Saturday


Recently in The Space Age turns 60! I wrote, “We are still in the very early stages of the Space Age; the inflection point of this developmental sequence has not yet arrived, so we are today still in the same shallow end of the exponential growth curve that was initiated sixty years ago.” What do I mean by an inflection point, and what is (or what would be) the inflection point for spacefaring civilization?

In a curve, an inflection point (according to Wolfram Mathworld) is, “…a point on a curve at which the sign of the curvature (i.e., the concavity) changes.” In this technical sense, then, I have misused “inflection point,” but it has become commonplace to speak of the inflection point of an exponential (or sigmoid) curve as the point at which the transition occurs from the long, shallow part of the curve, only incrementally growing over time, to the exponential growth part of the curve. In this sense, the inflection point is the transition from slow (sometimes very slow), incremental development to rapid, exponential development.

We have some good examples of inflection points from human history. The industrial revolution is a nearly perfect example of an inflection point. Human beings have been developing technologies since long before civilization. Pre-human ancestors were using stone tools more than two million years ago. However, technological development began to accelerate with the industrial revolution, and continues to develop at an expanding and increasing rate. Technological growth — both in terms of technological complexity and large-scale industrial application — has been exponential since the industrial revolution. Is something like this possible with spacefaring?

In Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen and Stagnant Supercivilizations and Interstellar Travel I discussed one of my favorite themes, namely, that spacefaring civilization might have experienced its inflection point in the wake of the Apollo program, which latter demonstrated what was possible when significant resources are expended on a difficult goal. More recently, on The Unseen Podcast Episode We, Martians? I said that if we had gone to Mars as NASA once planned, building immediately following Apollo, it would have been a different mission than any mission to Mars undertaken at the present time. It would have been, in short, a mission much like the Apollo mission, meaning a transient presence on Mars sufficient to plant the flag of the sponsoring nation-state and to collect some samples to bring back to Earth. Paul Carr called this a “Flags and Footprints” mission, which is a good way to phrase this, and I subsequently heard this from others, so apparently it’s a thing.

These counterfactuals did not occur, so that they represent a permanently lost opportunity for human civilization. The door has closed on this particular shape for human history, but the door remains open for different shapes for human history if spacefaring technologies are eventually adopted, and when they are adopted (if they are adopted), will decisively and definitively alter the shape of human history — or the history of any intelligent species able to build spacefaring technologies. To consider this a little more carefully I am going to delineate three generic scenarios for the breakout to spacefaring civilization that might be experienced by a civilization that develops spacefaring technology. These three scenarios are as follows:

● Early Inflection Point when spacefaring is pursued with exponential frequency immediately upon the technology being available.

● Middling Inflection Point when spacefaring is pursued with exponential frequency only after it has been available for a substantial period of time, but within the longue durée in which the technology became available.

● Late Inflection Point when spacefaring is pursued with exponential frequency after the technology has been available throughout a longue durée period of history.

No great store need be placed on the time frames I have implied above; sufficient to our purposes is that spacefaring may become routine immediately upon, sometime after, or long after the technology is available. Each of these spacefaring inflection points can be taken separately, since each represents a different civilization as defined by the relationship between the civilizations of planetary endemism and spacefaring civilization. Moreover, we can justify the significance of the position of the spacefaring inflection point in the overall history of civilization by reference to the infinitistic possibilities available to a spacefaring civilization

Early Inflection Point

On several occasions I have written about the possibility of a spacefaring civilization emerging immediately upon the technology of the Space Race being available, specifically in Late-Adopter Spacefaring Civilization: the Preemption that Didn’t Happen. In this post I suggested that industrial-technological civilization as it has been known from the industrial revolution up to the advent of the Space Age might have been suddenly “preempted” by the emergence of a new kind of civilization — a spacefaring civilization — that changed the conditions of human life as radically as the industrial revolution changed the conditions of human life. This is what did, in fact, happen with the industrial revolution: as soon as the technology to drive machinery by fossil fuels became available, it was rapidly exploited, and western societies passed through a series of rapid social changes driven by industrialization.

While an early inflection point did not occur on Earth with the initial availability of spacefaring technology, we must consider the possibility that this is could occur with any civilization that passes the spacefaring technology threshold. I explored some of these possibilities in my Centauri Dreams post, Stagnant Supercivilizations and Interstellar Travel. In so far as an early spacefaring breakout would encourage a focus on spacefaring technologies (the relative neglect of other technologies being an opportunity cost of this alternative focus), the developmental trajectory of such a civilization might involve continual and rapid development of spacefaring technologies even while other technologies (say, for example, computing technologies) remain relatively undeveloped. Thus the technological profile of a given civilization is going to reflect the existential opportunities it has pursued, and when it pursues them.

We may also observe that, along with early-adoption spacefaring scenarios that did not occur with human civilization, it is also the case that a variety of counterfactual existential risk scenarios also did not occur. What I mean by this is that, once nuclear weapons were invented (shortly before the advent of the Space Age), human beings immediately realized that this gave us the power to destroy our own civilization. A number of novels were written and films were made in which human beings or human civilization went extinct shortly after the technology was available for this. These scenarios did not occur, just as the scenarios of early spacefaring adoption did not occur.

Middling Inflection Point

It has become a commonplace to speak of the recent development of space industries as “NewSpace.” If the technologies of NewSpace come to maturity in the coming decades and results in the following decades in a spacefaring breakout and the establishment of a truly spacefaring civilization, this would constitute an instance of a mediocre spacefaring inflection point. Given that the Space Age is now sixty years old, a few more decades of development would mean that spacefaring technologies will have been available for a century before they come to be fully exploited for a spacefaring breakout and a spacefaring civilization. In other words, the spacefaring inflection point did not occur immediately after spacefaring technology was available, but it also did not have to wait for an entirely new epoch of human history to come to pass for the spacefaring breakout to occur. (In terms of human civilization, we might identify a period of 100-300 years from advent to breakout as a mediocre spacefaring inflection point.)

As implied above, the current nominal spacefaring capacity of our civilization today is consistent with a middling spacefaring inflection point, if spacfaring expands rapidly in the wake of the maturity of NewSpace industries and technologies. Among these technologies we may count reusable spacecraft (Sierra Nevada’s Dream Chaser), including the booster stages of multi-stage rockets (SpaceX and Blue Origin), hybrid rocket engines (Reaction Engines LTD), and ion and plasma rockets (Ad Astra’s VASIMR), inter alia. These are the actual technologies of spacefaring; many industries that seek to exploit space for commercial and industrial uses are focused on technologies to be employed in space, but which are not necessarily technologies of spacefaring that will result in a spacefaring breakout.

Late Inflection Point

Say that the NewSpace technologies noted above come to maturity, but they prove to be impractical, or too expensive, or simply uninteresting to the better part of humanity. If this opportunity arises and then is passed over without a spacefaring breakout, like the initial existential opportunity presented by spacefaring technologies, the middling spacefaring inflection point will pass and humanity will remain with its nominal spacefaring capacity but no spacefaring breakout and no spacefaring civilization. In this case, if there is to be an eventual spacefaring breakout for human civilization, it will be a late spacefaring inflection point, and human civilization will change considerably in the period of time that passes between the initial availability of spacefaring technology and its eventual exploitation for a spacefaring breakout.

Just as in the meantime from initial availability of spacefaring technology to the present day, computer technology exponentially improved, a late spacefaring inflection point would mean that many technologies would emerge and come to maturity and industrial exploitation even as spacefaring technologies are neglected and experience little development (perhaps as an opportunity cost of the development of alternative technologies). Thus a late-adopter spacefaring civilization may develop a variety of fusion technologies, alternative energy technologies, genetic engineering technologies, quantum computing, human-machine interface technologies (or xenomorph-machine interface, as the case may be), artificial consciousness, and so on. Once a civilization possesses something akin to technological maturity on its homeworld, its historical experience will be radically different from the historical experience of a species that pursues an early spacefaring inflection point.

I can imagine a civilization that becomes so advanced that spacefaring technologies become cheap and easily available simply because the technological infrastructure of the civilization is so advanced. Thus even if there is no large-scale social interest in spacefaring, small groups of interested individuals can have spacefaring technologies for the asking, and these individuals and small groups will leave the planet one or two at a time, a dozen at a time, and so on. The homeworld civilization would be unaffected by this small scale spacefaring diaspora, since the technological and financial investment will have become so marginal as to be negligible, but these individuals and groups will take with them an advanced technology that will allow them to survive and prosper even at this small scale.

The worlds these small groups pioneer will grow slowly, but they will grow, regardless of whether the homeworld notices. Under these conditions, an ongoing nominal spacefaring capacity could develop over longer scales of time into a spacefaring capacity that is no longer nominal, though we would never be able to say exactly when this changeover occurred; this would be an evolutionary rather than a revolutionary transition. However, once these other worlds began to grow in population, eventually these populations would exceed the population of Earth, and at this point we could say with confidence that the late spacefaring inflection point had been reached, without spacefaring per se ever becoming a great civilizational-scale undertaking.

The Null Case

In addition to these three scenarios, there is also the null case, i.e., spacefaring technology is initially developed, but it is not further pursued, so that it is either forgotten or regarded with disinterest. A civilization that develops spacefaring technology and then either fails to pursue the development, or loses the capacity due to other factors (such as civilizational collapse), never achieves a spacefaring breakout and never becomes a spacefaring civilization. As I make a distinction between the nominal spacefaring capacity we now possess, and a spacefaring civilization proper, our contemporary civilization remains consistent with the null case scenario unless or until it experiences a spacefaring breakout.

The null case is the trajectory of a civilization toward permanent stagnation. Even if many technologies are developed and come to maturity and industrial exploitation, nothing essential will have changed in the human relationship to the cosmos (or the relation of any intelligent species that develops spacefaring technology but which does not exploit these technology for a spacefaring breakout). Spacefaring technologies, if exploited for a spacefaring breakout that results in a spacefaring civilization, would change the relationship of a species to the cosmos, as the species in question then has the opportunity to develop separately from its homeworld, and is therefore no longer tightly-coupled to the natural history of its homeworld. Without a spacefaring breakout, an intelligent species remains tightly-coupled to the natural history of its homeworld, and necessarily goes extinct when its homeworld biosphere is rendered uninhabitable.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Worlds of Convenience

24 August 2017

Thursday


Three Worlds, Three Civilizations

In August of this year I spoke at the Icarus Interstellar Starship Congress 2017. One of the themes of the congress was “The Moon as a Stepping Stone to the Stars” so I attempted to speak directly to this theme with a presentation titled, “The Role of Lunar Civilization in Interstellar Buildout.” The intention was to bring together the possible development of the moon as part of the infrastructure of spacefaring civilization within our solar system with the role that the moon could play in the further buildout of spacefaring civilization toward an interstellar spacefaring capacity.

Most of our spacefaring infrastructure at present is in low Earth orbit.

In preparing my presentation I worked through a lot of ideas related to this theme, and even though Icarus Interstellar was very generous with the time they gave me to speak, I couldn’t develop all of the ideas that I had been working on. One of these ideas was that of the moon and Mars as worlds of convenience. By this I mean that the moon and Mars are small, rocky worlds that might be useful to human beings because of their constitution and their proximity to Earth.

Any agriculture on the moon will of necessity be confined to artificial conditions.

The moon, as the closest large celestial body to Earth, is a “world of convenience”: It is an island in space within easy reach of Earth, and might well play a role in terrestrial civilization not unlike the role of the Azores or the Canary Islands played in the history of western civilization, which, as it began to explore farther afield down the coast of Africa and into the Atlantic (and eventually to the new world), made use of the facilities offered by these island chains. Whether as a supply depot, a source of materials from mining operations, a place for R&R for crews, or as a hub of scientific activity, the moon could be a crucial component of spacefaring infrastructure in the solar system, and, as such, could serve to facilitate the growth and development of spacefaring civilization.

Because Mars is a bit more like Earth than the moon, conditions on Mars may be less artificial than on the moon.

Mars is also a world of convenience. While farther from Earth than the moon, it is still within our present technology to get to Mars — i.e., it is within the technological capability of a rudimentary spacefaring capacity to travel to a neighboring planet within the same planetary system — and Mars is more like Earth than is the moon. Mars has an atmosphere (albeit thin), because it has an atmosphere its temperatures are moderated, its day is similar to the terrestrial day, and its gravity is closer to that of Earth’s gravity than is the gravity on the moon. Mars, then, is close enough to Earth to be settled by human beings, and the conditions are friendlier to human beings than the closer and more convenient moon. These factors make Mars a potentially important center for the exploration of the outer solar system.

The further buildout of our spacefaring infrastructure will probably include both space-based assets and planetary assets, but it is on planets that we will feel at home.

We can easily imagine a future for humanity within our own solar system in which mature civilizations are found not only on Earth but also on the moon and Mars. Since the moon and Mars are both “worlds of convenience” for us — places unlike the Earth, but not so unlike the Earth that we could not make use of them in the buildout of human civilization as a spacefaring civilization — we would expect them to naturally be part of human plans for the future of the solar system. Because we are biological beings emergent from a biosphere associated with the surface of Earth (a condition I call planetary endemism), we are likely to favor other planetary surfaces even as human civilization expands into space; it is on planetary surfaces that we will feel familiar and comfortable as a legacy of our evolutionary psychology.

Our planetary endemism predisposes us to favor planetary surfaces for human habitation.

These three inhabited worlds — Earth, the moon, and Mars — would each have a human civilization, but also a distinctive civilization different from the others, and each would stand in distinctive relationships to the other two. Earth and the moon are always going to be tightly bound, perhaps even bound by the same central project, because of their proximity. Mars will be a bit distant, but more Earth-like, and so more likely to give rise to an Earth-like civilization, but a civilization that will be built under selection pressures distinct from those on Earth. The moon will never have an Earth-like civilization because it will almost certainly never have an atmosphere, and it will never have a greater gravitational field, so Lunar civilization will depart from terrestrial civilization even while being tightly-coupled to Earth due to its proximity.

The moon will always be an ‘offshore balancer’ for Earth, but conditions on the moon are so different from those of Earth that any Lunar civilization would diverge from terrestrial civilization.

The presence of worlds of convenience within our solar system does not mean that we must or will forgo other opportunities for the development of spacefaring civilization. Just as Icarus Interstellar holds that there is no one way to the stars, so too there is no one buildout for the infrastructure of a spacefaring civilization. One of the themes of my presentation as delivered was the different possibilities for infrastructure buildout within the solar system, how these different infrastructures could interact, and how they would figure in future human projects like interstellar missions. Thus the three worlds and the three civilizations of Earth, the moon, and Mars may be joined by distinctive civilizations based on artificial habitats or on settlements based on asteroids or the more distant moons of the outer planets. But Earth, the moon, and Mars are likely to remain tightly-coupled in ongoing relationships of cooperation, competition, and conflict because of their status as worlds of convenience.

The worlds of convenience within our solar system may be joined by artificial habitats.

The possibility of multiple human civilizations within our solar system presents the possibility of what I call “distributed development” (cf. Mass Extinction in the West Asian Cluster and Emergent Complexity in Multi-Planetary Ecosystems). In the earliest history of human civilization distributed development could only extend as far as the technologies of transportation allowed. With transportation and communication limited to walking, shipping, horses, or chariots, the civilizations of west Asia could participate in mutual ideal diffusion, but the other centers of civilization at this time — in China, India, Peru, Mexico, and elsewhere — lay beyond the scope of easy communication by these means of transportation and communication. As the technologies of transportation and communication became more sophisticated, idea diffusion is now planetary, and this planetary-scale idea diffusion is converging upon a planetary civilization.

An interplanetary internet would facilitate idea diffusion between the worlds of our solar system.

Today, our planetary civilization has instantaneous communication and rapid transportation between any and all parts of the planet, and planetary scale idea diffusion is the rule. We enjoy this planetary scale idea diffusion because our technologies of communication and transportation — jets, high speed trains, fiber optic cables, the internet, satellites, and so on — allow for it. So fast forward to a solar system of three planetary civilizations — i.e., three distinct and independent civilizations, though coupled by relationships of trade and communication — and with an interplanetary network of communication and transportation that allows for idea diffusion on an interplanetary scale. The pattern of distributed development among multiple civilizations that characterized the west Asian cluster of civilization could be iterated at an interplanetary scale, driving these civilizations forward as they borrow from each other, and no one civilization must make every breakthrough in order for the others to enjoy the benefits of innovation.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


In several posts I have argued that the structure of civilization consists of an economic infrastructure joined to an intellectual superstructure by a central project, and that, moreover, the civilization extant today consists of an industrial economic infrastructure joined to a technical intellectual superstructure by the central project that we know as the Enlightenment project. Contemporary civilization as so defined dates back only to the 18th century, when the Enlightenment project emerged as a reaction to the carnage of the religious wars in Europe. The three pillars of modernity — the scientific revolution, the industrial revolution, and political revolutions — all burst the bounds of traditional feudal societies, and ever since the world has been trying to master the forces unleashed by these revolutions.

The American revolution was the first and the most successful of the political revolutions that swept aside traditionalism, feudalism, and aristocracy. (Sometimes I think of the American revolution as being, in this sense, like Augustus, who was the first of the Roman emperors, and arguably the best of the lot. After that, it was all downhill.) The unique confluence of circumstances that made the American revolution successful, both militarily and politically, included unlikely revolutionaries who were property owners, the pillars of colonial society, and also well-read, as Enlightenment gentlemen were expected to be.

There was nothing democratic about the mostly aristocratic founding fathers, other than their desire to found a new kind of political order drawing upon the best of ancient Greece (democracy) and the best of ancient Rome (republicanism). The founding of a new political order required a revolutionary war to separate the United States from the British Empire, but it also involved a profound intellectual challenge to conceptualize a new political order, and this challenge had already begun in Europe, where the Enlightenment originated.

The Enlightenment produced a large number of top-notch philosophers whom we still read today, and with profit: their insights have not yet been exhausted. Also, these Enlightenment philosophers were highly diverse. They disagreed sharply with one another, which is the western way. We disagree and we debate in order to analyze an idea, much as an alibi is dissected in a courtroom.

William Blake, who represents the romantic reaction to the Enlightenment, wrote a poem criticizing Voltaire and Rousseau in the same breath:

MOCK on, mock on, Voltaire, Rousseau;
Mock on, mock on; ’tis all in vain!
You throw the sand against the wind,
And the wind blows it back again.

Never mind that Voltaire and Rousseau quarreled and represented polar opposite ends of the Enlightenment. When Voltaire received a copy of Rousseau’s The Social Contract, he responded in a letter to Rousseau: “I have received your new book against the human race, and thank you for it. Never was such a cleverness used in the design of making us all stupid. One longs, in reading your book, to walk on all fours. But as I have lost that habit for more than sixty years, I feel unhappily the impossibility of resuming it.” But perhaps this was Blake’s intention to invoke opposite spirits of the Enlightenment, given his appreciation of antitheses as expressed in The Marriage of Heaven and Hell — both Voltaire and Rousseau were to be condemned for their mockery of tradition.

If these quarreling Enlightenment thinkers were alive today, feuding bitterly with each other, the popular press would say that the Enlightenment was obviously burnt out and was now “tearing itself apart.” Soon, the pundits would presumably say, we could go back to the comforts of monarchy and a universal church as though nothing had happened, the whole episode of the Enlightenment having been something like the social equivalent of a bad dream.

Strangely enough, we find a view much like this on both the far left and the far right today. The far left, as represented by the philosophers of the Frankfurt school (the dread prophets of “cultural Marxism”), rejected the Enlightenment (cf. Theory from the ruins: The Frankfurt school argued that reason is dangerous, mass culture deadening, and the Enlightenment a disaster. Were they right? by Stuart Walton), just as neoreactionaries reject the Enlightenment by contrasting the 18th century Enlightenment with the “Dark Enlightenment,” the latter growing organically out of the counter-Enlightenment of J. G. Hamann, Joseph de Maistre, and others.

Like Blake’s dual condemnation of Voltaire and Rousseau, the dual condemnation of the Enlightenment by both left and right is a condemnation of two distinct faces of the Enlightenment. Partly this is a result of the ongoing debate over the proper scope and application of reason, but I think that the deeper issue is the failure of western civilization to overcome the chasm separating its twin ideals of freedom and equality, which are two faces of Enlightenment morality.

Naïvely we want these two ideals to be fully realized together within democratic institutions; when we grow out of our naïveté we usually see these ideals in conflict, and assume that any attempt to mediate between the two must ultimately take the form of a compromise in which we lose some freedom in exchange for equality or we lose some equality in exchange for freedom. But the nineteenth century, which produced the counter-Enlightenment, also produced Hegel, and Hegel would have pointed out that a dialectic, such as the dialectic between freedom and equality, will only be resolved when we transcend the antithesis by a synthesis that is more comprehensive than either ideal in isolation.

When we consider the absolutizing tendency of political rhetoric we would not be at all surprised to see Hegelian formulations like, “The absolute is freedom,” later to be countered by, “The absolute is equality.” Even if such things are not stated so explicitly, it is clear from the behavior of many who set themselves up as the arbiters of American values that they typically take the one or the other as an absolute ideal, and absolutization of one or the other prevents us from seeing the more comprehensive synthesis in which freedom and equality can not only coexist, but in which each can extend the other.

The problem of freedom and equality is the equivalent for social thought of the problem of general relativity and quantum theory for physics. Some are certain that the solution to their integration lies on one side or the other of the divide — there must be quantum gravity because all of physics is now formulated in quantum terms — but the truth is that, at our present stage of intellectual development, the solution eludes us because we have not yet achieved the intuitive breakthrough that will allow us to see the world as one and whole.

. . . . .

Happy 4th of July!

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


The “West Asian Cluster” is a term that I use to identify the several early civilizations that emerged in Mesopotamia, Egypt, and Anatolia (cf. my remarks on the west Asian cluster in The Seriation of Western Civilization and The Philosophical Basis of Islamic State). Whereas civlization emerged independently in geographically isolated regions scattered across the planet, in the case of the west Asian cluster, these civilizations seem to have arisen in concert and to have been in contact with each other throughout their development.

A nomadic or pastoral people, accustomed to walking, would readily have traveled between the regions of the west Asian cluster. Moreover, we know that long-distance trade routes that preceded civilization ran through the area. Distinctive forms of obsidian were traded over long distance, and examples can be traced back to their source. These trade routes likely remained in place as civilization developed in the region, probably expanding as more manufactured goods became available for trade, and these trade routes could have served as vectors for idea diffusion throughout the region.

Thus I assume that continuous idea diffusion within the region meant that whenever a civilized innovation emerged in one location within the cluster, that it was picked up relatively rapidly by other locations in the cluster. In this way, civilization in the region likely developed in a kind of reticulate pattern, rather than in a unitary and linear manner, so that, if we were in possession of all the evidence, we might find a series of developments took place in sequence, but not necessarily all originating in a single civilization. Developments were likely distributed across the several different civilizations, and disseminated by idea diffusion until they reached all the others. This could be called a seriation of distributed development.

As these civilizations rose in concert, it seems that they also fell in concert, in an event that is sometimes called the Late Bronze Age (LBA) collapse. Previously in Epistemic Collapse I mentioned Eric H. Cline’s book, 1177 B.C.: The Year Civilization Collapsed, which deals with this period of history. Near the end of the book Cline wrote:

“…for more than three hundred years during the Late Bronze Age — from about the time of Hatshepsut’s reign beginning about 1500 BC until the time that everything collapsed after 1200 BC — the Mediterranean region played host to a complex international world in which Minoans, Mycenaeans, Hittites, Assyrians, Babylonians, Mitannians, Canaanites, Cypriots, and Egyptians all interacted, creating a cosmopolitan and globalized world system such as has only rarely been seen before the current day. It may have been this very internationalism that contributed to the apocalyptic disaster that ended the Bronze Age. The cultures of the Near East, Egypt, and Greece seem to have been so intertwined and interdependent by 1177 BC that the fall of one ultimately brought down the others, as, one after another, the flourishing civilizations were destroyed by acts of man or nature, or a lethal combination of both.”

Eric H. Cline, 1177 B.C.: The Year Civilization Collapsed, Princeton and Oxford: Princeton University Press, 2014, p. 171

If, as I suggested above, the development of these intertwined civilizations was reticulate, one would not be surprised that their collapse was also reticulate, distributed throughout the region, following from multiple causes and cascading into multiple consequences — a seriation of distributed collapse. If we think of this as an ecosystem of civilizations, it is easy to think of the LBA collapse as a mass extinction of civilizations. Species, like civilizations, arise in concert, embedded in coevolutionary contexts, not only evolving along with other species, but also with the inorganic environment. When a food web catastrophically collapses, it brings down many species because of their interdependence, and the same may be true of civilizations within their coevolutionary context.

What exactly is a mass extinction? Here is a discussion of definitions of mass extinctions:

“[Sepkoski] defines mass extinction as any substantial increase in the amount of extinction (that is, lineage termination) suffered by more than one geographically widespread higher taxon during a relatively short interval of geological time, resulting in at least temporary decline in their standing diversity. This is a general definition purposefully designed to be somewhat vague. An equally vague but more concise one offered here is that a mass extinction is an extinction of a significant proportion of the world’s biota in a geologically insignificant period of time. The vagueness about extinctions can be dealt with fairly satisfactorily in particular cases by giving percentages of taxa, but the vagueness about time is more difficult to deal with. A significant question about mass extinctions is how catastrophic they were, so we also require a definition of catastrophe in this context. According to Knoll (1984), it is a biospheric perturbation that appears instantaneous when viewed at the level of resolution provided by the geological record.”

A. Hallam and P. B. Wignall, Mass Extinctions and their Aftermath, Oxford: Oxford University Press, 1997, p. 1

The last of these definitions could be adapted to the mass extinction of civilizations: a social perturbation that appears instantaneous when viewed at the level of resolution provided by the historical record. This isn’t exactly right, as we know that it takes time for civilizations to collapse, but if we soften the “instantaneous” to “rapidly” it works, after a fashion. And the authors of this passage openly recognize the ambiguity of time in the definition.

Have there been other mass extinctions of civilizations in history? If we think of the interconnected Mediterranean Basin in Late Antiquity, the collapse of Roman power in the west would constitute a mass extinction of civilizations of the region, though if we count this as a single Hellenistic civilization stretching across Europe into North Africa and West Asia, then it is only a singular collapse. Similarly, if we think of all the civilizations subsumed under Islamic rule during the greatest reach of Islamic civilization, its collapse might also be characterized as a mass extinction of civilizations.

Could a mass extinction of civilizations happen again? We face similar definitional challenges. Are we to consider the whole of planetary civilization as one civilization, or as several civilizations merged and subsumed? A catastrophic institutional collapse of planetary civilization today might be counted either as the collapse of one worldwide civilization or as several tightly-coupled civilizations, as interdependent as the civilizations of West Asia during the Late Bronze Age.

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Epistemic Collapse

13 April 2017

Thursday


Not long ago in Snowstorm Reflections on Collapse and Recovery I discussed some of the experiences likely to be related to a local and limited collapse of social institutions, as a way to consider broader and deeper scenarios of social collapse. In this connection I quoted the following from Joseph Tainter’s The Collapse of Complex Societies:

“Collapse, as viewed in the present work, is a political process. It may, and often does, have consequences in such areas as economics, art, and literature, but it is fundamentally a matter of the sociopolitical sphere. A society has collapsed when it displays a rapid, significant loss of an established level of sociopolitical complexity. The term ‘established level’ is important. To qualify as an instance of collapse a society must have been at, or developing toward, a level of complexity for more than one or two generations. The demise of the Carolingian Empire, thus, is not a case of collapse — merely an unsuccessful attempt at empire building. The collapse, in turn, must be rapid — taking no more than a few decades — and must entail a substantial loss of sociopolitical structure. Losses that are less severe, or take longer to occur, are to be considered cases of weakness and decline.”

Joseph A. Tainter, The Collapse of Complex Societies, Cambridge: Cambridge University Press, 1988, p. 4

For Tainter, collapse is sociopolitical collapse, but we need not be limited by this stipulation. There are potentially many different meanings of “collapse” and I would like to particularly focus on what I will call epistemic collapse, which has played at least as prominent a role as social collapse in the extinction of civilizations.

A definition of epistemic collapse, that is to say, a catastrophic loss of knowledge, can closely parallel Tainter’s definition of social collapse, like this:

A society has epistemically collapsed when it displays a rapid, significant loss of an established level of knowledge (epistemic complexity). The term ‘established level’ is important. To qualify as an instance of collapse a body of knowledge must have been at, or developing toward, a level of complexity for more than one or two generations. The epistemic collapse, in turn, must be rapid — taking no more than a few decades — and must entail a substantial loss of epistemic structure. Losses that are less severe, or take longer to occur, are to be considered cases of epistemic weakness and decline.”

Tainter emphasizes that a “collapse” implies a previous level of attainment and stability (continuity); I agree with Tainter that this is an important qualification to make. It should also be pointed out that collapse implies a subsequent stability of the lower level of complexity and attainment, perhaps for a generation or two. In other words, a collapse — whether social, epistemic, or otherwise — means that stability and continuity at a higher level of complexity and integration is rapidly replaced by stability and continuity at a lower level of complexity and integration.

We know that one of the reasons the European “Dark Ages” were dark was the loss of the accumulated knowledge of classical antiquity, or, if not the loss (in an absolute sense), its restricted access due to loss of educational institutions, reduction in the publication, copying, and distribution of books, reduction in literacy, and so forth. During this period of reduced access to knowledge, some knowledge was lost in an absolute sense. Some books deteriorated or were destroyed before they were copied, and so have been lost to history. Much of the tradition of educational institutions was lost, as the educational institutions of classical antiquity went extinct or were extirpated (Justinian ordered the closing of the philosophical schools of Athens in 529 AD) and were subsequently replaced by educational institutions attached to the Catholic Church.

To reach further back into the past, around 1200 BC there was a generalized collapse that led to the extinction of several Bronze Age civilizations (this story is recounted in Eric Cline’s book 1177 B.C.: The Year Civilization Collapsed). This severe blow to civilization led to a significant epistemic collapse characterized by widespread loss of literacy throughout the ancient world. Homer, we recall, was recounting an “ancient” time of heroes and heroic deeds, and it has been speculated that the Homeric corpus was the translation into written form of oral poetry that survived from this dark age of more warfare and less reading as compared to the age that preceded it.

In the kind of generalized collapse resulting in the extinction of civilizations that characterized the Late Bronze Age, there was both social and epistemic collapse, but to what extent are these two modalities of collapse separable? Even if not instantiated in human history, is it possible for a civilization to remain socially stable while experiencing epistemic collapse, or to remain epistemically stable while experiencing social collapse? I think that counterfactuals could be constructed to illustrate the possibility of isolated social or epistemic collapse, but these would not be very convincing without some historical parallel to make the point. A possible example could be the destruction of the Library of Alexandria, which was not tightly-coupled to a social collapse, but which entailed a significant epistemic loss, or the Mongol destruction of Baghdad in 1258, which, again, was not tightly-coupled to social collapse (except for the collapse of Baghdad itself) but was a disaster for learning and certainly issued in permanently lower levels of epistemic attainment in the region. For an illustration of the opposite isolation, it is arguable that Byzantium preserved the epistemic record of Roman civilization even as all Roman social institutions collapsed and were replaced.

The above considerations suggest that a distinction should be made between collapse (of some particular kind) and the extinction of a civilization. Only the most generalized collapse over several classes of human endeavor result in the extinction of civilization, and we can obtain a more finely-grained appreciation of how societies ultimately fail and civilizations go extinct (or resist extinction) by separating social, financial, legal, religious, and epistemic collapse, inter alia.

Multiple collapses result in the extinction of civilization. Civilization is itself a complex institution that is comprised of many sub-institutions; that is to say, civilization is an institution of institutions. We can classify the institutions that go on to make up a civilization as social institutions, economic institutions, legal institutions, epistemic institutions, and so on. All of these institutions are intertwined in civilization, but it sometimes happens that even an integrated institution within civilization will collapse without the civilization of which it is a part collapsing. The many intertwined institutions that together constitute civilization mutually support each other and can bring a civilization through a difficult time if enough of these institutions persist despite the failure of other institutions.

If our nascent scientific civilization were to experience an epistemic collapse, but the social institutions of our civilization retained a significant measure of continuity, our civilization could enter into a state of permanent stagnation (something I noted as the greatest existential risk of our time in Where Do We Come From? What Are We? Where Are We Going?). If, on the other hand, we provide a robust backup of our knowledge, so thorough that a social collapse is not also an epistemic bottleneck, we could see the social institutions we know disappear even while our knowledge was largely intact and propagated into the future. Thus the human future itself admits of possible isolated social or epistemic collapse. Something like our civilization would survive on the other side of this collapse, after the recovery or replacement of the failed institutions, but that civilization would be fundamentally altered by the process.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


The large number of cities that formed the network of the Harappan civilization of the Indus Valley nicely illustrates a concrete conception of civilization.

Some time ago in Extrapolating Plato’s Definition of Being I discussed a famous passage in Plato that gives an explicit definition of being. The passage is as follows:

STRANGER: Let us push the question; for if they will admit that any, even the smallest particle of being, is incorporeal, it is enough; they must then say what that nature is which is common to both the corporeal and incorporeal, and which they have in their mind’s eye when they say of both of them that they ‘are.’ Perhaps they may be in a difficulty; and if this is the case, there is a possibility that they may accept a notion of ours respecting the nature of being, having nothing of their own to offer.

THEAETETUS: What is the notion? Tell me, and we shall soon see.

STRANGER: My notion would be, that anything which possesses any sort of power to affect another, or to be affected by another, if only for a single moment, however trifling the cause and however slight the effect, has real existence; and I hold that the definition of being is simply power.

The Greek text of the Eleatic Stranger’s crucial formulation is as follows:

Ξένος: λέγω δὴ τὸ καὶ ὁποιανου̂ν [τινα] κεκτημένον δύναμιν [247e] εἴτ’ εἰς τὸ ποιει̂ν ἕτερον ὁτιου̂ν πεφυκὸς εἴτ’ εἰς τὸ παθει̂ν καὶ σμικρότατον ὑπὸ του̂ φαυλοτάτου, κἂν εἰ μόνον εἰς ἅπαξ, πα̂ν του̂το ὄντως εἰ̂ναι: τίθεμαι γὰρ ὅρον [ὁρίζειν] τὰ ὄντα ὡς ἔστιν οὐκ ἄλλο τι πλὴν δύναμις.

My extrapolation of Plato’s definition of being was to derive four permutations from this definition of beings, in this way:

1. Beings that act only and do not suffer

2. Beings that suffer only and do not act

3. Beings that both act and suffer

4. Beings that neither act nor suffer, which may be non-beings

Another way to extrapolate Plato’s definition of being would be the ability of some entity to act or to suffer in kind, that is, to engage in reciprocal relations with a peer, to interact with another entity of the same (or similar) kind in the same (or similar) way. With this extrapolation, the fourth permutation above — beings that neither act nor suffer — becomes meaningful, because a given entity might possess a minimal ontological status in regard to interactions of acting and suffering without the opportunity to engage in such relationships with a peer entity. Thus a contradictory, or at least problematic, permutation of Plato’s definition of being can be given meaning.

An entity might be analyzed in terms of the classes of relationships across which it interacts, and where a class of interactions is absent, the entity is a non-being in this respect even if it is clearly a being in other respects. For example, Robinson Crusoe, living alone as a castaway on a desert island, interacts with the island, its flora and fauna, but initially interacts with no other human beings. Crusoe has not been cast out of existence by being marooned on a desert island, but he has been deprived of human society; no human society exists on his island (at first). Crusoe has lost his status as a member of human society by being deprived of the kind of interactions that constitute human society, i.e., interactions with other human beings, even as he continues to interact with the world across broad categories of existence that have nothing to do with human society.

This example of Robinson Crusoe and his interaction with peers (or lack thereof) can be scaled up and applied to larger human societies. Human society at the level of organization of the hunter-gatherer band, such as characterized the human world of the upper Paleolithic, brought into being relationships between such bands, which relationships were almost certainly implicated in the human expansion across the entire surface of Earth. When, near the beginning of the Holocene, some bands settled down into agricultural villages, these villages would have interacted with each other, and when some of the villages expanded in size and complexity and became cities, these early cities would have interacted with each other. What I would like to suggest there is that interaction among cities as cities is what characterizes civilization.

Recently in Another Counterfactual: the Single City Civilization I discussed a couple of different definitions of civilization that I have been employing, particularly in my Centauri Dreams post Martian Civilization, one of these definitions abstract and the other concrete:

● Concrete — A network of cities engaged in relationships of cooperation and conflict.

● Abstract — A society with a central project that unifies its economic infrastructure and its intellectual superstructure.

My “concrete” definition of civilization interpreted in the light of Plato’s definition of being suggests that civilization comes into being when cities interact on the ontological level distinctive to cities, i.e., cities interacting on a civic level. Before this, isolated cities would not have had an opportunity to interact with ontological peers; a city would interact with the surrounding countryside, and perhaps also with hunter-gatherer bands that might pass by for raiding or trading, but these sub-urban interactions would not yet rise to the level of civilization.

The class of relationships that are distinctive of civilization come into being when multiple cities interact with each other as cities. Before this, individual cities may emerge and interact with their surroundings, but these relationships belong to another order of being.

This is, I think, a conception of civilization that is consistent with V. Gordon Childe and the “urban revolution” that I discussed in my Centauri Dreams post Martian Civilization, but also a definition that goes beyond Childe and fills in the gap between Childe’s formulations specifically concerned with the nature of cities but not yet with the nature of cities in mutual interaction.

This Platonic interpretation of my “concrete” definition of civilization transforms it into a theoretical definition that may yet point to implications that I have not yet fully realized.

. . . . .

The large number of Mayan cities in Mesoamerica also illustrates a network of cities engaged in interaction.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Our Terrestrial Heritage

27 February 2017

Monday


Étienne-Louis Boullée, Cénotaphe à Newton (1784)

Étienne-Louis Boullée, Cénotaphe à Newton (1784)

In my previous post, Do the clever animals have to die?, I considered the “ultimate concern” (to borrow a phrase from Paul Tillich) of existential risk mitigation: the survival of life and other emergent complexities beyond the habitability of its homeworld or home planetary system. While a planetary system could be inhabited for hundreds of millions of years in most cases, and possibly for billion or tens of billions of years (the latter in the case of red dwarf stars, as in the recently discovered planetary system at TRAPPIST-1, which appears to be a young star with a long history ahead of it), there are yet many events that could occur that could render a homeworld or an entire planetary system uninhabitable, or which could be sufficiently catastrophic that a civilization clustered in the vicinity of a single star would almost certainly be extirpated by them (e.g., a sufficiently large gamma ray burst, GRB, from outside our solar system, or a sufficiently large coronal mass ejection, CME, from within our solar system).

Because any civilization that endures for cosmologically significant periods of time must have established multiple independent centers of civilization, and will probably have survived its homeworld having become uninhabitable, mature advanced civilizations may view this condition as definitive of a mature civilization. Having ensured their risk of extinction against existential threats through establishing multiple independent centers of civilization, these advanced civilizations may not regard as a “peer” (i.e., not regard as a fellow advanced civilization) any civilization that still remains tightly-coupled to its homeworld.

It nevertheless may be the case (if there are, or will be, multiple examples of advanced civilizations) that some civilizations choose to remain tightly-coupled to their homeworlds. We can posit this as the condition of a certain kind of civilization. In the question and answer segment following my 2015 talk, What kind of civilizations build starships? a member of the audience, Alex Sherwood, suggested, in contradistinction to the expansion hypothesis, a constancy hypothesis, according to which a civilization does not expand and does not contract, but rather remains constant; I would prefer to call this the equilibrium hypothesis. One way in which a civilization might exemplify the constancy hypothesis would be for it to remain tightly-coupled to its homeworld.

Some subset of homeworld-coupled civilizations will probably experience extinction due to this choice. Such a homeworld-coupled civilization might choose, instead of establishing multiple independent centers of civilization as existential risk mitigation, to instead establish de-extinction and backup measures that would allow civilization to be restored on its homeworld despite any realized existential risks. However, while this approach to civilizational longevity may ensure the existence of a civilization over the billions of years of the life of its parent star, if a civilization does not want the historical accident of the age of its parent star to determine its ongoing viability, then such a civilization must abandon its homeworld and eventually also its home planetary system.

A civilization might continue to exemplify the equilibrium hypothesis by maintaining the unity and distinctiveness of its civilization despite needing to pursue megastructure-scale projects in order to ensure its ongoing existential viability. The idea of constructing a Shkadov thruster to move a star was partly inspired by this particular conception of the equilibrium hypothesis, as a star might, by this method, be moved to another, younger star, and the homeworld transferred into the orbit of that younger star. In this way, the relationship to the parent star is de-coupled, but the relationship to homeworld remains exclusive. At yet another remove, an entire civilization might simply choose to pick up from its homeworld and transfer itself to another chosen world. (As an historical analogy, consider the ancient city of Knidos, which was founded on the Datça Peninsula, but as the city grew in size and wealth, the city fathers decided that they needed to start again, so they built themselves a new and grander city nearby, and moved the entire city to this new location.) This conception of the equilibrium hypothesis would de-couple a civilization from both parent star and homeworld, but could still maintain the civilization as a unique and distinctive whole, thus continuing that civilization in its equilibrium condition.

A civilization that establishes multiple independent centers of civilization (and thus, to some degree, exemplifies the expansion hypothesis) might still retain strong connections to its homeworld — only not the connection of dependency. Such civilizations fully independent of a homeworld might be said to be loosely-coupled to their homeworld, in contradistinction to civilizations tightly-coupled to their homeworld and exemplifying the equilibrium hypothesis. Expansionary civilizations might remain in close contact with a homeworld for as long as the homeworld was habitable, only to fully abandon it when the homeworld could no longer support life.

Eventually, as the climate changes and the continents move and the surface of Earth is entirely rearranged, as would be experienced by a billion-year-old civilization, almost all terrestrial cities and monuments will disappear, and even the familiar look of Earth will change until it eventually becomes unrecognizable. The heritage of terrestrial civilization might be preserved in part by moving entire monuments to other worlds, or to no world at all, but perhaps to a permanent artificial habitat that is not a planet. Terrestrial places might be recreated on other worlds (or, again, on no world at all) in a grand gesture of historical reconstruction.

There might be other surprising ways of preserving our terrestrial heritage, such as building projects that were never realized on Earth. For example, some future civilization might choose to build Étienne-Louis Boullée’s design for an enormous cenotaph commemorating Isaac Newton, or Antoni Gaudí’s unbuilt skyscraper, or indeed any number of countless projects conceived but never built. An entire city of unbuilt buildings could be constructed on other worlds, which would be new cities, cities never before built, but cities in the tradition of our terrestrial heritage, maintaining the connection to our homeworld even while looking to a future de-coupled from that homeworld.

A civilization that outlasts its homeworld could be said to be de-coupled from its homeworld, though the homeworld will always be the origin of the intelligent agent that is the progenitor of a civilization, and hence a touchstone and a point of reference — like a hometown that one has left in order to pursue a career in the wider world. One would expect historical reconstruction and reenactment in order to maintain our intimacy with the past, which is, at the same time, our intimacy with our homeworld, should we become de-coupled from Earth. If humanity goes on to expand into the universe, establishing multiple independent centers of civilization, including gestures of respect to our terrestrial past in the form of reconstruction, the eventual loss of the Earth to habitability may not come as such a devastating blow if some trace of Earth was preserved.

When the uninhabitability of the Earth does become a definite prospect, and should civilization endure up to that time, that future civilization’s opportunities for historical preservation and conservation will be predicated upon the technological resources available at that time, and what conception of authenticity prevails in that future age. A civilization of sufficiently advanced technology might simply preserve its homeworld entire, as a kind of museum, moving it to wherever would be convenient in order to maintain it in some form that it would be visited by antiquaries and eccentrics. Or such a future civilization might deem such preservation to be undesirable, and only certain artifacts would be removed before the planet entire was consumed by the sun as it expands into a red giant star. In an emergency abandonment of Earth, what could be evacuated would be limited, and principles of selection therefore more rigorous — but also constrained by opportunity. In the event of emergency abandonment, there might also be the possibility of returning for salvage after the emergency had passed.

. . . . .

Antonio Sant'Elia's La Città Nuova, or Frank Lloyd Wright's Broadacre City, or even Le Corbusier's Voisin plan for Paris might yet be built on other worlds.

Antonio Sant’Elia’s La Città Nuova, or Frank Lloyd Wright’s Broadacre City, or even Le Corbusier’s Voisin plan for Paris might yet be built on other worlds.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


Indiana Jones is adventure science at its most exciting, though the films are more often about looting and destroying sites rather than preserving them.

Indiana Jones is adventure science at its most exciting, though the films are more often about looting and destroying sites rather than preserving them.

In my recent paper “A Manifesto for the Scientific Study of Civilization” I argued that the study of civilization should be scientific, and that a scientific theory of civilization would be a formal theory. Prior to this, I argued in Rational Reconstructions of Time that a formal historiography is possible. What is the connection between these two claims? In A Metaphysical Disconnect I suggested that it is a philosophical problem that philosophies of time have not been tightly-coupled with philosophies of history. This implies that a formal theory of time could be tightly-coupled with a formal theory of history, and a formal theory of history would presumably encompass (or, at least, overlap) a theory of civilization. A formal theory of civilization, then, might ultimately follow from formal historiography.

I fully understand that these are strange claims for me to be making. What in the world do I mean by a formal theory of time, of history, or of civilization? How could a science of civilization be a formal science? What is a formal science, anyway? Despite the burgeoning growth of computer science in our time, which is the latest addition to the formal sciences, the very idea of the formal as a distinct category of thought (distinct, especially, from the material) seems odd and alien to us, and the distinction between the formal sciences and the natural sciences seems archaic. What are the formal sciences? Here is one view:

“To put it in Kantian terms, the formal sciences dealt with the Reine Anschauung as opposed to empirical data. By that they have been connected to the methodology of mathematics and logic, thereby being part of both the philosophical tradition and the newly won applications of mathematical sciences to the natural sciences and engineering. Both the object and the methods of the Formal sciences were recognized as different from the Natural and the Social sciences.”

“The Formal Sciences: Their Scope, Their Foundations, and Their Unity” by Benedikt Löwe, Synthese, Vol. 133, No. 1/2, Foundations of the Formal Sciences I (Oct.-Nov., 2002),pp. 5-11

In the same paper there is an explicit attempt to answer the question, “What are the Formal Sciences?” Two answers are given:

● Answer 1: “There is a profound duality in the classification of sciences according to their scientific approaches: some sciences are empirical, some are formal. The former deal with predictions and their falsification, the latter with the understanding of systems without empirical component, be it man-made systems (literary systems, the arts or social systems) or formal systems”.

● Answer 2: “Formal sciences are those that deal with the deductive analysis of formal systems (i.e., systems independent of direct human influence)”.

At present I am not going to analyze these differing definitions of the formal sciences, but I will leave them to percolate in the back of the mind of the reader in order to return to the question at hand: the study of civilization as a formal science, i.e., one formal science among many other formal sciences, however we choose to define them.

We can get a hint of what a formal science of civilization would look like from structuralist historians and historians of the Annales school, the chief representatives of the latter being Marc Bloch, Lucien Febvre, and Fernand Braudel. Marc Bloch’s two volume history of feudalism, in particular, stands out as a great achievement in the genre, with chapters devoted to features of feudal society rather than to great events and historical turning points. Whereas John Florio had Montaigne say that I describe not the essence but the passage, Bloch sought to describe not the passage, but the essence. (I previously quoted from Bloch in Hegel and the Overview Effect.)

There is (or, there will be) no one, single way to approach formal historiography, in the same way that there is no one, single axiomatization of set theory. Even if one agrees with Gödel that set theory describes a “well-determined reality” (a realist conception that most people today would agree describes the past, even if they would hesitate to say the same of set theory), there are, as yet, many distinct approaches to that reality. So too with formal historiography; there will be many distinct formalisms for the organization, exhibition, and exposition of the well-determined reality of history.

I reveal myself as being more of a traditionalist than Bloch by my preference for approaching a theory of civilization by way of a theory of history, and a theory of history by way of a theory of time. This is “traditional” in the sense that, as I have remarked many times in other places, it has been traditional to study civilization by studying history, rather than studying civilization as an object of knowledge in its own right. I retain the historical perspective, and indeed even many of the prejudices of historians (these come naturally to me), but I can also see beyond history sensu stricto and to a science of time, a science of history, and a science of civilization that lies beyond history even as it draws from the tradition all that that tradition has to offer.

Both the essentialist approach of Bloch and the Annales school, and my own quasi-historical approach to a formal science of civilization, may each have something to contribute to a theory of civilization. Obviously, these are not the only ways to study civilization. Civilization also can be studied as an empirical science — this is probably how most would conceive a science of civilization — and even as an adventure science. What is adventure science?

Together with Dr. Jacob Shively, I wrote an article about adventure science, Adventure Science Enters the Space Age, noting that “big science” has become the paradigm of scientific activity at the present time, but when individual human beings are able to go exploring they will be able to pluck the low-hanging fruit of exploration and discovery. Adventure science characterizes the earliest stage of a science when discoveries can be made simply by traveling to an exotic locale and being the first to describe some phenomenon never before documented by science. Such discoveries are difficult for us now, because the low-hanging fruit of terrestrial discovery has all been plucked, but once off Earth, new worlds will beckon with new discoveries waiting to be made. This will be a new Golden Age of adventure science.

Paradoxically, the science of civilization will become an adventure science (if it ever becomes one) quite late in its history, so that adventure science will characterize a science of civilization not in its earliest stages, but in its latest stages. But civilization has had a kind of early adventure science phase as well. Archaeology was once the paradigm of adventure science — as attested to by the cinematic adventures of Indiana Jones and the television adventures of Relic Hunter — when real life explorers entered jungles and deserts and swamps to search for long lost cities. Archaeology is perhaps the closest existing discipline that we have to a true science of civilization — archaeologists have many theories of civilization — so that the adventure science that archaeology once was, was at the same time (at least in part) an adventure science of civilization. And it may be so again, when xenoarchaeologists lead the way, looking for the ruins of alien civilizations.

All of the resources of contemporary big science, with its thousands of researchers and multi-generational socially-organized research programs, will be necessary in order to develop the science that will make possible the production of interstellar vessels. In my Centauri Dreams post, The Interstellar Imperative, I wrote, “A starship would be the ultimate scientific instrument produced by technological civilization, constituting both a demanding engineering challenge to build and offering the possibility of greatly expanding the scope of scientific knowledge by studying up close the stars and worlds of our universe, as well as any life and civilization these worlds may comprise.” Once starships become a reality, they will make possible the empirical study of civilizations, which will begin as an adventure science, the primary qualification for which will be a willingness to tolerate discomfort and to travel to distant places with a determination to document every new sight that one sees.

Geology will become an adventure science like this once again as soon as human beings have the freedom to travel around our solar system; biology and ecology will become adventure sciences once again as soon as we can visit other living worlds. The study of civilization will not become an adventure science until human beings are free to travel about the cosmos, so that this is a very distant prospect, but still a hopeful one. If we do not find a number of interesting civilizations to study, we will build a number of interesting civilizations, and eventually these will be studied in their turn. In this latter instance, the science of civilization will only become an adventure science after civilization has expanded throughout the cosmos, has forgotten the saga of its expansion, and then rediscovers itself across a plurality of worlds. And once again we will be forced to reckon with Hegel’s prescience for having said that the owl of Minerva takes flight only with the setting of the sun.

. . . . .

'Anywhen' by Chris Foss perfectly expresses the mystery and adventure of exploration. Perhaps some day in the far future, the study of civilization will be an adventure science in which such exploration takes a central role.

“Anywhen” by Chris Foss perfectly expresses the mystery and adventure of exploration. Perhaps some day in the far future, the study of civilization will be an adventure science in which such exploration takes a central role.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior social intelligence.

Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior ‘social intelligence.’

In a couple of blog posts, Is encephalization the great filter? and Of Filters, Great and Small, I argued that encephalization is the great filter — clearly implying that this is a single filter that is more significant than another filters, and that encephalization is the great filter. The “great filter” is an idea due to Robin Hanson, according to whom, “The Great Silence implies that one or more of these steps [to visible colonization] are very improbable; there is a ‘Great Filter’ along the path between simple dead stuff and explosive life. The vast vast majority of stuff that starts along this path never makes it. In fact, so far nothing among the billion trillion stars in our whole past universe has made it all the way along this path.”

In the second of the two blog posts noted above, Of Filters, Great and Small, I considered the different possible structures that filters might take, and this is a more nuanced view of the great filter that departs from the idea that a single element of the great filter is uniquely responsible for the great silence and the Fermi paradox. The journey to higher forms of emergent complexity seems to be robust, and therefore likely to have been repeated elsewhere, but it is also a long journey of later emergent complexities multiply supervening upon earlier emergent complexities. This structure of emergent complexities over time is itself a structure more complex than any one of the emergent complexities taken in isolation. In so far as we understand the great filter in this content, we understand a more nuanced view than the idea of one step among many steps along this journey being the unique hurdle to the aggressive expansion of life in the universe, and therefore its visible traces discoverable through cosmology.

Even given this more nuanced view of the great filter, later forms of emergent complexity will be less common than earlier forms, and within the structure of the great filter we can identify particular emergent complexities where the iterated structure falters. If we place this stalling point at exponential encephalization, we might find a universe filled with complex life, but with few or no other intelligent species capable of building a civilization. This is the sense in which I wish my claim that encephalization is the great filter to be understood.

Recently I have had reason to revisit the idea that encephalization is the great filter, and this is primarily due to having read The Social Conquest of Earth by E. O. Wilson, which emphasizes the role of eusociality in the construction of complex societies. I think that Wilson is right about this. Wilson notes that eusociality has emerged on Earth only a handful of times, making it a rare form of emergent complexity: “Eusociality arose in ants once, three times independently in wasps, and at least four times — probably more, but it is hard to tell — in bees.” (p. 136) We can compare this rarity of eusociality as an adaptation to the rarity of intelligence as an adaptation.

The insects that have achieved robust eusociality — perhaps I should say arthropods — are very different from mammals. We must go back more than 500 million years to the split between protostomes and dueterostomes to find the last common ancestor of the two. With the arthropods we share being bilaterally symmetrical, but the split between us — hence the split between our brains and central nervous systems (CNS) — is about as old as the split between mammals and molluscs: chordata, mollusca, and arthropoda are distinct phyla. On the one hand, we know from a recent fossil find something about the CNS of the earliest chordates, which we thus have in common with most other terrestrial animalia (cf. How early a mind?); on the other hand, we also know that neural structures have evolved independently on Earth (cf. The ctenophore genome and the evolutionary origins of neural systems), so that we might speak of neurodiversity among terrestrial animalia. Different brains, when sufficiently complex, are substrates for different forms of emergent consciousness, i.e., different forms of mind.

It is not only dramatically different kinds of minds that might give rise to dramatically different forms of encephalization, and thus intelligence and civilization. Part of the differentness of eusocial insects is their reproductive specialization, which goes along with a genetic structure of a colony in which the superorganism of the colony benefits overall from a majority of individuals not reproducing. This is also dramatically different from human societies. It has been objected to Wilson’s thesis of the eusociality of human beings that human beings are not eusocial, but rather prosocial, and that human cooperative societies cannot be compared to insect cooperative societies because there is no parallel to reproductive specialization among human beings. This, I think, is an unnecessarily narrow conception of eusociality. All we have to do is to recognize that eusociality can take multiple forms (as minds and intelligence can take multiple forms, supervening upon multiple distinct neural structures), some of which involve reproductive specialization and some of which do not, in order for us to recognize human cooperative societies as eusocial.

The most developed brain of the molluscs is that of the octopus, a solitary hunter. Octopi have been hunting in the depths of the sea for hundreds of millions of years, and, apparently, they have never experienced competition on the basis of intelligence, and, perhaps because of this, have never experienced an encephalization event. (Recently in How early a mind? I quoted E. O. Wilson to the effect that, “A Homo sapiens level of intelligence can arise only on land, whether here on Earth or on any other conceivable planet.” ) So octopi have a respectable level of intelligence, but are far from being eusocial. The eusocial insects have a much less powerful brain than octopi or mammals, but they did make the breakthrough to eusociality. Only human beings made the breakthrough to both eusociality and high individual intelligence.

Since reading Wilson on the eusociality of human societies, I can come to think that human civilization is what happens when eusociality coincides with intelligence. Termite mounds and bee hives are what happens when eusociality coincides with insect-level intelligence. And this observation of the interaction of eusociality and intelligence immediately suggests two possible counterfactuals to human civilzation, which I will sketch below. Understand that, in this context, when I use the term “human civilization” I am using this is in its most generic signification, covering all the many different human civilizations that have existed, i.e., the class of all human civilizations (which is the class of all known civilizations constructed by a biological being both eusocial and intelligent).

I noted above that we can employ a conception of eusociality less narrow than that restricted to eusocial insects with reproductive specialization. Similarly, the other element in civilization — intelligence — ought also to be construed broadly. Many different kinds of intelligence interacting with many different kinds of eusociality suggest many different possibilities for civilization distinct from the class of human civilizations. At the present time I am not going to consider kinds of eusociality and intelligence as much as degrees of eusociality and intelligence, and I will assume that the insect transition to reproductive specialization represents eusociality taken to a higher degree than eusociality has progressed in human beings. Similarly, I will assume that human intelligence represents a higher degree of intelligence than now-extinct branches of the genus homo, i.e., our ancestors with lower degrees of encephalization and lower intelligence.

From these assumptions about degrees of eusociality and intelligence, two counterfactual classes of civilization are suggested:

High Eusociality/Low Intelligence

A species might be less intelligent than human beings (i.e., possess a lower degree of encephalization) but more eusocial than human beings, and be able to build a civilization.

Low Eusociality/High Intelligence

A species might be more intelligent than human beings (i.e., possessing a higher degree of encephalization, or a thicker neocortex) but less eusocial than human beings, and be able to build a civilization.

This formulation has the virtue of existing human civilization embodying the principle of mediocrity: our eusociality and intelligence are balanced; we are not as eusocial or as individualistic as we might have been, and we are not as intelligence or as unintelligent as we might have been. We are in the “Goldilocks zone” of coinciding eusociality and intelligence, and this human “sweet spot” for civilization may account for the fact that civilization emerged independently in widely separated geographical regions, not as a result of idea diffusion, but rather as a consequence of independent invention.

In the High Eusociality/Low Intelligence class of civilizations, we would see somewhat individually intelligent beings capable of a high degree of cooperation through eusociality forming socieites (superorganisms) quite early in their history. We can see the degree to which bees and ants and termites can develop societies based on eusociality and an almost negligible individual intelligence; with a degree of eusociality approaching this, but in a species endowed with more cognitive capacity, cities might be built that look like something between a human city and a termite mound, and this might happen spontaneously. If this had happened with an earlier human ancestor — a counterfactual ancestor with greater eusociality than any actual human ancestor — it could have preempted the emergence of human civilization by occurring millions of years earlier.

In the Low Eusociality/High Intelligence class of civilizations, civilization may have come about at the level of scattered bands of hunter-gatherers, or, at least, human beings in small groups may have been able to develop science and technology without large social institutions such as governments, universities, and corporations, which discipline unruly human beings and make it possible for them to work cooperatively together. One can imagine that a more intelligent (counterfactual) species of the genus homo might have been sufficiently intelligent to pursue science at a much earlier period of its history, and one can imagine members of such a species coming together for scientific purposes much as our ancestors came together at Göbekli Tepe (which I first wrote about in The Birth of Agriculture from the Spirit of Religion) possibly for religious rituals, even before they gathered in settlements for agriculture.

Both counterfactual scenarios I have described above could have resulted in civilization on Earth emerging tens of thousands or hundreds of thousands of years earlier than it did in fact emerge. I suppose it would be equally possible to formulate counterfactuals in which different classes of civilization emerged much later.

Each of the three classes of civilizations considered here — moderate eusociality/moderate intelligence, high eusociality/low intelligence, and low eusociality/high intelligence — have distinct advantages and disadvantages, in terms of the viability of the civilization that results. However, cognitive capability begins to play a much greater role in civilization after industrialization when civilization becomes technological and scientific. If a given civilization can survive to make the breakthrough to science-driven technology, all other things being equal, the species with the greatest intelligence will have the greatest advantage in deploying science to further the ends of that species. I suspect that a high eusociality/low intelligence civilization would be stagnant, and possibly so stagnant that the breakthrough to industrialization never occurs. I also suspect that human beings were just smart enough to make that breakthrough, as indicated by the single point of origin of the industrial revolution. Short of that threshold, any civilization remains cosmologically invisible, exclusively bound to its homeworld, and incapable of long-term existential risk mitigation. This scenario is consistent with the great silence, and may constitute another approach to the Fermi paradox.

The research questions that follow from these considerations include: Are there intrinsic limits to eusociality among beings whose biology is not consistent with reproductive specialization? Are there intrinsic limits to intelligence for biological beings of known biochemistry? How do eusociality and intelligence interact biologically and ecologically? Does either constitute a check upon the other?

. . . . .

Cooperation among human beings has its limits -- as illustrated by the story of the Tower of Babel -- and one limit to cooperation is our level of eusociality.  With a higher or lower level of eusociality, civilization would have had a different structure.

Cooperation among human beings has its limits — as illustrated by the story of the Tower of Babel — and one limit to cooperation is our level of eusociality. With a higher or lower level of eusociality, civilization would have had a different structure.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


dominance-hierarchy

An Explanatory Mechanism for Aggressively Expanding Civilizations

Any emergent complexity that adds itself to the ultimate furniture of the universe can be, on the one hand, the basis of further emergent complexities, while on the other hand it can function as a selection pressure upon the other furniture of the universe, including earlier and later iterations of emergent complexity. Now, that sounds very abstract — indeed, I could express this idea even more abstractly in the language of ontology — so let me attempt to provide some illustrative examples. When biology emerged from the geochemical complexity of Earth, biology eventually gave rise to further emergent complexities (consciousness, technology, civilization), but biology also began to shape the geochemical context of its own emergence. Biochemistry emerged from geochemistry, thus biochemistry has always been, ab initio, in coevolution with the geochemistry upon which it supervenes.

Life, then, coevolved with geology, as life now coevolves with later emergent complexities, which means that, in the case of human beings, human life coevolves with the habitat it has made for itself — Earth of the anthropocene and our civilization (cf. Intellectual Niche Construction). This point has been made by Wilson and Lumsden:

“[The] high level of human mental activity creates culture, which has achieved a life of its own beyond the ordinary limits of biology. The principal habitat of the human mind is the very culture that it creates.”

Edward O. Wilson and Charles J. Lumsden, Promethean Fire: Reflections on the Origin of Mind, Cambridge and London: Harvard University Press, 1983, p.

We might distinguish between relationships of tightly-coupled coevolution and loosely-coupled coevolution, with the familiar instances of coevolution — such as pollinating bees and flowers — qualifying as tightly-coupled, while those evolutionary relationships not usually recognized as coevolutionary qualify as loosely-coupled — for example, geochemistry and biochemistry, although the scale at which we make our comparison will be crucial to determining whether the coupling is tight or loose. “Coevolution” is another way of saying that each party to the coevolutionary relationship acts as a selection pressure on the other, so we make the distinction between tightly-coupled coevolution and loosely-coupled coevolution in order to differentiate between selection pressures, some of which are immediate and enduring (tightly-coupled), and some of which are distant and only sporadically influential (loosely-coupled).

Now that civilization has established itself as an emergent complexity on Earth, civilization may serve as the springboard for further emergent complexities, but it also has emerged as a new selection pressure upon the life that gave rise to civilization, while the geology of Earth and the terrestrial biosphere are, in turn, a selection pressure on civilization. Terrestrial (planetary) civilization may come to act as a selection pressure upon other emergent complexities yet to appear, which will also act as a selection pressure on terrestrial civilization, and these emergent complexities are likely to be emergent from civilization. A spacefaring civilization that encompasses (at first) multiple worlds of a planetary system, multiple planetary systems of multiple stars, or multiple galaxies, would be one form of emergent complexity that could arise from planetary civilization.

Among the immediate and enduring selection pressures on spacefaring civilizations will be the distribution of exploitable resources in space, as well as the other spacefaring civilizations with which such a civilization is in competition for these resources (these other spacefaring civilization themselves being an emergent complexity originating from other planetary civilizations derived from other biospheres). There may also be selection pressures from emergent complexities that we do not yet understand, and which we have not yet identified. These two selection pressures — distribution of resources and competition with other spacefaring civilizations — will shape (perhaps have shaped) the origins, evolution, distribution, and fate of spacefaring civilizations. Spacefaring civilizations will be in a tightly-coupled coevolutionary relationship with the cosmological distribution of resources (matter and energy) and the efforts of other spacefaring civilizations to also dominate these resources. Let us consider this more carefully.

When I wrote my post on Social Stratification and the Dominance Hierarchy I included a diagram (reproduced above; also see Group Dynamics) illustrating the selection pressures that lead to a dominance hierarchy in social animals. The diagram distinguished among scarce, limited, and abundant resources. Scarce resources lead to cooperation; sufficiently abundant resources can eliminate competition. In the case of limited resources, these resources can be scattered or concentrated. Scattered resources lead to competition in speed, while concentrated resources lead to competition in aggressiveness, and thence to a dominance hierarchy. The dominance hierarchy among human beings, which in civilization we call social stratification, implies that the resources significant to human beings have been scarce and concentrated.

If we confine our interest in human access to resources only to Earth, we can readily distinguish between regions where resources are sufficiently concentrated that they can be defended, and regions where resources are scattered, cannot be defended, and are therefore the object of competition in speed rather than aggressiveness. (We can also distinguish different social systems that have arisen shaped by the differential distribution of resources.) If we pull back from this geographical scale and consider the question from the perspective of a spacefaring civilization, the whole of Earth, our homeworld, is a concentrated and defensible locus of resources, but the cosmos on the whole represents an extreme scattering, over interstellar and intergalactic distances, of limited or scarce resources. This scattering of limited resources, in contradistinction to the concentrated and defensible resources of the homeworld of any intelligence species, ought to have the result of spacefaring civilizations defending their homeworld while competing for resources with other spacefaring civilizations, not through competition in aggressiveness, but through competition in speed.

Competition in aggressiveness for the resources of spacefaring civilization may be excluded by the scattering of these resources, so that we are not likely to see the emergence of a galactic empire, crushing under the boot heels of its storm troopers the aspirations to freedom, dignity, and equality of intelligent species throughout the galaxy. However, competition in speed for limited resources distributed on a cosmological scale may well be the primary selection pressure on spacefaring civilizations, and competition in speed ought to entail the rapid cosmological expansion of these civilizations.

Elsewhere I have mentioned the papers of S. Jay Olson (cf. Big Time, The Genesis Project as Central Project, and Second Addendum on the Genesis Project as Central Project: Invasive Species) concerning what Olson calls “aggressively expanding civilizations,” which embody rapid expansion on a cosmological scale. Here is Olson’s characterization of such as scenario:

“An ‘aggressive expansion scenario’ is a proposed cosmological phenomenon… whereby a subset of advanced life appears at random throughout the universe and expands in all directions, saturating galaxies and utilizing resources as they go… We also assume that all aggressive expanders will be of the same behaviour type, i.e. they all expand with the same velocity v in the local comoving frame, and the expanding spherical front of galaxy colonization leads to observable changes a fixed time T after the front has passed by.”

“Estimates for the number of visible galaxy-spanning civilizations and the cosmological expansion of life,” S. Jay Olson, International Journal of Astrobiology, Cambridge University Press, 2016, pp. 2-3, doi:10.1017/S1473550416000082

Competition in speed among spacefaring civilization would mean a focus on maximizing v for the expanding spherical front of galaxy colonization.

Citing Bostrom and Omohundro on the nature of superintelligent AI (presumptively the heir of our technological civilization, but see the final sentence below quoted from Olson, as he addresses this as well), Olson writes:

“From an independent field of study, it has been argued that resource acquisition is one of the ‘basic drives’ of a generic superintelligent AI. This means, in essence, that a sufficiently powerful AI will tend to use extreme expansion and resource acquisition as a means of maximizing its utility function, unless it is explicitly and carefully designed to avoid such behavior… even if advanced alien species tend to be monks who have forsaken all worldly gain, the accidents involving insufficiently careful design of an artificial superintelligence are potentially one of the largest observable phenomena in the universe, when they occur. The word ‘civilization’ is not really the best description of such a thing, but we will use it for the sake of historical continuity.”

“Long-term consequences of observing an expanding cosmological civilization”, S. Jay Olson

We can see that competition in speed for limited resources provides an explanatory mechanism for the existence and expansion of aggressively expanding civilizations. Spacefaring civilizations that successfully compete for resources on a cosmological scale endure over cosmological scales of time, and perhaps leave a legacy in the form of a universe transformed sub specie civilizationis. Spacefaring civilizations that fail to expand go extinct, and leave no observable legacy. Whether there is room for more than one aggressively expanding civilization in any one universe, or whether this expansion takes place on scale of time sufficient to foreclose the opportunity of expansion to any rival civilizations, remains an open question. Once a universe is saturated with life, no other life, and no other civilization emergent from other life, would have an opportunity to appear, unless or until a cosmological scale extinction event created such an opportunity (which could be furnished by sufficiently violent gamma ray bursts).

The above considerations pose other interesting questions that could be taken up as research questions in the study of spacefaring civilization. How are we to distinguish between scarce and limited resources on a cosmological scale? Might the closely packed stars of globular clusters and galactic centers constitute limited resources, while diffuse spiral arms and the outer portions of elliptical galaxies constitute scarce resources? At what threshold of availability should we distinguish between matter and energy being scarce or limited? This may be a problem contingently decided by the technologies of spacefaring not yet known to us. That is to say, if technologically mature civilizations find interstellar travel (or intergalactic travel) somewhat routine, then we may regard cosmological resources as scattered and limited, and more concentrated areas such as mentioned (globular clusters and galactic centers) might pass over a threshold such that they would be considered concentrated — thus there would be the possibility of galactic empires competing on aggressiveness for defensible resources. If, on the other hand, interstellar (or intergalactic) travel is always difficult, then the universe presents, at best, limited resources, and perhaps scarce resources. In the case of scarce resources, there would be a window of opportunity for cooperation among spacefaring civilization for the effective and efficient exploitation of these resources.

If, as on the surface of Earth (and relative to a planetary civilization), cosmological resources are distributed unevenly, then the distribution of civilizations will mirror the distribution of resources — not only in extent, but also in character, with concentrated regions producing civilizations competing on aggression, and diffuse regions producing civilizations competing on speed. On a sufficiently large scale, uneven distribution of cosmological resources would violate the cosmological principle, which is a cornerstone of contemporary cosmology. However, on the smaller scales (especially galactic scales) that would confront early spacefaring civilizations, the differential of resources between concentrated stellar regions and diffuse steller regions may be sufficient to differentiate regions of a galaxy given over to competition on speed for cosmological resources and regions of the same galaxy given over to competition on aggressiveness for cosmological resources. With the position of Earth in a spiral arm of the Milky Way, we inhabit a region of relatively diffuse distribution of stars, so that any nascent spacefaring civilizations with which we would be in competition would be competition in speed. It is therefore in our interest to reach the stars as soon as possible, or, by declining competition, reconcile ourselves to the existential risk of being shut out of the possibility of being a civilization relevant to the galaxy.

It may be that civilizations in regions of diffuse and therefore limited resources naturally understand their dilemma and consequently focus upon spacecraft speed (which has always been a preoccupation of those engaged in the speculative engineering of interstellar capable spacecraft), while civilizations in regions of more concentrated and therefore defensible resources intuit their relative ease of travel and focus instead on aggressive domination of their region of space, and the technology that would make such aggressive domination possible. Thus a civilization may already begin to be shaped by the selection pressures of its galactic neighborhood even as a nascent spacefaring civilization. An obvious instantiation of this phenomenon would be a single planetary system in which more than one planet produced life and civilization. These multiple civilizations expanding into a single planetary system would immediately be in conflict over the resources of that planetary system. In our exploration of our own planetary system, we have not had to compete with another civilization, and so our earliest spacecraft have gone into space without armor or armaments. We have a free hand in expanding into our planetary system; that may not be true for all nascent spacefaring civilizations, and it may not be true for us at spacefaring orders of magnitude beyond our planetary system.

. . . . .

amoeba_fleet

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: