, and therefore unworthy of it.” And if I answer “No,” I am told, “Then humanity is just unworthy.” Put in this context, we see that this is not really an observation about religion, as it appears in Pascal, but an observation about human self-perception. We have, if anything, seen this attitude grow significantly since 20 July 1969, so that there is a significant contingent of persons today who openly argue that humanity should not expand into the universe, but should remain, ought to remain, confined to its homeworld, and entertain no presumptions of greater things for itself.

It is easy to see how a long history of high-handed moral condemnations of the human condition, only just below the surface even today, even in the busy midst of our technological civilization, can be mobilized to shame us into inaction. In other words, this is about original sin, expiation, atonement, sacrifice, and purification — a litany that sounds strikingly similar to what Hume called the “monkish virtues”: celibacy, fasting, penance, mortification, self-denial, humility, silence, and solitude. Is this to be our future? Do we aspire to medieval ideals in the midst of modernity? Should we aspire to medieval ideals?

It is worth noting that this spacefaring inaction represents one particular implementation of what I have called the waiting gambit: things will be better eventually, so it is better to wait until conditions improve before undertaking some action. If we act now, we act precipitously, and this will mean acting suboptimally, and perhaps it will mean our ruin. Better to wait. That is to say, better to consign ourselves to silent meditation upon our sins than to exert ourselves with bold adventures. And this reminds me of one of Pascal’s most famous pensées:

Diversion. — When I have occasionally set myself to consider the different distractions of men, the pains and perils to which they expose themselves at court or in war, whence arise so many quarrels, passions, bold and often bad ventures, etc., I have discovered that all the unhappiness of men arises from one single fact, that they cannot stay quietly in their own chamber. A man who has enough to live on, if he knew how to stay with pleasure at home, would not leave it to go to sea or to besiege a town. A commission in the army would not be bought so dearly, but that it is found insufferable not to budge from the town; and men only seek conversation and entering games, because they cannot remain with pleasure at home.

No. 136 in the Brunschvicg edition and no. 139 in the Lafuma edition

While there are some among us who are suited for this Pascalian quietude, for most of us, we are at our best when exposing ourselves to pain and peril, engaging in what William James called the “strenuous life.” As Hegel once said, nothing great in the world is accomplished without passion, and pain and peril are the inevitable companions of passionate engagement with the world.

The most charitable thing that can be said about the past fifty years of non-achievement in spacefaring development is that it constitutes a “strategic pause” in the development of spacefaring civilization. But fifty years could easily stretch into a hundred years, and after a hundred years a strategic pause in the development of spacefaring civilization takes on a different character, and we would have to ask ourselves if a century spent waiting to be worthy was a century well spent. Could we call a century of inaction a “pause”? I don’t think so. A century has a particular historical resonance for human beings; it represents a period of historical significance, and cannot be readily dismissed or waved away.

Though I am concerned about the human future and the eventual development of a spacefaring civilization, I also have reason to hope: recent years have seen the development of reusable rocket technology — by private industry, and not by the government run space programs that participated in the Space Race — and this may become a major player in space development. Moreover, my own study of civilization has made it clear to me that civilization today, despite pervasive declensionism in the western world, is more robust than ever before, and the ongoing prospect of civilization is hopeful in and of itself, because as long as technological civilization endures, and new technologies are developed, eventually the technology for a spacefaring breakout will be available at a sufficiently low cost that a small community interested in space exploration will eventually be able to engage in this exploration, even if the greater part of humanity prefers to remain quietly on our homeworld.

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

. . . . .

Saturday


A Prehistory of the Overview Effect

Among many other contributions, E. O. Wilson is known for the Savannah Hypothesis, according to which human beings are especially suited, both biologically and cognitively, to life on the African savannah, which constituted the environment of evolutionary adaptedness (EEA) for our species. E. O. Wilson discusses this in the chapter “The Right Place” in his book Biophilia, in which he characterized this landscape as, “…the ideal toward which human beings unconsciously strive…” (pp. 108-109). Wilson developed this idea over much of this chapter, writing:

“…it seems that whenever people are given a free choice, they move to open tree-studded land on prominences overlooking water. This worldwide tendency is no longer dictated by the hard necessities of hunter-gatherer life. It has become largely aesthetic, a spur to art and landscaping. Those who exercise the greatest degree of free choice, the rich and powerful, congregate on high land above lakes and rivers and along ocean bluffs. On such sites they build palaces, villas, temples, and corporate retreats. Psychologists have noticed that people entering unfamiliar places tend to move toward towers and other large objects breaking the skyline.”

E. O. Wilson, Biophilia, Harvard University Press, 1984, p. 110 (I encourage reading the entire chapter, all of which is relevant to this discussion.)

In this context, the Savannah Hypothesis places human beings in a position to have an overview of the biome that constituted their EEA, that is to say, an overview of their relevant environment, the environment in which their differential survival and reproduction would mean either the continuation or the extinction of the species. As we know, human ancestors survived in such an environment for millions of years, and anatomically modern human beings passed through a bottleneck in such a landscape.

The African savannah was the landscape that played the most recent, and perhaps the most strongly selective role in the human mind and body, and there would be a high survival value attached to having an overview of this landscape. If we seek out prominences from which to take in a sweeping view, we do so for good reason.

Esther Quaedackers’ conception of little big histories.

Little Big Histories and Little Overviews

We can think of this biome overview as a “little overview,” which term I introduce in analogy to Esther Quadecker’s use of “little big histories,” that is to say, big histories that trace the development of some small topic (smaller than the whole of the universe) over cosmological time, from the big bang to the present day, and possibility also extending into the indefinite future. In the unfolding of our “little overviews” over time we have a prehistory of the overview effect as it is fully revealed when we see our homeworld from space.

Little overviews have played an important role in human history. The need for security and surveillance has resulted in the need for watchtowers and for the “crow’s nest” on a ship. Many of the most famous castles are built on high escarpments in order to command the view of the region, which, before telecommunications, was the only way in which to have a comprehensive survey. These precariously perched castles are thrilling to the romantic imagination, but they originally had a strategic purpose of giving an overview of a geographical region that was tactically significant in an age of fighting prior to modern technology. Anything that could happen on a battlefield could be taken in at a single glance.

Everyone will recall that the Persian king Xerxes had a throne erected from which we could watch the Battle of Salamis unfold as it happened. Byron immortalized the image in his Don Juan:

A king sate on the rocky brow
Which looks o’er sea-born Salamis;
And ships, by thousands, lay below,
And men in nations;—all were his!
He counted them at break of day —
And when the sun set where were they?

A culturally significant little overview is described in Petrarch’s account in a letter to his father of climbing Mount Ventoux, which is one of the most famous accounts of mountain climbing in western literature:

“…owing to the unaccustomed quality of the air and the effect of the great sweep of view spread out before me, I stood like one dazed. I beheld the clouds under our feet, and what I had read of Athos and Olympus seemed less incredible as I myself witnessed the same things from a mountain of less fame. I turned my eyes toward Italy, whither my heart most inclined. The Alps, rugged and snow-capped, seemed to rise close by, although they were really at a great distance…”

Francesco Petrarch, The Ascent of Mount Ventoux

It is something of a sport among historians to debate whether Petrarch was essentially medieval or already a modern mind in medieval times. Certainly there are intimations of modernity in Petrarch. The fact that Petrarch made his ascent of Mount Ventoux, that is to say, the spirit in which he made the ascent, was modern, though his response to the experience was not modern, but medieval. While on top Mount Ventoux Petrarch pulled out a copy of St. Augustine’s Confessions (a symbol both of antiquity and of Christendom) and opens to a passage that reads, “And men go about to wonder at the heights of the mountains, and the mighty waves of the sea, and the wide sweep of rivers, and the circuit of the ocean, and the revolution of the stars, but themselves they consider not.” Petrarch takes this as a rebuke to the worldliness implicit in his ambition to ascend the mountain, and he concluded his letter on the experience with this thought: “How earnestly should we strive, not to stand on mountain-tops, but to trample beneath us those appetites which spring from earthly impulses.”

With this medieval Christian response to a little overview there is much in common with the Stoic “view from above” thought experiment that I previously discussed in Stoicism, Sensibility, and the Overview Effect — the pettiness and smallness of the ordinary world of affairs, the need to transcend this smallness, the potential nobility of the human spirit in contrast to its actual corruption — though the specifically Christian elements are distinctive to Petrarch and place him a distance away from Marcus Aurelius’ disdain for the filth of the terrestrial life. Augustinian theology had declared the world good because God made it, so that the world could no longer be grandly dismissed as with the Stoics. It is the sinful human soul, and not the world, that is to be rebuked and chastised. This is the spirit that Petrarch brought to his experience of a little overview.

The Modern Overview Effect

We begin to encounter a more fully modern appreciation of little overviews in the earliest accounts of balloon aviation, where we find the distinctive relation between the attainment of a physical overview and a change in cognitive perspective, i.e., the idea that the two are tightly coupled. An early balloon flight pioneer, Fulgence Marion (a pen name used by Camille Flammarion), presents this relation plainly and simply: “We gave ourselves up to the contemplation of the views which the immense stretch of country beneath us presented.” Here the object of contemplate is the overview itself, which Marion describes in rapturous prose:

“The broad plains appeared before our view in all their magnificence. No snow, no clouds were now to be seen, except around the horizon, where a few clouds seemed to rest on the earth. We passed in a minute from winter to spring. We saw the immeasurable earth covered with towns and villages, which at that distance appeared only so many isolated mansions surrounded with gardens. The rivers which wound about in all directions seemed no more than rills for the adornment of these mansions; the largest forests looked mere clumps or groves, and the meadows and broad fields seemed no more than garden plots. These marvellous tableaux, which no painter could render, reminded us of the fairy metamorphoses; only with this difference, that we were beholding upon a mighty scale what imagination could only picture in little. It is in such a situation that the soul rises to the loftiest height, that the thoughts are exalted and succeed each other with the greatest rapidity.”

Fulgence Marion, Wonderful Balloon Ascents, or, the Conquest of the Skies, Chapter III

Petrarch was on the verge of just such an appreciation of the view from Mount Ventoux, one might even say that he felt this appreciation, but then turned from it in order to use the experience as a pretext to return to the Augustinian “inner man.”

Alexander von Humboldt, one of the great synthesizers of scientific knowledge of the 19th century, attempted to provide an explanation of the connection between overviews and cognitive changes. Criticizing Burke’s view that the feeling of the sublime arises from a lack of knowledge, Humboldt argues that past ignorance was responsible for the cosmological errors of antiquity, while our exultation at glimpsing an overview arises from our ability to connect ideas previously separate, so that the cognitive shift in the overview effect is due not to lack of knowledge, but to the expansion and integration of knowledge:

“The illusion of the senses… would have nailed the stars to the crystalline dome of the sky; but astronomy has assigned to space an indefinite extent; and if she has set limits to the great nebula to which our solar system belongs, it has been to shew us further and further beyond its bounds, (as our optic powers are increased,) island after island of scattered nebulae. The feeling of the sublime, so far as it arises from the contemplation of physical extent, reflects itself in the feeling of the infinite which belongs to another sphere of ideas. That which it offers of solemn and imposing it owes to the connexion just indicated; and hence the analogy of the emotions and of the pleasure excited in us in the midst of the wide sea; or on some lonely mountain summit, surrounded by semi-transparent vaporous clouds; or, when placed before one of those powerful telescopes which resolve the remoter nebulae into stars, the imagination soars into the boundless regions of universal space.”

Alexander von Humboldt, Cosmos: Sketch of a Physical Description of the Universe, London: Longman, Brown, Green, and Longmans, 1846, pp. 20-21

After Petrarch, the world was changed by the three revolutions — scientific, political, and industrial — and this changed context made possible the little overviews of Fulgence Marion and Alexander von Humboldt, who did not feel the need, as did Petrarch, to turn away to focus on the human soul and its cultivation of piety and salvation. Science changed the way that human beings understood the world, and their place in the world, so that subsequent mountain climbers saw the view of the world from the top of a mountain against a different conceptual background. Here is Julius Evola’s evocation of his contemplation of a little overview:

“…after the action, contemplation ensues. It is time to enjoy the peaks and heights from our vantage point: where the view becomes circular and celestial, where petty concerns of ordinary people, of the meaningless struggles of the life of the plains, disappear, where nothing else exists but the sky and the free and powerful forces that reflect the titanic choir of the peaks.”

Julius Evola, Meditations on the Peaks, “The Northern Wall of Eastern Lyskamm”

Evola’s attitude here more closely resembles that of the Stoic “view from above” thought experiment than Petrarch’s response to climbing Mount Ventoux, though Evola may have been consciously evoking the Stoic attitude, and was probably also influenced by Nietzsche, who spent much of his adult life in Switzerland and often rhapsodized on the views from mountain peaks.

It was a little overview that led to the explicit formulation of the overview effect, as Frank White described in the first chapter of the book in which he named and explicitly formulated the overview effect:

“My own effort to confirm the reality of the Overview Effect had its origins in a cross-country flight in the late 1970s. As the plane flew north of Washington, D.C., I found myself looking down at the Capitol and Washington Monument. From 30,000 feet, they looked like little toys sparkling in the sunshine. From that altitude, all of Washington looked small and insignificant. However, I knew that people down there were making life-or-death decisions on my behalf and taking themselves very seriously as they did so… When the plane landed, everyone on it would act just like the people over whom we flew. This line of thought led to a simple but important realization: mental processes and views of life cannot be separated from physical location.”

Frank White, The Overview Effect: Space Exploration and the Future of Humanity, third edition, American Institute of Aeronautics and Astronautics, Inc., 2014, p. 1

Here the modern overview conception is fully stated for the first time in terms amenable to scientific investigation. There is much that is continuous with the ancient and medieval responses to little overviews, and it may be taken as the telos upon which earlier modern accounts like those of Marion, von Humboldt, and Evola converge.

In the ancient, medieval, and modern responses to the overview effect there is both a common element as well as distinctive elements that derive from each period. In common is the sense of elevation above the merely mundane and of converging upon a “big picture” of the relationship between humanity and its homeworld; the distinctive elements arise from the valuation of our homeworld, of humanity, and the conception of the proper relationship between the two. The ancient response draws heavily upon Platonism, seeing the sublunary world as intrinsically less valuable than the superlunary world of the heavens, and humanity is understood to be the better as it tends toward the latter, and the worse as it tends to the former. The medieval response is to reflect on the meanness of human nature in contradistinction to the grandeur of God’s creation. The modern response, while retaining elements of earlier little overviews, begins to pare away the evaluative aspects to converge upon a theoretical expression of the core of the overview experience.

The Future of Little Overviews

Now that humanity is in possession of the overview effect in its most explicit and complete form, as some human beings have seen our homeworld entire with their own eyes, it might be thought that little overviews belong to the past. This would be misleading. The photographs that have brought the overview effect to millions if not billions of persons have been themselves little overviews — an overview that can be held in one’s hand, and which gives us a sense of the actual experience of the overview effect, without actually experiencing the full overview effect for ourselves (like a picture taken from the summit of a mountain by those who did not make the climb themselves). For the time being, the overview effect for most of us will be this little overview, and it remains to some future iteration of our technology to make this view universally available to those who desire it.

Other little overviews also continue to change our perspective on our world and our relation to the universe. The Hubble telescope deep field images — the Hubble Deep Field (HDF), Ultra Deep Field (HUDF), and eXtreme Deep Field (XDF) — are little overviews of the cosmos entire; little because they are a very small sample of the sky, but an overview more comprehensive than any previous human perspective on the universe. In one glance we can take in thousands of galaxies, many of them, like the Milky Way, with hundreds of billions stars each.

Coming to an understanding of the big picture is likely to involve an ongoing dialectic by which we pass from experiences that present us with a more comprehensive perspective, and which serve as imaginative points of departure to contemplation of the cosmos entire, to little overviews that provide counterpoint to our personal experiences and which fill out the expansion of our imagination with greater detail and greater breadth and diversity than the personal experiences of any one individual. Those who can most seamlessly integrate and understand these sources of overviews as a whole, will come to the most comprehensive perspective that can be reconciled with the details and reality of ordinary experience.

Kurt Gödel 1906-1978

An Overview-Seeking Animal

We have all heard that man is a political animal, or a social animal, or a tool-making animal, and so on. We can add to this litany of distinctive human imperatives that man is an overview-seeking animal. The overviews we have attained, perhaps spurred onward by the evolutionary psychology that E. O. Wilson identified as the Savannah hypothesis, have allowed us to repeatedly transcend our previous perspectives, and with this transcendence of physical perspectives has followed a transcendence of cognitive perspectives, i.e., worldviews or conceptual frameworks. Recently in Einstein on Geometrical Intuition I quoted a passage from Gödel (one of my favorite passages, quoted many times) that is relevant to the transcendence of cognitive perspectives:

“Turing… gives an argument which is supposed to show that mental procedures cannot go beyond mechanical procedures. However, this argument is inconclusive. What Turing disregards completely is the fact that mind, in its use, is not static, but is constantly developing, i.e., that we understand abstract terms more and more precisely as we go on using them, and that more and more abstract terms enter the sphere of our understanding. There may exist systematic methods of actualizing this development, which could form part of the procedure. Therefore, although at each stage the number and precision of the abstract terms at our disposal may be finite, both (and, therefore, also Turing’s number of distinguishable states of mind) may converge toward infinity in the course of the application of the procedure.”

“Some remarks on the undecidability results” (Italics in original) in Gödel, Kurt, Collected Works, Volume II, Publications 1938-1974, New York and Oxford: Oxford University Press, 1990, p. 306.

The seeking out of overviews, whether little overviews or grand overviews revealing our homeworld entire, is part of the method of actualizing our cognitive development by adding more terms to the sphere of our understanding. What Gödel approached from an abstract point of view the overview effect gives us from a concrete point of view.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Planetary Endemism and the Overview Effect

The Overview Effect and Intuitive Tractability

Stoicism, Sensibility, and the Overview Effect

A Natural History of Overview Effects

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Recently in The Space Age turns 60! I wrote, “We are still in the very early stages of the Space Age; the inflection point of this developmental sequence has not yet arrived, so we are today still in the same shallow end of the exponential growth curve that was initiated sixty years ago.” What do I mean by an inflection point, and what is (or what would be) the inflection point for spacefaring civilization?

In a curve, an inflection point (according to Wolfram Mathworld) is, “…a point on a curve at which the sign of the curvature (i.e., the concavity) changes.” In this technical sense, then, I have misused “inflection point,” but it has become commonplace to speak of the inflection point of an exponential (or sigmoid) curve as the point at which the transition occurs from the long, shallow part of the curve, only incrementally growing over time, to the exponential growth part of the curve. In this sense, the inflection point is the transition from slow (sometimes very slow), incremental development to rapid, exponential development.

We have some good examples of inflection points from human history. The industrial revolution is a nearly perfect example of an inflection point. Human beings have been developing technologies since long before civilization. Pre-human ancestors were using stone tools more than two million years ago. However, technological development began to accelerate with the industrial revolution, and continues to develop at an expanding and increasing rate. Technological growth — both in terms of technological complexity and large-scale industrial application — has been exponential since the industrial revolution. Is something like this possible with spacefaring?

In Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen and Stagnant Supercivilizations and Interstellar Travel I discussed one of my favorite themes, namely, that spacefaring civilization might have experienced its inflection point in the wake of the Apollo program, which latter demonstrated what was possible when significant resources are expended on a difficult goal. More recently, on The Unseen Podcast Episode We, Martians? I said that if we had gone to Mars as NASA once planned, building immediately following Apollo, it would have been a different mission than any mission to Mars undertaken at the present time. It would have been, in short, a mission much like the Apollo mission, meaning a transient presence on Mars sufficient to plant the flag of the sponsoring nation-state and to collect some samples to bring back to Earth. Paul Carr called this a “Flags and Footprints” mission, which is a good way to phrase this, and I subsequently heard this from others, so apparently it’s a thing.

These counterfactuals did not occur, so that they represent a permanently lost opportunity for human civilization. The door has closed on this particular shape for human history, but the door remains open for different shapes for human history if spacefaring technologies are eventually adopted, and when they are adopted (if they are adopted), will decisively and definitively alter the shape of human history — or the history of any intelligent species able to build spacefaring technologies. To consider this a little more carefully I am going to delineate three generic scenarios for the breakout to spacefaring civilization that might be experienced by a civilization that develops spacefaring technology. These three scenarios are as follows:

● Early Inflection Point when spacefaring is pursued with exponential frequency immediately upon the technology being available.

● Middling Inflection Point when spacefaring is pursued with exponential frequency only after it has been available for a substantial period of time, but within the longue durée in which the technology became available.

● Late Inflection Point when spacefaring is pursued with exponential frequency after the technology has been available throughout a longue durée period of history.

No great store need be placed on the time frames I have implied above; sufficient to our purposes is that spacefaring may become routine immediately upon, sometime after, or long after the technology is available. Each of these spacefaring inflection points can be taken separately, since each represents a different civilization as defined by the relationship between the civilizations of planetary endemism and spacefaring civilization. Moreover, we can justify the significance of the position of the spacefaring inflection point in the overall history of civilization by reference to the infinitistic possibilities available to a spacefaring civilization

Early Inflection Point

On several occasions I have written about the possibility of a spacefaring civilization emerging immediately upon the technology of the Space Race being available, specifically in Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen. In this post I suggested that industrial-technological civilization as it has been known from the industrial revolution up to the advent of the Space Age might have been suddenly “preempted” by the emergence of a new kind of civilization — a spacefaring civilization — that changed the conditions of human life as radically as the industrial revolution changed the conditions of human life. This is what did, in fact, happen with the industrial revolution: as soon as the technology to drive machinery by fossil fuels became available, it was rapidly exploited, and western societies passed through a series of rapid social changes driven by industrialization.

While an early inflection point did not occur on Earth with the initial availability of spacefaring technology, we must consider the possibility that this is could occur with any civilization that passes the spacefaring technology threshold. I explored some of these possibilities in my Centauri Dreams post, Stagnant Supercivilizations and Interstellar Travel. In so far as an early spacefaring breakout would encourage a focus on spacefaring technologies (the relative neglect of other technologies being an opportunity cost of this alternative focus), the developmental trajectory of such a civilization might involve continual and rapid development of spacefaring technologies even while other technologies (say, for example, computing technologies) remain relatively undeveloped. Thus the technological profile of a given civilization is going to reflect the existential opportunities it has pursued, and when it pursues them.

We may also observe that, along with early-adoption spacefaring scenarios that did not occur with human civilization, it is also the case that a variety of counterfactual existential risk scenarios also did not occur. What I mean by this is that, once nuclear weapons were invented (shortly before the advent of the Space Age), human beings immediately realized that this gave us the power to destroy our own civilization. A number of novels were written and films were made in which human beings or human civilization went extinct shortly after the technology was available for this. These scenarios did not occur, just as the scenarios of early spacefaring adoption did not occur.

Middling Inflection Point

It has become a commonplace to speak of the recent development of space industries as “NewSpace.” If the technologies of NewSpace come to maturity in the coming decades and results in the following decades in a spacefaring breakout and the establishment of a truly spacefaring civilization, this would constitute an instance of a mediocre spacefaring inflection point. Given that the Space Age is now sixty years old, a few more decades of development would mean that spacefaring technologies will have been available for a century before they come to be fully exploited for a spacefaring breakout and a spacefaring civilization. In other words, the spacefaring inflection point did not occur immediately after spacefaring technology was available, but it also did not have to wait for an entirely new epoch of human history to come to pass for the spacefaring breakout to occur. (In terms of human civilization, we might identify a period of 100-300 years from advent to breakout as a mediocre spacefaring inflection point.)

As implied above, the current nominal spacefaring capacity of our civilization today is consistent with a middling spacefaring inflection point, if spacfaring expands rapidly in the wake of the maturity of NewSpace industries and technologies. Among these technologies we may count reusable spacecraft (Sierra Nevada’s Dream Chaser), including the booster stages of multi-stage rockets (SpaceX and Blue Origin), hybrid rocket engines (Reaction Engines LTD), and ion and plasma rockets (Ad Astra’s VASIMR), inter alia. These are the actual technologies of spacefaring; many industries that seek to exploit space for commercial and industrial uses are focused on technologies to be employed in space, but which are not necessarily technologies of spacefaring that will result in a spacefaring breakout.

Late Inflection Point

Say that the NewSpace technologies noted above come to maturity, but they prove to be impractical, or too expensive, or simply uninteresting to the better part of humanity. If this opportunity arises and then is passed over without a spacefaring breakout, like the initial existential opportunity presented by spacefaring technologies, the middling spacefaring inflection point will pass and humanity will remain with its nominal spacefaring capacity but no spacefaring breakout and no spacefaring civilization. In this case, if there is to be an eventual spacefaring breakout for human civilization, it will be a late spacefaring inflection point, and human civilization will change considerably in the period of time that passes between the initial availability of spacefaring technology and its eventual exploitation for a spacefaring breakout.

Just as in the meantime from initial availability of spacefaring technology to the present day, computer technology exponentially improved, a late spacefaring inflection point would mean that many technologies would emerge and come to maturity and industrial exploitation even as spacefaring technologies are neglected and experience little development (perhaps as an opportunity cost of the development of alternative technologies). Thus a late-adopter spacefaring civilization may develop a variety of fusion technologies, alternative energy technologies, genetic engineering technologies, quantum computing, human-machine interface technologies (or xenomorph-machine interface, as the case may be), artificial consciousness, and so on. Once a civilization possesses something akin to technological maturity on its homeworld, its historical experience will be radically different from the historical experience of a species that pursues an early spacefaring inflection point.

I can imagine a civilization that becomes so advanced that spacefaring technologies become cheap and easily available simply because the technological infrastructure of the civilization is so advanced. Thus even if there is no large-scale social interest in spacefaring, small groups of interested individuals can have spacefaring technologies for the asking, and these individuals and small groups will leave the planet one or two at a time, a dozen at a time, and so on. The homeworld civilization would be unaffected by this small scale spacefaring diaspora, since the technological and financial investment will have become so marginal as to be negligible, but these individuals and groups will take with them an advanced technology that will allow them to survive and prosper even at this small scale.

The worlds these small groups pioneer will grow slowly, but they will grow, regardless of whether the homeworld notices. Under these conditions, an ongoing nominal spacefaring capacity could develop over longer scales of time into a spacefaring capacity that is no longer nominal, though we would never be able to say exactly when this changeover occurred; this would be an evolutionary rather than a revolutionary transition. However, once these other worlds began to grow in population, eventually these populations would exceed the population of Earth, and at this point we could say with confidence that the late spacefaring inflection point had been reached, without spacefaring per se ever becoming a great civilizational-scale undertaking.

The Null Case

In addition to these three scenarios, there is also the null case, i.e., spacefaring technology is initially developed, but it is not further pursued, so that it is either forgotten or regarded with disinterest. A civilization that develops spacefaring technology and then either fails to pursue the development, or loses the capacity due to other factors (such as civilizational collapse), never achieves a spacefaring breakout and never becomes a spacefaring civilization. As I make a distinction between the nominal spacefaring capacity we now possess, and a spacefaring civilization proper, our contemporary civilization remains consistent with the null case scenario unless or until it experiences a spacefaring breakout.

The null case is the trajectory of a civilization toward permanent stagnation. Even if many technologies are developed and come to maturity and industrial exploitation, nothing essential will have changed in the human relationship to the cosmos (or the relation of any intelligent species that develops spacefaring technology but which does not exploit these technology for a spacefaring breakout). Spacefaring technologies, if exploited for a spacefaring breakout that results in a spacefaring civilization, would change the relationship of a species to the cosmos, as the species in question then has the opportunity to develop separately from its homeworld, and is therefore no longer tightly-coupled to the natural history of its homeworld. Without a spacefaring breakout, an intelligent species remains tightly-coupled to the natural history of its homeworld, and necessarily goes extinct when its homeworld biosphere is rendered uninhabitable.

. . . . .

Addendum added Wednesday 25 October 2017: Further to the above discussion of early spacefaring inflection points, I happened upon Space That Never Was is one artist’s vision of a never-ending space race: Where else might we have gone? by Andrew Liptak, which led me to the work of Mac Rebisz, Space That Never Was, who writes of his artistic vision, “Imagine a world where Space Race has not ended. Where space agencies were funded a lot better than military. Where private space companies emerged and accelerated development of space industry. Where people never stopped dreaming big and aiming high.” Rebisz’s images might be understood as illustrations of early-adopter spacefaring civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Space Age turns 60!

4 October 2017

Wednesday


Sixty years ago today, on 04 October 1957, Sputnik 1 (Спутник-1) became the first object of human manufacture to orbit the Earth. Thus began the Space Race, driven by Cold War competition, but transcending that Cold War competition and being transformed into a triumph of the human spirit (not to mention being a triumph of human engineering, but here engineering expresses the human spirit).

A few years ago, on 12 April 2011, I wrote A Half Century of Human Spaceflight to celebrate the 50th anniversary of Yuri Gagarin’s first human spaceflight in orbit around the Earth; in just a few years, 2021, we will be able to celebrate sixty years of human spaceflight. The anniversaries of all the important dates for the technologies that have shaped the world today remind us how rapidly the world was transformed from thousands of years of settled agriculturalism, preceded by tens of thousands of years of hunter-gatherer nomadism, into the technological civilization of today. Progress has been dizzying, and the very institutions of civilization that brought us to this point have not yet caught up with the changes wrought by them; even now they labor under the strain of this forced social change.

We are still in the very early stages of the Space Age; the inflection point of this developmental sequence has not yet arrived, so we are today still in the same shallow end of the exponential growth curve that was initiated sixty years ago. In the earliest years of the Space Age (and the Space Race, since the two coincided at least until 1969, when the Space Race as “won”) it became commonplace to speak of the “conquest of space,” as though our first tentative, exploratory foray beyond the atmosphere of our homeworld were a triumphant affirmation of human power. Carl Sagan was nearer to the truth when he wrote in Cosmos that our first few decades of space exploration have been only an incremental step in an endless journey:

“The surface of the Earth is the shore of the cosmic ocean. From it we have learned most of what we know. Recently, we have waded a little out to sea, enough to dampen our toes or, at most, wet our ankles. The water seems inviting. The ocean calls. Some part of our being knows this is from where we came. We long to return. These aspirations are not, I think, irreverent, although they may trouble whatever gods may be.”

It is likely that we will continue on in the shallow end of the space exploration curve for some time yet. Perched as we are on the edge of the cosmos, able to see far more than we can explore, like Stout Cortez, silent upon a peak in Darien, it is something akin to madness for those of us who wish to explore, but whose lives will remain Earthbound. We must learn patience, even if that is the least of our virtues. I may not live to see the inflection point, but I know that it is out there, and that the task for us is to keep civilization moving in that direction so that the inflection point will be reached, and that we do not fail before we have reached it. To take heart during this sometimes demoralizing struggle, we have the vision before us of what civilization can become when it is liberated from planetary endemism. “Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?”

. . . . .

The Space Age began with Sputnik.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Worlds of Convenience

24 August 2017

Thursday


Three Worlds, Three Civilizations

In August of this year I spoke at the Icarus Interstellar Starship Congress 2017. One of the themes of the congress was “The Moon as a Stepping Stone to the Stars” so I attempted to speak directly to this theme with a presentation titled, “The Role of Lunar Civilization in Interstellar Buildout.” The intention was to bring together the possible development of the moon as part of the infrastructure of spacefaring civilization within our solar system with the role that the moon could play in the further buildout of spacefaring civilization toward an interstellar spacefaring capacity.

Most of our spacefaring infrastructure at present is in low Earth orbit.

In preparing my presentation I worked through a lot of ideas related to this theme, and even though Icarus Interstellar was very generous with the time they gave me to speak, I couldn’t develop all of the ideas that I had been working on. One of these ideas was that of the moon and Mars as worlds of convenience. By this I mean that the moon and Mars are small, rocky worlds that might be useful to human beings because of their constitution and their proximity to Earth.

Any agriculture on the moon will of necessity be confined to artificial conditions.

The moon, as the closest large celestial body to Earth, is a “world of convenience”: It is an island in space within easy reach of Earth, and might well play a role in terrestrial civilization not unlike the role of the Azores or the Canary Islands played in the history of western civilization, which, as it began to explore farther afield down the coast of Africa and into the Atlantic (and eventually to the new world), made use of the facilities offered by these island chains. Whether as a supply depot, a source of materials from mining operations, a place for R&R for crews, or as a hub of scientific activity, the moon could be a crucial component of spacefaring infrastructure in the solar system, and, as such, could serve to facilitate the growth and development of spacefaring civilization.

Because Mars is a bit more like Earth than the moon, conditions on Mars may be less artificial than on the moon.

Mars is also a world of convenience. While farther from Earth than the moon, it is still within our present technology to get to Mars — i.e., it is within the technological capability of a rudimentary spacefaring capacity to travel to a neighboring planet within the same planetary system — and Mars is more like Earth than is the moon. Mars has an atmosphere (albeit thin), because it has an atmosphere its temperatures are moderated, its day is similar to the terrestrial day, and its gravity is closer to that of Earth’s gravity than is the gravity on the moon. Mars, then, is close enough to Earth to be settled by human beings, and the conditions are friendlier to human beings than the closer and more convenient moon. These factors make Mars a potentially important center for the exploration of the outer solar system.

The further buildout of our spacefaring infrastructure will probably include both space-based assets and planetary assets, but it is on planets that we will feel at home.

We can easily imagine a future for humanity within our own solar system in which mature civilizations are found not only on Earth but also on the moon and Mars. Since the moon and Mars are both “worlds of convenience” for us — places unlike the Earth, but not so unlike the Earth that we could not make use of them in the buildout of human civilization as a spacefaring civilization — we would expect them to naturally be part of human plans for the future of the solar system. Because we are biological beings emergent from a biosphere associated with the surface of Earth (a condition I call planetary endemism), we are likely to favor other planetary surfaces even as human civilization expands into space; it is on planetary surfaces that we will feel familiar and comfortable as a legacy of our evolutionary psychology.

Our planetary endemism predisposes us to favor planetary surfaces for human habitation.

These three inhabited worlds — Earth, the moon, and Mars — would each have a human civilization, but also a distinctive civilization different from the others, and each would stand in distinctive relationships to the other two. Earth and the moon are always going to be tightly bound, perhaps even bound by the same central project, because of their proximity. Mars will be a bit distant, but more Earth-like, and so more likely to give rise to an Earth-like civilization, but a civilization that will be built under selection pressures distinct from those on Earth. The moon will never have an Earth-like civilization because it will almost certainly never have an atmosphere, and it will never have a greater gravitational field, so Lunar civilization will depart from terrestrial civilization even while being tightly-coupled to Earth due to its proximity.

The moon will always be an ‘offshore balancer’ for Earth, but conditions on the moon are so different from those of Earth that any Lunar civilization would diverge from terrestrial civilization.

The presence of worlds of convenience within our solar system does not mean that we must or will forgo other opportunities for the development of spacefaring civilization. Just as Icarus Interstellar holds that there is no one way to the stars, so too there is no one buildout for the infrastructure of a spacefaring civilization. One of the themes of my presentation as delivered was the different possibilities for infrastructure buildout within the solar system, how these different infrastructures could interact, and how they would figure in future human projects like interstellar missions. Thus the three worlds and the three civilizations of Earth, the moon, and Mars may be joined by distinctive civilizations based on artificial habitats or on settlements based on asteroids or the more distant moons of the outer planets. But Earth, the moon, and Mars are likely to remain tightly-coupled in ongoing relationships of cooperation, competition, and conflict because of their status as worlds of convenience.

The worlds of convenience within our solar system may be joined by artificial habitats.

The possibility of multiple human civilizations within our solar system presents the possibility of what I call “distributed development” (cf. Mass Extinction in the West Asian Cluster and Emergent Complexity in Multi-Planetary Ecosystems). In the earliest history of human civilization distributed development could only extend as far as the technologies of transportation allowed. With transportation and communication limited to walking, shipping, horses, or chariots, the civilizations of west Asia could participate in mutual ideal diffusion, but the other centers of civilization at this time — in China, India, Peru, Mexico, and elsewhere — lay beyond the scope of easy communication by these means of transportation and communication. As the technologies of transportation and communication became more sophisticated, idea diffusion is now planetary, and this planetary-scale idea diffusion is converging upon a planetary civilization.

An interplanetary internet would facilitate idea diffusion between the worlds of our solar system.

Today, our planetary civilization has instantaneous communication and rapid transportation between any and all parts of the planet, and planetary scale idea diffusion is the rule. We enjoy this planetary scale idea diffusion because our technologies of communication and transportation — jets, high speed trains, fiber optic cables, the internet, satellites, and so on — allow for it. So fast forward to a solar system of three planetary civilizations — i.e., three distinct and independent civilizations, though coupled by relationships of trade and communication — and with an interplanetary network of communication and transportation that allows for idea diffusion on an interplanetary scale. The pattern of distributed development among multiple civilizations that characterized the west Asian cluster of civilization could be iterated at an interplanetary scale, driving these civilizations forward as they borrow from each other, and no one civilization must make every breakthrough in order for the others to enjoy the benefits of innovation.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


Looking down on Earth from above may not only make us reevaluate out relationship to the planet, but may also help us to understand the planet better.

Science is a way to better understand the world, but science itself is not always easy to understand, and we often find that, after clarifying some problem through science, we must then clarify the science so that the science makes sense to us. Some call this science communication; I call it the pursuit of intuitive tractability.

While it is not part of science proper to seek intuitively tractable formulations, it is part of human nature to seek intuitively tractable formulations, as we are more satisfied with science formulated in intuitively tractable forms than with science that is not intuitively tractable. For example, there is, as yet, no intuitively tractable formulation of quantum theory, and this may be why Einstein famously wrote in a letter to Max Born that, “Quantum Mechanics is very impressive. But an inner voice tells me that it is not yet the real thing.”

When the concept of zero was introduced into mathematics, it was thought to be an advanced and difficult idea, but we now teach a number system starting with zero to children in primary school. In a similar way, the Hindu-Arabic system of numbers has displaced almost every other system of numbers because it is what I would paradoxically call an intuitive formalism, i.e., it is a formalization of the number concept that is both adequate to mathematics and closely follows our intuitive conception of number. Mathematics is easier with Hindu-Arabic numerals than other numbering systems because this numbering system is intuitively tractable. There are other formalisms for number that are equally valid and equally correct, but not as intuitively tractable.

The pursuit of intuitive tractability has also been evident in geometry, and especially the axiomatic exposition of geometry that begins with postulates accepted ab initio as self-evident, and which has been the model of rigorous mathematics ever since Euclid. Euclid’s fifth postulate, the famous parallel postulate, is difficult to understand and was a theoretical problem for geometry until its independence was proved, but whether or not the fifth postulate was demonstrably independent of the other postulates, Euclid’s opaque exposition did not help. Here is Euclid’s parallel axiom from the Elements:

“If a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.”

Almost two thousand years later, in 1846, John Playfair formulated what we now call “Playfair’s axiom,” which tells us everything that Euclid’s postulate sought to communicate, but in a far more intuitively tractable form: “In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.” Once this more intuitively tractable formulation of the parallel postulate was available, Euclid’s formulation was largely abandoned. There is, then, a process of cognitive selection, whereby the most intuitively tractable formulations are preserved and the less intuitively tractable formulations are abandoned.

Those concepts that are the most intuitively tractable are those concepts that are familiar to us all and which are seamlessly integrated into ordinary thought and language. I have called such concepts “folk concepts.” Folk concepts that have persisted from their origins in our earliest evolutionary psychology up into the present have been subjected to the cognitive equivalent of natural selection, so that we can reasonably speak of folk concepts as having been refined and elaborated by the experience of many generations.

In a series of posts — Folk Astrobiology, Folk Concepts of Scientific Civilization, and Folk Concepts and Scientific Progress — I have considered the nature of “folk” concepts as they have been frequently invoked, and it is natural to ask, in the light of such an inquiry, whether there is a “folk Weltanschauung” that is constituted by a cluster of folk concepts that naturally hang together, and which inform the pre-scientific (or non-scientific) way of thinking about the world.

Arguably, the idea of a folk Weltanschauung is already familiar by a number of different terms that philosophers have employed to identify the concept (or something like the concept) — naïve realism or common sense realism, for example. What Husserl called “natürliche Einstellung” and which Boyce Gibson translated as “natural standpoint” and Fred Kersten translated as “natural attitude” could be said to approximate a folk Weltanschauung. Here is how Husserl describes the natürliche Einstellung:

“I am conscious of a world endlessly spread out in space, endlessly becoming and having endlessly become in time. I am conscious of it: that signifies, above all, that intuitively I find it immediately, that I experience it. By my seeing, touching, hearing, and so forth, and in the different modes of sensuous perception, corporeal physical things with some spatial distribution or other are simply there for me, ‘on hand’ in the literal or the figurative sense, whether or not I am particularly heedful of them and busied with them in my considering, thinking, feeling, or willing.”

Edmund Husserl, Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy: First Book: General Introduction to a Pure Phenomenology, translated by Fred Kersten, section 27

Husserl characterizes the natural attitude as a “thesis” — a thesis consisting of a series of posits of the unproblematic existence of ordinary objects — that can be suspended, set aside, as it were, by the phenomenological procedure of “bracketing.” These posits could be identified with folk concepts, making the thesis of the natural standpoint into a folk Weltanschauung, but I think this interpretation is a bit forced and not exactly what Husserl had in mind.

Perhaps closer to what I am getting at than the Husserlian natural attitude is what Wilfrid Sellars has called the manifest image of man-in-the-world, or simply the manifest image. Sellars’ thought is no easier to get a handle on than Husserl’s thought, so that one never quite knows if one has gotten it right, and one can easily imagine being lectured by a specialist in the inadequacies of one’s interpretation. Nevertheless, I think that Sellers’ manifest image is closer to what I am trying to get at than Husserl’s natürliche Einstellung. Closer, but still not the same.

Sellars develops the idea of the manifest image in contrast to the scientific image, and this distinction is especially given exposition in his essay Philosophy and the Scientific Image of Man. After initially characterizing the philosophical quest such that, “[i]t is… the ‘eye on the whole’ which distinguishes the philosophical enterprise,” and distinguishing several different senses in which philosophy could be said to be a synoptic effort at understanding the world as a whole, Sellars introduces terms for contrasting two distinct ways of seeing the world whole:

“…the philosopher is confronted not by one complex many dimensional picture, the unity of which, such as it is, he must come to appreciate; but by two pictures of essentially the same order of complexity, each of which purports to be a complete picture of man-in-the-world, and which, after separate scrutiny, he must fuse into one vision. Let me refer to these two perspectives, respectively, as the manifest and the scientific images of man-in-the-world.”

Wilfrid Sellars, Philosophy and the Scientific Image of Man, section 1

Sellars’ distinction between the manifest image and the scientific image has been quite influential. A special issue of the journal Humana Mente, Between Two Images: The Manifest and Scientific Conceptions of the Human Being, 50 Years On, focused on the two images. Bas C. van Fraassen in particular has written a lot about Sellars, devoting an entire book to one of the two images, The Scientific Image, and has also written several relevant papers, such as “On the Radical Incompleteness of the Manifest Image” (Proceedings of the Biennial Meeting of the Philosophy of Science Association,Vol. 1976, Volume Two: Symposia and Invited Papers 1976, pp. 335-343). All of this material is well worth reading.

Sellars is at pains to point out that his distinction between manifest image and scientific image is not intended to be a distinction between pre-scientific and scientific worldviews (“…what I mean by the manifest image is a refinement or sophistication of what might be called the ‘original’ image…”), though it is clear from this exposition that the manifest image, however refined and up-to-date, has its origins in a pre-scientific conception of the world. (“It is, first, the framework in terms of which man came to be aware of himself as man-in-the-world.”) The essence of this distinction between the manifest image and the scientific image is that the manifest image is correlational while the scientific image is postulational. What this means is that the manifest image “explains” the world (in so far as it could be said to explain the world at all) by correlations among observables, while the scientific image explains the world by positing unobservables that connect observables “under the surface” of things, as it were (involving, “…the postulation of imperceptible entities”). Sellars also maintains that the manifest image cannot postulate in this way, and therefore cannot be improved or refined by science, although it can improve on itself by its own correlational methods.

I do not yet understand Sellars well enough to say why he insists that the manifest image cannot incorporate insights from the scientific image, and this is a key point of divergence between Sellars’ manifest image and what I above called a folk Weltanschauung. If a folk Weltanschauung consists of a cluster of tightly-coupled folk concepts (and perhaps a wide penumbra of associated but loosely-coupled folk concepts), then the generation of refined scientific concepts can slowly, one-by-one, replace folk concepts, so that the folk Weltanschauung gradually evolves into a more scientific Weltanschauung, even if it is not entirely transformed under the influence of scientific concepts. Science, too, consists of a cluster of tightly-coupled concepts, and these two distinct clusters of concepts — the folk and the scientific — might well resist mixing for a time, but the human mind cannot keep such matters rigorously separate, and it is inevitable that each will bleed over into the other. Sometimes this “bleeding over” is intentional, as when science reaches for metaphors or non-scientific language as a way to make its findings understood to a wider audience. This is part of the pursuit of intuitively tractable formulations, but it can also go very wrong, as when scientists adopt theological language in an attempt at a popular exposition that will not be rejected out-of-hand by the Great Unwashed.

Despite my differences with Sellars, I am going to here adopt his terminology of the manifest image and the scientific image, and I will hope that I don’t make too much of a mess of it. I will have more to say on this use of Sellars’ concepts below (especially in relation to the postulational character of the scientific image). In the meantime, I want to use Sellars’ concepts in a exposition of intuitive tractability. Sellars’ uses the metaphor of “stereoscopic vision” as the proper way to understand how we must bring together the manifest image and the scientific image as a single way of understanding the world (“…the most appropriate analogy is stereoscopic vision, where two differing perspectives on a landscape are fused into one coherent experience”). I think, on the contrary, that intuitively tractable formulations of scientific concepts can make the manifest image and the scientific image coincide, so that they are one and the same, and not two distinct images fused together. A slightly weaker formulation of this is to assert that intuitively tractable formulations allow us to integrate the manifest image and the scientific image.

Now I want to illustrate this by reference to the overview effect, that is to say, the cognitive effect of seeing our planet whole — preferably from orbit, but, if not from orbit, in photographs and film that make the point as unmistakably as though one were there, in orbit, seeing it with one’s own eyes.

Before the overview effect, we saw our planet with the same eyes, but even after it is proved to us that the planet is (roughly) a sphere, hanging suspended in space, it is difficult to believe this. All manner of scientific proofs of the world as a spherical planet can be adduced, but the science lacks intuitive tractability and we have a difficult time bringing together our scientific concepts and our folk concepts of the world — or, if you will, we have difficulty reconciling the manifest image and the scientific image. The two are distinct. Until we achieve the overview effect, there is an apparent contradiction between what we experience of the world and our scientific knowledge of the world. Our senses tell us that the world is flat and solid and unmoving; scientific knowledge tells us that the world is round and moving and hanging in space.

Once we attain the overview effect, this changes, and the apparent contradiction is revealed as apparent. The overview effect shows how the manifest image and the scientific image coincide. The things we know about ordinary objects, which shapes the manifest image, now applies to Earth, which is seen as an object rather than as surrounding us as an environment with an horizon that we can never reach, and which therefore feels endless to us. Seen from orbit, this explains itself intuitively, and an explicit explanation now appears superfluous (as is ideally the case with an axiom — it is seen to be true as soon as it is understood). The overview effect makes the scientific knowledge of our planet as a planet intuitively tractable, transforming scientific truths into visceral truths. One might say that the overview effect is the lived experience of the scientific truth of our homeworld. In this particular case, we have replaced a folk concept with a scientific concept, and the scientific concept is correct even as intuition is satisfied.

The use of the overview effect to illustrate the manifest and scientific images, and their possible coincidence in a single experience, is especially interesting in light of Sellars’ insistence that the scientific image is distinctive because it is postulational, and more particularly that it postulates unobservables as a way to explain observables. When, in a scientific context, someone speaks of unobservables or “imperceptible entities” the assumption is that we are talking about entities that are too small to see with the naked eye. The germ theory of disease and the atomic theory of matter both exemplify this idea of unobservables being observable because they are smaller than the resolution of unaided human vision. We can only observe these unobservables with instruments, and then this experience is mediated by complex instruments and an even more complex conceptual framework so that no one ever speaks of the “lived experience” of particle physics or microbiology.

In contrast to this, the Earth is unobservable to the human eye not because it is too small, but because it is too large. When shown scientific demonstrations that the world is round, we must posit an unobservable planet, and then identify this unobservable entity with the actual ground under our feet. This is difficult to do, intuitively speaking. We see the world at all times, but we do not see it as a planet. We do not see enough of the world at any one moment to see it as a planet. Enter the overview effect. Seeing the Earth whole from space reveals the entity that is planet Earth, and if one has the good fortune to lift off from Earth and experience the process of departing from its surface to then see the same from space, this makes a previously unobservable postulate into a concretely experienced entity.

We are in the same position now vis-à-vis our place within the Milky Way galaxy, and our place within the larger universe, as we were once in relation to the spherical Earth. Our accumulated scientific knowledge tells us where we are at in the universe, and where we are at in the Milky Way. We can even see a portion of the Milky Way when we look up into the night sky, but we cannot stand back and see the whole from a distance, taking in the Milky Way and pointing of the position of our solar system within one of the spiral arms of our galaxy. We know it, but we haven’t yet experienced it viscerally. We have to posit the Milky Way galaxy as a whole, the Virgo supercluster, and the filaments of galaxies that stretch through the cosmos, because they are too large for us to observe at present. They are partially observed, in the way we might say that an atom is partially observed when we look at a piece of ordinary material composed of atoms.

Our postulational scientific image of the universe in which we live is redeemed for intuition by experiences that put us in a position to view these entities with our own eyes, and so to see them in an intuitively tractable manner. Perhaps one of the reasons that quantum theory remains intuitively intractable is that the unobservables that it posits are so small that we have no hope of ever seeing them, even with an electron microscope.

Ultimately, intuitively tractable formulations of formerly difficult if not opaque scientific ideas is a function of the conceptual framework that we employ, and this is ultimately a philosophical concern. Sellars suggests that the manifest and scientific conceptual framework might be harmonized in stereoscopic vision, but he doesn’t hold out any hope that the manifest image can be integrated with the scientific image. I think that the example of the overview effect demonstrates that there are at least some cases when manifest image and scientific image can be shown to coincide, and therefore these two ways of grasping the world are not entirely alien from each other. Cosmology may be the point of contact at which the two images coincide and through which the two images can communicate.

The pursuit of intuitive tractability is, I submit, a central concern of scientific civilization. If there ever is to be a fully scientific civilization, in which scientific ways of knowing and scientific approaches to problems and their solutions are the pervasively held view, this scientific civilization will come about because we have been successful in our pursuit of intuitive tractability, and we are able to make advanced scientific concepts as familiar as the idea of zero is now familiar to us. Since the question of a conceptual framework in which rigorous science and intuitively tractable concepts can be brought together is not a scientific question, but a philosophical question, the contemporary contempt for philosophy in the special sciences is invidious to the effective pursuit of intuitive tractability. The fate of scientific civilization lies with philosophy.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Planetary Endemism and the Overview Effect

The Overview Effect and Intuitive Tractability

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Friday


figure-against-stars

A Conceptual Overview

What is the relationship between planetary endemism and the overview effect? This is the sort of question that might be given a definitive formulation, once once we have gotten sufficiently clear in our understanding of these ideas and their ramifications. I’m not yet at the point of formulating a definitive expression of this relationship, but I’m getting closer to it, so this post will be about formulating relationships among these and related concepts in a way that is hopefully clear and illuminating, while avoiding the ambiguities inherent in novel concepts.

This post is itself a kind of overview, attempting to show in brief compass how a number of interrelated concepts neatly dovetail and provide us with a rough outline of a conceptual overview for understanding the origins, development, distribution, and destiny of civilization (or some other form of emergent complexity) in the universe.

stars-0

The Stelliferous Era

The Stelliferous Era is that period of cosmological history after the formation of the first stars and before the last stars burn out and leave a cold and dark universe. In the cosmological periodization formulated by Fred Adams and Greg Laughlin, the Stelliferous Era is preceded by the Primordial Era and followed by the Degenerate Era. During the Primordial Era stars have not yet formed, but matter condenses out of the primordial soup; during the Degenerate Era, the degenerate remains of stars, black holes, and some exotic cosmological objects are to the found, but the era of brightly burning stars is over.

What typifies the Stelliferous Era is its many stars, radiating light and heat, and whose nucleosynthesis and supernova explosions forge heavier forms of matter, and therefore the chemical and minerological complexity from which later generations of (high metallicity) stars and planets will form. (A Brief History of the Stelliferous Era is an older post about the Stelliferous Era that needs to be revised and updated.)

In comparison to the later Degenerate Era, Black Hole Era, and Dark Era of cosmological history, the Stelliferous Era is rather brief, extending from 106 to 1014 years from the origins of the universe, and almost everything that concerns us can be further reduced to the eleventh cosmological decade (from 10 billion to 100 billion years since the origin of the universe). Since this cosmological periodization is logarithmic, the later periods are even longer in duration than they initially appear to be.

Our interest in the Stelliferous Era, and, more narrowly, our interest in the eleventh decade of the Stelliferous Era, does not rule out interesting cosmological events in other eras of cosmological history, and it is possible that civilizations and other forms of emergent complexity that appear during the Stelliferous Era may be able to make the transition to survive into the Degenerate Era (cf. Addendum on Degenerate Era Civilization), but this brief period of starlight in cosmological history is the Stelliferous Era window in which it is possible for peer planetary systems, peer species, and peer civilization to exist.

planetary surfaces

Planetary Endemism

Planetary Endemism is the condition of life during the Stelliferous Era as being unique to planetary surfaces and their biospheres. Given the parameters of the Stelliferous Era — a universe with planets, stars, and galaxies, in which both water (cf. The Solar System and Beyond is Awash in Water) and carbon-based organic molecules (cf. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features by Sun Kwok and Yong Zhang) are common — planetary surfaces are a “sweet spot” for emergent complexities, as it is on planetary surfaces that energy from stellar insolation can drive chemical processes on mineral- and chemical-rich surfaces. The chemical and geological complexity of the interface between atmosphere, ocean, and land surfaces provide an opportunity for further emergent complexities to arise, and so it is on planetary surfaces that life has its best opportunity during the Stelliferous Era.

Planetary endemism does not rule out exotic forms of life not derived from water and organic macro-molecules, nor does it rule out life arising in locations other than planetary surfaces, but the nature of the Stelliferous Era and the conditions of the universe we observe points to planetary surfaces being the most common locations for life during the Stelliferous Era. Also, the “planetary” in “planetary endemism” should not be construed too narrowly: moons, planetesimals, asteroids, comets and other bodies within a planetary system are also chemically complex loci where stellar insolation can drive further chemical processes, with the possibility of emergent complexities arising in these contexts as well.

21refPicsSORT

The Homeworld Effect

The homeworld effect is the perspective of intelligent agents still subject to planetary endemism. When the emergent complexities fostered by planetary endemism rise to the level of biological complexity necessary to the emergence of consciousness, there are then biological beings with a point of view, i.e., there is something that it is like to be such a biological being (to draw on Nagel’s formulation from “What is it like to be a bat?”). The first being on Earth to open its eyes and look out onto the world possessed the physical and optical perspective dictated by planetary endemism. As biological beings develop in complexity, adding cognitive faculties, and eventually giving rise to further emergent complexities, such as art, technology, and civilization, embedded in these activities and institutions is a perspective rooted in the homeworld effect.

The emergent complexities arising from the action of intelligent agents are, like the biological beings who create them, derived from the biosphere in which the intelligent agent acts. Thus civilization begins as a biocentric institution, embodying the biophilia that is the cognitive expression of biocentrism, which is, in turn, an expression of planetary endemism and the nature of the intelligent agents of planetary endemism being biological beings among other biological beings.

The homeworld effect does not rule out the possibility of exotic forms of life or unusual physical dispositions for life that would not evolve with the homeworld effect as a selection pressure, but given that planetary endemism is the most likely existential condition of biological beings during the Stelliferous Era, it is to be expected that the greater part of biological beings during the Stelliferous Era are products of planetary endemism and so will be subject to the homeworld effect.

surface-earth-space

The Overview Effect

The overview effect is a consequence of transcending planetary endemism. As biocentric civilizations increase in complexity and sophistication, deriving ever more energy from their homeworld biosphere, biocentric institutions and practices begin to be incrementally replaced by technocentric institutions and practices and civilization starts to approximate a technocentric institution. The turning point in this development is the industrial revolution.

Within two hundred years of the industrial revolution, human beings had set foot on a neighboring body of our planetary system. If a civilization experiences an industrial revolution, it will do so on the basis of already advancing scientific knowledge, and within an historically short period of time that civilization will experience the overview effect. But the unfolding of the overview effect is likely to be a long-term historical process, like the scientific revolution. Transcending planetary endemism means transcending the homeworld effect, but as the homeworld effect has shaped the biology and evolutionary psychology of biological beings subject to planetary endemism, the homeworld effect cannot be transcended as easily as the homeworld itself can be transcended.

For biological beings of planetary endemism, the overview effect occurs only once, though its impact may be gradual and spread out over an extended period of time. An intelligent agent that has evolved on the surface of its homeworld leaves that homeworld only once; every subsequent world studied, explored, or appropriated (or expropriated) by such beings will be first encountered from afar, over astronomical distances, and known to be a planet among planets. A homeworld is transcended only once, and is not initially experienced as a planet among planets, but rather as the ground of all being.

The uniqueness of the overview effect to the homeworld of biological beings of planetary endemism does not rule out further overview effects that could be experienced by a spacefaring civilization, as it eventually is able to see its planetary system, its home galaxy, and its supercluster as isolated wholes. However, following the same line of argument above — stars and their planetary systems being common during the Stelliferous Era, emergent complexities appearing on planetary surfaces characterizing planetary endemism, organisms and minds evolving under the selection pressure of the homeworld effect embodying geocentrism in their sinews and their ideas — it is to be expected that the overview effect of an intelligent agent first understanding, and then actually seeing, its homeworld as a planet among other planets, is the decisive intellectual turning point.

starship-john-harris

Bifurcation of Planetary and Spacefaring Civilizations

What I have tried to explain here is the tightly-coupled nature of these concepts, each of which implicates the others. Indeed, the four concepts outlined above — the Stelliferous Era, planetary endemism, the homeworld effect, and the overview effect — could be used as the basis of a periodization that should, within certain limits, characterize the emergence of intelligence and civilization in any universe such as ours. Peer civlizations would emerge during the Stelliferous Era subject to planetary endemism, and passing from the homeworld effect to the overview effect.

If such a civilization continues to develop, fully conscious of the overview effect, it would develop as a spacefaring civilization evolving under the (intellectual) selection pressure of the overview effect, and such a civilization would birfurcate significantly from civilizations of planetary endemism still exclusively planetary and still subject to the homeworld effect. These two circumstances represent radically different selection pressures, so that we would expect spacefaring civilizations to rapidly speciate and adaptively radiate once exposed to these novel selection pressures. I have previously called this speciation and adaptive radiation the great voluntaristic divergence.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Fast or Slow to Mars?

27 September 2016

Tuesday


Now that Elon Musk has delivered his highly anticipated talk “Making Humans a Multiplanetary Species,” providing an overview of his plan for a Martian settlement sufficiently large to be self-sustaining (he mentioned a million persons moving to Mars in a fleet of 1,000 spacecraft leaving Earth en masse), the detailed analysis of this mission architecture can begin. Musk said in his talk that he thought it was a good idea that there should be many different approaches, so he clearly was not making any claim that his plan was the one and only workable mission architecture.

As both public space agencies and private space companies go beyond the talking phase and begin the design, testing, and construction of a Mars mission (or missions), these designs will embody assumptions about the best way to get to Mars with contemporary technology (there are many ways to do this). The assumptions, as usual, aren’t often explicitly discussed, because assumptions are foundational, and you have to have a community of individuals who share the same or similar assumptions even to begin designing something as complex as a human mission to Mars. Foundational assumptions may be challenged in initial “brainstorming” sessions, but once we get to sketches and calculations, the assumptions are already built into the design.

One of the most important assumptions about Mars mission design is whether that mission should be slow or fast. In this context. “slow” means following one of the well-established gravitational transfer trajectories (Hohmann Transfer Orbits) that many uncrewed missions to Mars have followed, which requires a minimum of fuel use and little or no braking upon arrival, but instead requires time.

A Hohmann transfer orbit to Mars would require many months (six months or more; cf. Flight to Mars: How Long? Along what Path?, which gives a figure of 8.5 months), the window to make the journey only occurs every 25 months, and during a long voyage such as this the crew would have to be maintained in good health, protected from radiation, and have enough space onboard to keep from going stir crazy. A Mars cycler configuration would involve travel times on the order of years. This is definitely a “slow” option, but also an option that minimizes propellant use.

The Mars Design Reference Mission (which I recently quoted in A Distinctive Signature of an Early Spacefaring Civilization), a design document produced by NASA in July 2009 (the full title is Human Exploration of Mars: Design Reference Architecture 5.0), characterizes their mission architecture as “fast” (the document repeatedly cites “fast transit trajectory”), but involves a one-way transit time of 6 to 7.5 months:

“…the flight crew would be injected on the appropriate fast-transit trajectory towards Mars. The length of this outbound transfer to Mars is dependent on the mission date, and ranges from 175 to 225 days.”

A “slow” mission to Mars such as this (which NASA calls a “fast” mission) ought to be designed about a large, rotating habitat that can simulate gravity (this has featured in films, such as The Martian). No one wants to spend six months in a “capsule.” An additional benefit of a large and slow Mars mission is that the rotating habitat sent to Mars could be maintained in Mars orbit as a Martian space station (such as I wrote about in A Martian Space Station and A Passage to Mars) and subsequent missions could add to this Martian space station.

Alternatively, instead of a large and comfortable habitat in which to travel, a slow mission to Mars might involve induced torpor in the crew (effectively, human hibernation), and while this would require far less food and water for the journey, this option, too, might be best achieved with simulated gravity. Human bodies evolved in a gravity field, and don’t do well outside that gravity field (cf. Hibernation for Long-term Manned Space Exploration by Shen Ge, which includes many links to resources on induced torpor).

A “fast” mission to Mars I will identify as anything faster that the six months or so required for a Hohmann transfer orbit. Fast journeys could be anything from a gentle ion thrust, using very little propellant and only cutting a little time off the trip, to powering half way to Mars (preferably at 1 g acceleration in order to again simulate gravity) and then decelerating for the second half of the trip. Musk’s mission design as presented in his IAC talk called for initial transfer times “as low as” 80 days (i.e., less than three months; his graphic for this section of the talk showed transit durations from 80-150 days), perhaps improving to as little as 30 days further in the future, but little detail was offered on this part of the mission architecture.

The quickest “fast” trips to Mars contemplated with contemporary technology would be about two weeks. A nuclear-powered ion engine might make the trip in three months, which is a lot better than six months, and might be considered “fast,” but Musk’s 30-80 day transit times are all designed around well-known chemical rocket technology, which makes the effort much closer to being practical in the near term. If you have enough rocket engines, big enough engines, and enough fuel, you can make the trip to Mars more quickly with chemical rockets than is usually contemplated, and that seems to be the SpaceX approach; much of the talk was taken up with concerns of propellant, fuel transfer in Earth orbit, and producing fuel on Mars.

It is important to point out that most of the technologies I have mentioned above — rotating spacecraft, induced torpor, nuclear rockets, and so on — have been the object of much study, but little practical experience. (An early version of the Nerva nuclear rocket was built and tested, but it wasn’t flown into space; cf. Secrecy and the STEM Cycle.) However, we have a pretty good grasp of the science involved in these technologies, so building actual spacecraft incorporating them is primarily an engineering challenge, not a science challenge (except in so far as there is a science of technology design and engineering application; cf. Testing Technology as a Scientific Research Program: A Practical Exercise in the Philosophy of Technology). In other words, we don’t need any scientific breakthroughs for a mission to Mars, but we need a lot of technological development and engineering solutions.

Hearing a presentation such as Elon Musk gave today is exciting, and definitely communicates that this project can be done, and even that it can be done on a grand scale. This is invigorating, and stokes what Keynes called our “animal spirits” for a voyage to Mars. If the momentum can be maintained, the development of a spacefaring civilization can be a practical reality within decades rather then centuries. Musk discussed the “forcing function” of having a settlement on Mars, and he is correct that this human outpost away from Earth would entail continual improvements in space transportation, and moreover it would extend human consciousness to include Mars as a human concern.

Once humanity begins to make itself a home on Mars, and human beings can call themselves “Martians” (perhaps even with a certain sense of pride) and adopt a genuinely Martian standpoint, humanity will be a multiplanetary species, a multiplanetary human civilization will begin to emerge, and this multiplanetary civilization will be distinct from our planetary civilization of today. Mars, in this scenario, would be a point of bifurcation, the origin of a new kind of civilization, localized in the same way that the industrial revolution can be localized to England.

. . . . .

Human Exploration of Mars: Design Reference Architecture 5.0

Human Exploration of Mars: Design Reference Architecture 5.0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


An artificial habitat orbiting Mars.

An artificial habitat orbiting Mars.

Introduction

There may be more justification, in the short term, for building an artificial habitat in Mars orbit rather than Earth orbit. Before I discuss the reasons for this, I will give some background on the near-term prospects for Mars missions.

Landing on Mars in the 1925 German film Wunder der Schöpfung. Mars has long been the stuff of dreams.

Landing on Mars in the 1925 German film Wunder der Schöpfung. Mars has long been the stuff of dreams.

The Mars Race

It is, once again, an exciting time in space exploration. After decades in the doldrums, we are on the cusp of private industry commercial space exploration. Both Blue Origin and Space X have landed rockets on their tails, just like in early science fiction films, and with increased re-usability comes lower costs. Many other technologies are in development that may further lower costs, but right now we are already seeing private space technology companies with capabilities not possessed by the space program of any nation-state. This is remarkable and unprecedented. Partly this is a result of the exponential improvements in technology in recent decades, especially computing technologies, which in turn improve the performance of other technologies. Partly this is also the result of the concentration of wealth at the top of the income pyramid. I previously mentioned this in The Social Context of SETI, where I noted Yuri Milner’s investment in Breakthrough Listen, a SETI project. Billionaires are now in a position to personally finance enterprises once the exclusive remit of nation-states. With the funding available, only the motivation is needed.

It looks increasingly like a human mission to Mars will be realized by private industry rather than by a government space program. For space exploration enthusiasts, Mars is such stuff as dreams are made on. Mars is another world almost within our grasp. For all practical purposes, we have the technology to get there, only the funding has been lacking. As technology improves, becomes cheaper, and great capital is concentrated into the hands of a few, it becomes possible to undertake what was not possible just a few years earlier. The most visible figure in this recent spate of space activity has been Elon Musk of Space X, who has been explicit about his intention to develop rockets capable of human missions to Mars. In a recently announced time table, Space X may be able to mount a Martian mission in 2024, i.e., within ten years (this announcement was made at Code Conference 2016 in Los Angeles; cf., e.g., Elon Musk Is Sending Humans To Mars In 2024 by Evan Gough, 03 June 2016).

Musk has also been explicit that his interest is in creating an ongoing settlement on Mars. NASA plans for human missions to Mars cover exploration but not settlement, and their timetable is further in the future than Musk’s. It will be interesting to see if the model of the Space Race will portend for Mars what happened on the moon — once one side got there, the other gave up trying — or whether we will see multiple human missions to Mars, some purely for scientific exploration, and others bringing settlers with a plan to stay.

Wernher von Braun's mission design for Mars involved re-configuring spacecraft in Mars orbit for descent to the surface.

Wernher von Braun’s mission design for Mars involved re-configuring spacecraft in Mars orbit for descent to the surface.

Martian Extraplanetary Infrastructure

With the possibility of multiple human missions to Mars, and with a population of settlers on Mars, the need and uses for Martian extraplanetary infrastructure becomes obvious. The crucial piece of the puzzle of Martian extraplanetary infrastructure would be a Martian space station. By a Martian space station I don’t mean something like the International Space Station (ISS) now orbiting Earth, though this would be better than nothing, to be sure; I mean an enormous Gerard K. O’Neill style space habitat, such as an O’Neill cylinder, a Stanford Torus, or a Bernal sphere. Such an artificial habitat could serve a variety of functions in Mars orbit.

We have all heard that any Martian settlers would be dead within a few months’ time from suffocation and “starvation, dehydration, or incineration in an oxygen-rich atmosphere” — cf. the widely discussed MIT study An independent assessment of the technical feasibility of the Mars One mission plan – Updated analysis, by Sydney Do, Andrew Owens, Koki Ho, Samuel Schreiner, and Olivier de Weck. The MIT analysis concludes that Mars settlers would not be self-sufficient and so their survival would require continual re-supply from Earth. Part of this analysis hinges on what technologies are “existing, validated and available.” Needless to say, technologies can advance rapidly given the necessary expenditure of resources upon them. The analysis does not address how quickly innovative technologies can be brought online, and it is important to understand that the MIT report does not argue that human self-sufficiency on Mars is impossible, only that there are problems with the Mars One mission architecture.

Many of the shortcomings of the Mars One mission architecture, or the shortcomings of any other proposed mission to Mars (Mars One is the most detailed proposal to date, so it has received the most detailed criticism), could be addressed by a large, self-sustaining artificial habitat in Mars orbit. We should expect that the settlement of a sterile and hostile environment will be a difficult undertaking, but we could make this difficult undertaking much less difficult with the resources that might be needed positioned nearby, in orbit of Mars.

With large enough mirrors to capture sunlight, the interior of an artificial habitat even at the far edge of the habitable zone in our solar system would be able to concentrate sufficient sunlight for electrical power generation, growing crops, and the maintenance of comfortable conditions for residents. In orbit around Mars, an artificial habitat could provide a steady source of food produced under controlled conditions (under perfect greenhouse conditions, and far more amenable to control that any environment initially set up on the surface of Mars), before large scale food production is possible on the surface of Mars itself. The industrial infrastructure and processes necessary to maintain the lives of early Martian settlers could probably be maintained in orbit more cheaply and more efficiently than on the surface.

Some other considerations for Martian extraplanetary infrastructure include:

● Martian dirt It would be cheaper and easier to lift Martian dirt off Mars than to lift dirt off Earth in order to begin large scale agricultural production in a large artificial habitat. Having an artificial habitat in orbit around Mars would make it relatively easy to transfer significant quantities of Martian soil into Mars orbit. Using Martian soil for farming under controlled conditions, moreover, would provide valuable experience in Martian agronomy.

● Gravity A large artificial habitat in orbit around Mars could provide simulated full Earth gravity. This could be very valuable for long term settlers on Mars, who may experience health problems due to the low surface gravity on Mars. Settlers could be rotated through an artificial habitat on a regular basis. This would also be an opportunity to study how rapidly the human body could recover any lost bone mass, etc., after living in lower than Earth gravity conditions. It might also be valuable to experiment with slightly more than Earth gravity to see if this can compensate for extended periods of time in lower gravity environments. On an artificial habitat, simulated gravity can be tailored to the specific needs of the crew by spinning the habitat faster or slower.

● Way Station A Martian space station would also be a stepping stone for human missions farther along into the outer solar system. With all the resources necessary to preserve the lives of Martian settlers, such a way station could also serve to preserve the lives of deep space travelers. This would also provide an opportunity for space travelers to experience time “planetside” before and after missions into the outer solar system or beyond. The first human mission to the stars might be launched not from Earth, but from Mars orbit, or from similar habitats even more distant in the outer solar system.

Martian extraplanetary infrastructure could prove to be one of the greatest investments in space exploration ever made. We will likely have the technology to build a space elevator between the Martian surface and Mars orbit before we can build a space elevator between Earth’s surface and Earth orbit. Linking the Martian surface directly with Martian extraplanetary infrastructure will make possible economic opportunities that will not yet be available on Earth when they are available on Mars, with consequent economic growth likely integral with growth in science and technology. This will drive forward the STEM cycle more rapidly, and it will happen first on Mars.

Another planet awaits us...

Another planet awaits us…

The Martian Future

The first stage of an interplanetary civilization will be a human civilization that spans both Earth and Mars. In going to Mars, we will learn a great deal about living and working both in space and on other words. This knowledge and experience is a necessary condition of establishing the redundancy that human beings, our civilization, and the terrestrial biosphere require in order to overcome existential risks that could mean our extinction if we remain an exclusively terrestrial species.

The human future on Mars, then, is an essential element in expanding human experience so that we are not indefinitely subject to the planetary constraints native to planetary endemism. We need to experience the Martian standpoint in order to develop both as a species and as a civilization, and then to go beyond Mars.

After interplanetary civilization will come interstellar civilization, and we will need to begin with the experience of Mars, our planetary neighbor, in order to take the next step on to more distant worlds. The way to ensure the initial success and eventual expansion of an interplanetary civilization within our planetary system is through the construction of an artificial habitat in Mars orbit. One such artificial habitat could mean the difference between the life and death of the earliest settlers, and, in the long term, the success of these earliest settlers on another world will mean the difference between life and death for our civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


hunter-gatherers in outer space

What happens when you take a being whose mind was shaped by hunting and gathering in Africa over the past five million years or so, dress that individual in a spacesuit, and put that individual into a spaceship, sending them beyond the planet from which they evolved? What happens to hunter-gatherers in outer space?

As I pointed out in The Homeworld Effect and the Hunter-Gatherer Weltanschauung, the human environment of evolutionary adaptedness (EEA) shapes a worldview based on the standpoint of a planetary surface. Moreover, because the hunter-gatherer lives (or dies) by his attentiveness to his immediate environment, his immediate experience of leaving his planet of origin will make a disproportionate impact upon him. Whereas the hunter-gatherer may intellectually prepare himself, and may know on an intellectual level what to expect, the actual first person experience of leaving his planet of origin and seeing it whole — what Frank Drake calls the overview effect — may have an immediate and transformative impact.

The impact of the overview effect would force the hunter-gatherer to re-examine a number of ideas previously unquestioned, but his reactions, his instincts, would, for the time being, remain untouched. Of course, for a hunter-gatherer to have experienced the overview effect, he will have had to have achieved at least an orbital standpoint, and to achieve an orbital standpoint requires that the hunter-gatherer will have passed through a period of technological development that takes place over a civilizational scale of time — far longer than the scale of time of the individual life, but far shorter than the scale of biological time that could have modified the evolutionary psychology of the hunter-gatherer.

In the particular case of human beings, this period of technological development meant about ten thousand years of agricultural civilization, followed by a short burst of industrialized civilization that made the achievement of an orbital standpoint possible. While it is obvious that the short period of industrialized civilization will have left almost no trace of influence on human behavior, it is possible that the ten thousand years of acculturation to agricultural civilization (and the coevolution with a tightly-coupled cohort of species, as entailed by the biological conception of civilization) did leave some kind of imprint on the human psyche. Thus we might also inquire into the fate of agriculturalists in outer space, and how this might differ from the fate of hunter-gatherers in outer space. It is at least arguable that our interest in finding another planet to inhabit, or even terraforming other planets in our planetary system, is a function of our development of agricultural instincts, which are stronger in some than in others. Some individuals feel a very close connection to the soil, and have a special relationship to farming and food to be had by farming. However, the argument could be made equally well that our search for an “Earth twin” is a function of the homeworld effect more than a specifically agricultural outlook.

The principles to which I am appealing can be extrapolated, and we might consider what could happen in the event of a civilization with a very different history and its relationship to spacefaring, and how it makes the transition to a spacefaring civilization if that civilization is going to survival for cosmologically significant periods of time. Recently in Late-Adopter Spacefaring Civilizations: The Preemption That Didn’t Happen I suggested that terrestrial civilization might have been preempted in the second half of the twentieth century by the sudden emergence of a spacefaring civilization, though this did not in fact happen. Late-adopter spacefaring civilizations might indefinitely postpone the threshold presented by spacefaring, which is difficult, dangerous, and expensive — but also an intellectual challenge, and therefore a stimulus. It is entirely conceivable that, on a planet that remains habitable for a cosmologically significant period of time, that an intelligent species might choose to forgo the challenge and the stimulus of a spacefaring breakout from their homeworld, continuing to embody the homeworld effect even after the means to transcend the homeworld effect are available. What would the consequences be for civilization in this case?

In The Waiting Gambit I discussed the rationalizations and justifications employed to make excuses for waiting for the right moment to initiate a new undertaking, and especially waiting until conditions are “right” for making the transition from a planetary civilization to a spacefaring civilization. These justifications are typically formulated in moral terms, e.g., that we must “get things right” on Earth first before we can make the transition to spacefaring civilization, or, more insidiously, that we don’t deserve to become a spacefaring civlization (as though the Earth deserves to suffer from our presence for a few more million years). It would be easy to dismiss the waiting gambit as a relatively harmless cognitive bias favoring the status quo (a special case of status quo bias), except that there are real biological and civilizational consequences to waiting without limit.

The most obvious consequence of playing along with the waiting gambit is that civilization, or even the whole of humanity, might be wiped out on Earth before we ever achieve the promised moment when we can legitimately expand beyond Earth. This is the existential risk of the waiting gambit as a strategy for human history. But even if we could be assured of the survival of humanity on Earth for the foreseeable future (although no such assurance could be given that was not purely illusory), the waiting gambit still has profound consequences. In so far as civilization is a process of domestication (and in Transhumanism and Adaptive Radiation I suggested a biological conception of civilization based on a cohort of co-evolving species, which I elaborated in The Biological Conception of Civilization), the longer that human beings live in a planetary-bound, biocentric civilization the more domesticated we become. In other words, we are changed by remaining on Earth in the circumstances of civilization, because civilization itself is selective.

If the time between the advent of civilization and the advent of spacefaring is too short to be selective, then the hunter-gatherer mind is maintained because the genome on which this mind supervenes is essentially unchanged. But if the elapsed time between the advent of civilization and the advent of spacefaring is sufficiently extended so that civilizational selection of the intelligent species takes place, the mind is changed along with the genome upon which it supervenes. At some point, neither known nor knowable today, we will have self-selected ourselves (although not knowingly) for settled planetary endemism and we will lose the capacity to live as nomadic hunter-gatherers. This is an here-to-fore unrecognized consequence of long-lived planetary civilizations. If, on the other hand, human beings do make the transition to spacefaring civilization while retaining the evolutionary psychology of hunter-gatherers, the temporary phase of settled civilization (ten thousand years, more or less) will be seen as a temporary aberration, during which historical period the bulk of humanity lived in circumstances greatly at variance with the human EEA.

One aspect of the homeworld effect is acculturation to planetary endemism. This acculturation to planetary endemism helps to explain the waiting gambit and status quo bias, and if perpetuated it would explain the possibility of an advanced technological civilization that remains endemic to a single planet, attaining a full transition from biocentric to technocentric civilization without however making the transition to spacefaring civilization. This would present a radical break from the past, and thus presents us with the difficulty of conceiving a radically different human way of life — a way of life radically disconnected from the biocentric paradigm — but this is a radical difference from the biocentric paradigm that would in turn be radically different from a nomadic civilization with the entirety of the universe in which to roam. In both cases, traces of the biocentric paradigm are preserved, but different traces in each case. The planetary civilization would preserve continuity with the planet and thus a robust continuity with the homeworld effect; a spacefaring nomadic civilization would preserve continuity with the evolutionary psychology of our long hunter-gatherer past. A successor species to humanity, adapted to life in space, and choosing to live in space rather than upon planetary surfaces, would experience the overview effect exclusively, the overview effect supplanting the homeworld effect, and the homeworld effect might experience historical effacement, disappearing from human (or, rather, post-human) experience altogether.

If nomads were to go into space — that is to say, hunter-gatherers in outer space — they probably wouldn’t speak of “settling” a planet, because they would not assume that they would adopt a planetary mode of life for the sake of settling in one place. Perhaps they would speak of the “pastoralization” of a world (cf. Pastoralization, The Argument for Pastoralization, and The Pastoralist Challenge to Agriculturalism), or they might use some other term. The particular term doesn’t really matter, but the concept that the term is used to indicate does matter. Nomadic peoples have very different conceptions of private property, governmental institutions, social hierarchy, soteriology, and eschatology than do settled peoples; the transplantation (note the agricultural language here) of nomadic and settled conceptions to a spacefaring civilization would yield fascinating differences, and the universe is large enough for the embodiment of both conceptions in concrete institutions of spacefaring civilization — whereas Earth alone is not large enough.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .