Sunday


dominance-hierarchy

An Explanatory Mechanism for Aggressively Expanding Civilizations

Any emergent complexity that adds itself to the ultimate furniture of the universe can be, on the one hand, the basis of further emergent complexities, while on the other hand it can function as a selection pressure upon the other furniture of the universe, including earlier and later iterations of emergent complexity. Now, that sounds very abstract — indeed, I could express this idea even more abstractly in the language of ontology — so let me attempt to provide some illustrative examples. When biology emerged from the geochemical complexity of Earth, biology eventually gave rise to further emergent complexities (consciousness, technology, civilization), but biology also began to shape the geochemical context of its own emergence. Biochemistry emerged from geochemistry, thus biochemistry has always been, ab initio, in coevolution with the geochemistry upon which it supervenes.

Life, then, coevolved with geology, as life now coevolves with later emergent complexities, which means that, in the case of human beings, human life coevolves with the habitat it has made for itself — Earth of the anthropocene and our civilization (cf. Intellectual Niche Construction). This point has been made by Wilson and Lumsden:

“[The] high level of human mental activity creates culture, which has achieved a life of its own beyond the ordinary limits of biology. The principal habitat of the human mind is the very culture that it creates.”

Edward O. Wilson and Charles J. Lumsden, Promethean Fire: Reflections on the Origin of Mind, Cambridge and London: Harvard University Press, 1983, p.

We might distinguish between relationships of tightly-coupled coevolution and loosely-coupled coevolution, with the familiar instances of coevolution — such as pollinating bees and flowers — qualifying as tightly-coupled, while those evolutionary relationships not usually recognized as coevolutionary qualify as loosely-coupled — for example, geochemistry and biochemistry, although the scale at which we make our comparison will be crucial to determining whether the coupling is tight or loose. “Coevolution” is another way of saying that each party to the coevolutionary relationship acts as a selection pressure on the other, so we make the distinction between tightly-coupled coevolution and loosely-coupled coevolution in order to differentiate between selection pressures, some of which are immediate and enduring (tightly-coupled), and some of which are distant and only sporadically influential (loosely-coupled).

Now that civilization has established itself as an emergent complexity on Earth, civilization may serve as the springboard for further emergent complexities, but it also has emerged as a new selection pressure upon the life that gave rise to civilization, while the geology of Earth and the terrestrial biosphere are, in turn, a selection pressure on civilization. Terrestrial (planetary) civilization may come to act as a selection pressure upon other emergent complexities yet to appear, which will also act as a selection pressure on terrestrial civilization, and these emergent complexities are likely to be emergent from civilization. A spacefaring civilization that encompasses (at first) multiple worlds of a planetary system, multiple planetary systems of multiple stars, or multiple galaxies, would be one form of emergent complexity that could arise from planetary civilization.

Among the immediate and enduring selection pressures on spacefaring civilizations will be the distribution of exploitable resources in space, as well as the other spacefaring civilizations with which such a civilization is in competition for these resources (these other spacefaring civilization themselves being an emergent complexity originating from other planetary civilizations derived from other biospheres). There may also be selection pressures from emergent complexities that we do not yet understand, and which we have not yet identified. These two selection pressures — distribution of resources and competition with other spacefaring civilizations — will shape (perhaps have shaped) the origins, evolution, distribution, and fate of spacefaring civilizations. Spacefaring civilizations will be in a tightly-coupled coevolutionary relationship with the cosmological distribution of resources (matter and energy) and the efforts of other spacefaring civilizations to also dominate these resources. Let us consider this more carefully.

When I wrote my post on Social Stratification and the Dominance Hierarchy I included a diagram (reproduced above; also see Group Dynamics) illustrating the selection pressures that lead to a dominance hierarchy in social animals. The diagram distinguished among scarce, limited, and abundant resources. Scarce resources lead to cooperation; sufficiently abundant resources can eliminate competition. In the case of limited resources, these resources can be scattered or concentrated. Scattered resources lead to competition in speed, while concentrated resources lead to competition in aggressiveness, and thence to a dominance hierarchy. The dominance hierarchy among human beings, which in civilization we call social stratification, implies that the resources significant to human beings have been scarce and concentrated.

If we confine our interest in human access to resources only to Earth, we can readily distinguish between regions where resources are sufficiently concentrated that they can be defended, and regions where resources are scattered, cannot be defended, and are therefore the object of competition in speed rather than aggressiveness. (We can also distinguish different social systems that have arisen shaped by the differential distribution of resources.) If we pull back from this geographical scale and consider the question from the perspective of a spacefaring civilization, the whole of Earth, our homeworld, is a concentrated and defensible locus of resources, but the cosmos on the whole represents an extreme scattering, over interstellar and intergalactic distances, of limited or scarce resources. This scattering of limited resources, in contradistinction to the concentrated and defensible resources of the homeworld of any intelligence species, ought to have the result of spacefaring civilizations defending their homeworld while competing for resources with other spacefaring civilizations, not through competition in aggressiveness, but through competition in speed.

Competition in aggressiveness for the resources of spacefaring civilization may be excluded by the scattering of these resources, so that we are not likely to see the emergence of a galactic empire, crushing under the boot heels of its storm troopers the aspirations to freedom, dignity, and equality of intelligent species throughout the galaxy. However, competition in speed for limited resources distributed on a cosmological scale may well be the primary selection pressure on spacefaring civilizations, and competition in speed ought to entail the rapid cosmological expansion of these civilizations.

Elsewhere I have mentioned the papers of S. Jay Olson (cf. Big Time, The Genesis Project as Central Project, and Second Addendum on the Genesis Project as Central Project: Invasive Species) concerning what Olson calls “aggressively expanding civilizations,” which embody rapid expansion on a cosmological scale. Here is Olson’s characterization of such as scenario:

“An ‘aggressive expansion scenario’ is a proposed cosmological phenomenon… whereby a subset of advanced life appears at random throughout the universe and expands in all directions, saturating galaxies and utilizing resources as they go… We also assume that all aggressive expanders will be of the same behaviour type, i.e. they all expand with the same velocity v in the local comoving frame, and the expanding spherical front of galaxy colonization leads to observable changes a fixed time T after the front has passed by.”

“Estimates for the number of visible galaxy-spanning civilizations and the cosmological expansion of life,” S. Jay Olson, International Journal of Astrobiology, Cambridge University Press, 2016, pp. 2-3, doi:10.1017/S1473550416000082

Competition in speed among spacefaring civilization would mean a focus on maximizing v for the expanding spherical front of galaxy colonization.

Citing Bostrom and Omohundro on the nature of superintelligent AI (presumptively the heir of our technological civilization, but see the final sentence below quoted from Olson, as he addresses this as well), Olson writes:

“From an independent field of study, it has been argued that resource acquisition is one of the ‘basic drives’ of a generic superintelligent AI. This means, in essence, that a sufficiently powerful AI will tend to use extreme expansion and resource acquisition as a means of maximizing its utility function, unless it is explicitly and carefully designed to avoid such behavior… even if advanced alien species tend to be monks who have forsaken all worldly gain, the accidents involving insufficiently careful design of an artificial superintelligence are potentially one of the largest observable phenomena in the universe, when they occur. The word ‘civilization’ is not really the best description of such a thing, but we will use it for the sake of historical continuity.”

“Long-term consequences of observing an expanding cosmological civilization”, S. Jay Olson

We can see that competition in speed for limited resources provides an explanatory mechanism for the existence and expansion of aggressively expanding civilizations. Spacefaring civilizations that successfully compete for resources on a cosmological scale endure over cosmological scales of time, and perhaps leave a legacy in the form of a universe transformed sub specie civilizationis. Spacefaring civilizations that fail to expand go extinct, and leave no observable legacy. Whether there is room for more than one aggressively expanding civilization in any one universe, or whether this expansion takes place on scale of time sufficient to foreclose the opportunity of expansion to any rival civilizations, remains an open question. Once a universe is saturated with life, no other life, and no other civilization emergent from other life, would have an opportunity to appear, unless or until a cosmological scale extinction event created such an opportunity (which could be furnished by sufficiently violent gamma ray bursts).

The above considerations pose other interesting questions that could be taken up as research questions in the study of spacefaring civilization. How are we to distinguish between scarce and limited resources on a cosmological scale? Might the closely packed stars of globular clusters and galactic centers constitute limited resources, while diffuse spiral arms and the outer portions of elliptical galaxies constitute scarce resources? At what threshold of availability should we distinguish between matter and energy being scarce or limited? This may be a problem contingently decided by the technologies of spacefaring not yet known to us. That is to say, if technologically mature civilizations find interstellar travel (or intergalactic travel) somewhat routine, then we may regard cosmological resources as scattered and limited, and more concentrated areas such as mentioned (globular clusters and galactic centers) might pass over a threshold such that they would be considered concentrated — thus there would be the possibility of galactic empires competing on aggressiveness for defensible resources. If, on the other hand, interstellar (or intergalactic) travel is always difficult, then the universe presents, at best, limited resources, and perhaps scarce resources. In the case of scarce resources, there would be a window of opportunity for cooperation among spacefaring civilization for the effective and efficient exploitation of these resources.

If, as on the surface of Earth (and relative to a planetary civilization), cosmological resources are distributed unevenly, then the distribution of civilizations will mirror the distribution of resources — not only in extent, but also in character, with concentrated regions producing civilizations competing on aggression, and diffuse regions producing civilizations competing on speed. On a sufficiently large scale, uneven distribution of cosmological resources would violate the cosmological principle, which is a cornerstone of contemporary cosmology. However, on the smaller scales (especially galactic scales) that would confront early spacefaring civilizations, the differential of resources between concentrated stellar regions and diffuse steller regions may be sufficient to differentiate regions of a galaxy given over to competition on speed for cosmological resources and regions of the same galaxy given over to competition on aggressiveness for cosmological resources. With the position of Earth in a spiral arm of the Milky Way, we inhabit a region of relatively diffuse distribution of stars, so that any nascent spacefaring civilizations with which we would be in competition would be competition in speed. It is therefore in our interest to reach the stars as soon as possible, or, by declining competition, reconcile ourselves to the existential risk of being shut out of the possibility of being a civilization relevant to the galaxy.

It may be that civilizations in regions of diffuse and therefore limited resources naturally understand their dilemma and consequently focus upon spacecraft speed (which has always been a preoccupation of those engaged in the speculative engineering of interstellar capable spacecraft), while civilizations in regions of more concentrated and therefore defensible resources intuit their relative ease of travel and focus instead on aggressive domination of their region of space, and the technology that would make such aggressive domination possible. Thus a civilization may already begin to be shaped by the selection pressures of its galactic neighborhood even as a nascent spacefaring civilization. An obvious instantiation of this phenomenon would be a single planetary system in which more than one planet produced life and civilization. These multiple civilizations expanding into a single planetary system would immediately be in conflict over the resources of that planetary system. In our exploration of our own planetary system, we have not had to compete with another civilization, and so our earliest spacecraft have gone into space without armor or armaments. We have a free hand in expanding into our planetary system; that may not be true for all nascent spacefaring civilizations, and it may not be true for us at spacefaring orders of magnitude beyond our planetary system.

. . . . .

amoeba_fleet

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Vernacular Declensionism

27 October 2016

Thursday


are-you-ready-to-be-a-prepper

When I was an adolescent I was quite taken with what was known at the time as “survivalism.” With the little money that I had a bought a copy of Life After Doomsday by Bruce Clayton, I subscribed to Survive magazine (at the same time I was reading Soldier of Fortune magazine), and my favorite science fiction novels were those that dealt with the end of the world. There is an entire sub-genre of science fiction that dwells on the end of the world — some of it concerns itself with the actual process of societal collapse, some considers the short term consequences of societal collapse, and some considers the far future consequences. The most famous novel in this genre is also perhaps the most famous novel in science fiction — Walter Miller’s A Canticle for Leibowitz — which lingers over a post apocalyptic future at three distinct six hundred year intervals. My interest in the end of the world also led to my studying civil defense and eventually nuclear strategy, which fascinated me. This autodidactic process eventually led me to high culture sources of declension narratives, and hence to an intellectual engagement that ceased to be related to survivalism.

My Cold War childhood provided ample scope for my secular apocalyticism, but in reading about survivalism it was not long before I discovered that, ideologically, the survivalist movement was far to the right, though with some exceptions. There is was a bit of overlap between the counter-culture back-to-the-land movement, which was typically on the political left, and the survivalists, who were typically on the right. Both camps read the Foxfire books and imagined themselves returning to a simpler, and more self-sufficient life — an obvious response to the alienation produced by industrialized society and exponential urban growth. The exponential urban growth that especially blossomed in Europe and North America following the Second World War, and which effectively led to the depopulation of the rural countryside, continues in our time (cf. The Rural-Urban Divide). One of the most significant global demographic trends has been, is, and will continue to be the movement of rural populations into increasingly large megacities. This process means that the communities of the rural countryside are dismantled, while new communities are created in urban contexts, but the transition is by no means smooth, and some weather the change better than others.

Several changes occurred at or around the middle of the twentieth century that severally contributed to the rise of declension narratives: the exponential growth in urbanism mentioned above, atomic weapons and the Cold War, the dissolution of extended families, the Pill, and so on. Before this time, narratives of the future were largely expansionist and optimistic. During the Golden Age of science fiction, uncomplicated heroes traveled from planet to planet in a quixotic quest to right wrongs and to rescue damsels in distress. Now this seems very innocent, if not naïve, and we now prefer anti-heroes to heroes, as we identify more with their tortured struggles than with the uncomplicated heroes and their happily-ever-after.

Thus while our cities are larger than ever before in the history of civilization, and they are growing larger by the day, civilization is more integrated around the planet than ever before, and becoming more tightly integrated all the time (even as politicians today flee from the label of “globalization” because they know it is, at the moment, politically radioactive), and civilization is more robust than ever, with higher levels of redundancy in essential infrastructure and services than ever before, as well as possessing long-term, large-scale disaster planning and preparation, we are more pessimistic than ever before about the prospects of this vigorous civilization. Perhaps this is simply because it is not the civilization we expected to have.

In the social atmosphere of Cold War tension and the omnipresent threat of nuclear annihilation, which could materialize at any moment out of the clear blue sky, those initially disaffected by the emerging character of modern urbanized life sought to opt out, and this process of opting out of the emerging social order was often given intellectual justification in terms of a Weltanschauung of decline, which I call declension historiography. Declensionism varies in scope, from mainstream media columnists bemoaning the declining stature of the US in a multipolar world, to disaster preparedness, to societal collapse, to awareness of global catastrophic risk and existential risk, to a metaphysical doctrine of universal, inevitable, and unavoidable decline (which is today often expressed in scientific terms by reference to the second law of thermodynamics). Doomsday preparedness, then, comes in all varieties, from those hoping to survive “the big one,” where “the big one” is a massive earthquake, hurricane, or even an ephemeral political revolution, to those gearing up for the collapse of civilization and living in a world where there is no more electricity, no hospitals, schools, governments, or indeed any social institutions at all beyond the individual survivalist and his intimate circle.

The prehistory of doomsday preppers also included those preparing for a variety of different environmental, social, and political ills. Hippies founded communes and used their agricultural skills to grow better dope. Several apocalyptic churches have predicted the end of the world, and some explicitly urged members to build fallout shelters in order to survive nuclear war (such as the Church Universal and Triumphant). The communitarians on the right have often chosen to opt out of mainstream society under the umbrella of one of these apocalyptic churches, while the rugged individualists on the right became survivalists and they prepared to meet an apocalyptic future on their own terms, but, again, often justified in terms of a much larger conception of history. This declension narrative has become pervasive in contemporary society. While the end of the Cold War has meant the decline in the risk of nuclear war, the political left now favors scenarios of environmental collapse, while the political right favors scenarios of institutional collapse due to bank failure, currency collapse, the welfare state, or the decline of traditional social institutions (such as the church and the family).

The terms “suvivalist” and “survivalism” are not used as widely today, but the same phenomenon is now known in terms of “preppers,” short for “doomsday preppers,” which indicates those who actively plan and prepare for apocalyptic scenarios. The political division and overlap is still evident. The left, focusing on environmental collapse, continues to look toward the “small is beautiful” ideal of the early environmental movement, inherited from the Club of Rome’s Limits to Growth study; they focus on community and sustainable organic farming and tend not to stress the necessarily violent social transition that would occur if the most shrill predictions of “peak oil” came to pass, and industrialized civilization ground to a halt (this sort of scenario approaches mainstream respectability in some popular books such as $20 Per Gallon: How the Inevitable Rise in the Price of Gasoline Will Change Our Lives for the Better, which I discussed in Are Happy Days Here Again?). These left-of-center declensionists are rarely called “preppers,” but their activities overlap with those usually called preppers.

The right, in contrast, does focus on the presumptively violent transitional period of social collapse, fetishizing armed resistance to marauding hordes, who will stream by the millions from overcrowded cities when the electricity stops and trucks stop bringing in food. While details are usually absent, the generic social collapse scenario has come to be called “SHTF,” which is an acronym for “shit hits the fan,” as in, “when the shit hits the fan, if you aren’t prepared, things are going to go badly for you.” Right-of-center declensionists, like the left, have an overarching vision of the collapse of civilization (as strange as that may sound), but drawing on different ideas and different causes than the left.

What are these declensionist ideas and the presumed causes of declension? Where does vernacular declensionism get its ideas? Why is declensionism so prevalent today? I have touched upon this issue previously, especially in Fear of the Future, where I made an argument specific to the nature of industrialized society and the reaction against it:

“…apocalyptic visions graphically illustrate the overthrow of the industrial city and the order over which it presided… While such images are threatening, they are also liberating. The end of the industrial city and of industrial civilization means the end of wage slavery, the end of the clocks and calendars that control our lives, and the end of lives so radically ordered and densely scheduled that they have ceased to resemble life and appear more like the pathetic delusions of the insane.”

This explains the motivation for entertaining declensionist ideas, but it does not explain the sources of these ideas. But in the same post I also cited a number of science fiction films that have prominently depicted apocalyptic visions. It is difficult to name a science fiction film that is not dystopian and apocalyptic, and these films have had a great impact on popular culture. Even those unsympathetic to the prepper mindset effortlessly recognize the familiar tropes of societal collapse portrayed in film. Presumably the writers of these films derive their declensionist ideas from a mixture of vernacular, social media, mass media, and high culture declensionism, as these ideas have percolated through society.

The mass media rarely recognizes preppers (although I see that there is a television program, Doomsday Preppers), and when it does do, it does so in a spirit of condescension. The greatest friends of civilization today are those who never think about it and take for granted all of the comforts and advantages of civilization. For most of them, the end of civilization is simply unimaginable, and it is this perspective that is operative when the occasional article on preppers appears in the mass media, where it is presented with a mixture of bemused pity and incredulity. The target audience for these stories are precisely the people that preppers believe will not last very long when the shit hits the fan. I could easily write a separate blog post (or an entire book) about the relationship of the mass mainstream media to declension scenarios, but this is a distinct topic from that of vernacular declensionism. There is some overlap between mass media and social media, as every mainstream media outlet also has a social media presence, and the occasional social media post will “go viral” and be picked up by the mainstream media. In this way, some survivalist ideas find a wider audience than the core audience, already familiar with the message, and this can draw in the curious, who may eventually become converts to the message. Other than this, the contribution by mass media to declension historiography is very limited (except for supplying a steady stream of inflammatory news articles that are pointed out as sure signs that the end is near).

Social media is vast and amorphous, but is given shape by each and every one of us as we pick and choose the social media we consume. This filtering effect means that like-minded individuals share a common ideological space in social media, and they overlap very little with those of divergent ideologies. The prepper community is well represented in social media, which has taken over from the small private presses that formerly distributed survivalist literature to the small survivalist community. The social media presence of preppers is all over the map, with an array of diverse social collapse scenarios, but, like survivalists of the 70s and 80s, still primarily on the political right, and often inspired by Biblical visions of apocalypse. In 72 Items That Will Disappear First When The SHTF, preppers are urged to buy boxes of Bibles: “Bibles will be in demand and can be used to barter items. A box of 100 small Bibles cost about $20.” Perhaps the writer of this article has watched The Book of Eli too many times and imagines that the Bible may be hard to come by in post-apocalyptic America. It would be extraordinarily difficult for the Bible to become a rarity — as difficult as it would be for human beings to go extinct. Both are too widely distributed to be eradicated by anything short of terrestrial sterilization. If you want trade goods, you would be much better off stocking up on books that will be rare than books that will be common, but this doesn’t stoke the prepper narrative, so the logic of commerce gives way to the ideology of social cohesion through embattled belief.

High culture declensionism, as to be found, for example, in Oswald Spengler’s classic The Decline of the West (Der Untergang des Abendlandes), is scholarly, if not pedantic, and is essentially an exercise in the philosophy of history. (Interestingly, the most famous representatives of the Beat Generation, who foreshadowed the hippies’ back-to-the-land rejectionism of industrialized society, were avid readers of Spengler; cf. Sharin N. Elkholy, The Philosophy of the Beats, University Press of Kentucky, 2012, p. 208.) Spengler employs the old standby of a cyclical conception of history, and despite the intellectual and cultural distance we can come since cyclical history was the norm, vernacular cyclical history continues to be an influence. Vernacular cyclical history can appeal to intuitions about the life cycle of all things, and it is easy to conceive of civilization as participating in this coming to be and passing away of everything sublunary.

Saint Augustine, the father of the philosophy of history, may be cited as another high culture representative of declensionism, living as he did as the Roman world was unraveling. The sack of Rome by the Visigoths in 410 AD was the occasion of Saint Augustine writing his magnum opus, The City of God (De Civitate Dei). Rome had been a city untouched by any invading army for more than eight hundred years, and had functioned as the capital of the known world, and yet it had been laid low by unsophisticated barbarians. How was this to be explained? This is the task Augustine set himself, and Augustine had an answer. The ruination of the City of Man was, for Augustine, a mere detail of history, of no great importance, as long as the City of God was thriving, as he believed it to be. Indeed, the City of God would go on to thrive for more than a thousand years after Augustine as western Europe attempted to make itself over as the Earthly image of the City of God.

Augustine represents a sharp break with cyclical history. Throughout the City of God Augustine is explicit in his rejection of cyclical history, arguing against it both as a theory of history as well as due to its heterodox consequences. Thus while we can construe Augustine as a representative of declension history, it is a linear declension history. Augustine’s vision of linear declension history was remarkably influential during the European middle ages, when the few educated members of society did not perceive any break in history from classical antiquity to medievalism. For them, they were still Romans, but degraded Romans, very late in the history of Rome. The miserable condition of life of the middle ages was to be put to having come at the tail end of history, waiting for the world to well and truly end.

Vernacular declension, with its intuitive retention of cyclical history, resides awkwardly side-by-side with the Whig historiography and progressivism (ultimately derived from Augustine’s linear conception of history) that is so common in the modern world — the idea that we are modern, and therefore different from the people of the past and their world, is axiomatic and unquestioned. Human periodization of time is as natural as the categories of folk biology — our modernism, then, is, in part, a function of folk historiography (on folk concepts cf. Folk Concepts and Scientific Progress and Folk Concepts of Scientific Civilization). What are the categories of folk historiography, what kind of historical understanding of the world is characteristic of folk historiography? This will have to be an inquiry for another time.

I will conclude only with the observation that vernacular declensionism might paradoxically be employed in the service of civilization, if an interest in responses to existential threats to societal stability could be used as a stepping stone to the study of and preparation for global catastrophic risks and existential risks. That is a big “if.” When I think back to my own frame of mind when I was an enthusiast of survivalism, I thought that civilization had little or nothing of interest to me, and that all the adventure that might be possible in the world would follow from the “struggle for subsistence” that Keynes took to be the “economic problem” of humanity, and which contemporary civilization has largely solved. I still have sympathy for those who find little to value in civilization, as I can remember that stage in my own development quite clearly. In a sense, I only became reconciled to civilization; I never belonged to those who never question civilization, and who can’t imagine its extirpation. Civilization was, for me, always open to question.

. . . . .

doomsday-preppers-television

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


creation-of-birds

Biocentrism in an extended sense

In my recent post The Technocentric Thesis I formulated the latter idea such that all technocentric civilizations begin as biocentric civilizations and are transformed into technocentric civilizations through the replacement of biological constituents with technological constituents. This technocentric thesis implicitly refers to the anterior biocentric thesis, such that all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces (in its strong form) or all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces (in its weak form).

The technocentric thesis may be considered a generalization from the biocentric thesis (or, at least, an extension of the biocentric thesis), in so far as I previously argued in Astrobiology is island biogeography writ large that “spaceflight is to astrobiology as flight is to biogeography” which entails, in regard to the continuity of civilization and natural history, that “technology is the pursuit of biology by other means.” Thus technocentric civilizations continue imperatives of biocentric civilization, but by means other than biocentric means, i.e., by technological rather than biological means. Throughout the process of the replacement of the biological constituents of civilization by technological constituents of civilization, the imperatives of civilization remain intact and continuous.

We can make other generalizations from (and extensions of) the biocentric thesis. I wrote about a generalization of biophilia to non-terrestrial life in The Scope of Biophilia: “[E.O.] Wilson has already anticipated the extrapolation of biophilia beyond terrestrial life. Though Wilson’s term biophilia has rapidly gained currency and has been widely discussed, his original vision embracing a biophilia not limited to Earth has not enjoyed the same level of interest.” Here is the passage in question of E. O. Wilson’s Biophilia:

“From infancy we concentrate happily on ourselves and other organisms. We learn to distinguish life from the inanimate and move toward it like moths to a porch light. Novelty and diversity are particularly esteemed; the mere mention of the word extraterrestrial evokes reveries about still unexplored life, displacing the old and once potent exotic that drew earlier generations to remote islands and jungled interiors.”

Human Biophilia in its initial sense is the affinity that human beings have for the terrestrial biosphere, and the obvious extension of human biophilia (suggested in the passage quoted above from Wilson) would be the affinity that human beings may have for any life whatsoever in the cosmos, terrestrial or extraterrestrial. Might this hold generally for all biological beings, such that we can posit the affinity that some non-terrestrial biological being might have for the life of its homeworld, and the affinity that some non-terrestrial biological being might have for all life, including life on Earth (the mirror image of human biophilia in an extended sense)? These are the exobiological senses of biophilia (exobiophilia, if you like, or xenobiophilia).

These mirror image formulations of human biophilia and biophilia on the part of other intelligent (biological) agents suggests a more comprehensive formulation yet, that of the affinity of any biological being for any biology to be found anywhere in the universe. The presumed affinity that each biological organism will have for the biota of its homeworld involves the existential necessity of an organism’s attachment to the biota of its homeworld on the one hand, while on the other hand there is biophilia as a moral phenomenon, i.e., a constituent in the moral psychology of any biological being, the cognitive expression (or cognitive bias) of biocentrism. Biophilia in this formal sense would be the affinity that any biological being would have for the biota of its homeworld, while this formal biophilia in a generalized sense would be the affinity that any biological being would have for any life whatsoever in the cosmos.

How comprehensive is the scope of biophilia, or how comprehensive can it be, or ought it to be? Can we meaningfully extrapolate the concept of biophilia to such comprehensive scope as to include life on other worlds? I have formulated several thought experiments — Terrestrial Bias, Astrobiology Thought Experiment, and The Book of Earth — to investigate our intuitions in regard to other life, both on Earth and elsewhere. It would be an interesting project to follow up on these thought experiments more systematically as a research program in experimental philosophy. For the moment, however, I remain confined to thought experiments.

There are at least two forces counterbalancing the possibility of an expansive biophilia, with a scope exceeding that of terrestrial biology:

1) biophobia, and…

2) in-group bias

Parallel to biophilia there is biophobia, which is as instinctual as the former. Just as human beings have an affinity for certain life forms, we also have an instinctive fear of certain life forms. Indeed, the biosphere could be divided up into forms of life for which we possess biophilia, forms of life for which we possess biophobia, and forms of life to which we are indifferent. Biophobia, like biophilia, can be extrapolated as above to extraterrestrial forms of life. If and when we do find life elsewhere in the universe, no doubt some of this life will inspire us with awe and wonder, while some of its will inspire us with fear, perhaps even with palpable terror. So the scope of biophilia is modified by the parallel scope of biophobia. Given that terrestrial life is going to be more like us, while alien life will be less like us, I would guess that any future alien life will, on balance, inspire greater biophobia, while terrestrial life will, on balance, inspire greater biophilia. If this turns out to be true, the extension of biophilia beyond life of the terrestrial biosphere will be severely limited.

There is a pervasive in-group bias that marks eusociality in complex life, i.e., life sufficiently complex to have evolved consciousness, and perhaps also among eusocial insects, which are not likely to possess the kind of consciousness possessed by large brained mammals. I am using “eusocial” here in E. O. Wilson’s sense, as I have been reading E. O. Wilson’s The Social Conquest of Earth, in which Wilson contrasts the eusociality of insects and of human beings and a few other mammals. Wilson finds eusociality to be a relatively rare adaptive strategy, but also a very powerful one once it takes hold. Wilson credits human eusociality with the human dominance of the terrestrial biosphere today.

Wilson’s conception of eusociality among primates has been sharply rejected by many eminent biologists, among then Richard Dawkins and Stephen Pinker. The debate over eusociality in primates has focused on group selection (long a controversial topic in evolutionary biology) and the absence of reproductive division of labor in human beings. But the fact that one communication in criticism of Wilson and co-authors to the eminent scientific journal Nature (“Inclusive fitness theory and eusociality” Nature, 2011 March 24; 471, 7339: E1-4; author reply E9-10. doi: 10.1038/nature09831) had 134 signatures indicates that something more than the dispassionate pursuit of knowledge is involved in this debate. I am not going to attempt to summarize this debate here, but I will say only that I find value in Wilson’s conception of eusociality among human beings, and that the criticism of Wilson’s position has involved almost no attempt to understand Wilson’s point sympathetically.

Wilson had, of course, previously made himself controversial with his book on sociobiology, which discipline has subsequently been absorbed into and transformed into evolutionary psychology (one could say that sociobiology is evolutionary psychology in a nascent and inchoate stage of development), which continues to be controversial today, primarily because it says unflattering things about human nature. Wilson has continued to say unflattering things about human nature, and his treatment of human eusociality in The Social Conquest of Nature entails inherent human tribalism, which in turn entails warfare. This is not a popular claim to make, but it is a claim that resonates with my own ideas, as I have many times argued that civilization and war are coevolutionary; Wilson pushes this coevolutionary spiral of (in-group) sociality and (out-group) violence into the prehistoric, evolutionary past of humanity. With this I completely concur.

In-group bias and out-group hostility parallel each other in a way very much like biophilia and biophobia, and we could once again produce parallel formulations for extrapolating these human responses to worlds beyond our own — and perhaps also to other intelligent agents, so that these responses are not peculiarly human. How large can the scope of in-group bias become? It is a staple of many science fiction stories that human beings, divided against each other, unify to fight a common extraterrestrial enemy. I suspect that this would be true, and that in-group bias could be expanded even farther into the universe, but it would never be without the shadow of an out-group, however that out-group came to be defined, whether as other human beings who had abandoned Earth, or another species sufficiently different from us so as to arouse our suspicion and distrust.

There is a little known essay by Freeman Dyson that touches of themes of intrinsic human tribalism that are very much in the vein of Wilson’s argument, though Dyson’s article is many decades old, from the same year that human beings landed on the moon: “Human Consequences of the Exploration of Space” (Bulletin of the Atomic Scientists, Sept. 1969, Vol. XXV, No. 7; I was unable to find this article available on the internet, so I obtained a copy through interlibrary loan… many thanks to the Multnomah County Library System). In this article Dyson considers the problem of people in small groups, and in particular he describes how intrinsic human tribalism (i.e., in-group bias) might be exapted for a better future:

“…the real future of man in space lies far away from planets, in isolated city-states floating in the void, perhaps attached to an inconspicuous asteroid of perhaps to a comet… most important of all for man’s future, there will be groups of people setting out to find a place where they can be safe from prying eyes, free to experiment undisturbed with the creation of radically new types of human beings, surpassing us in mental capacities as we surpass the apes… So I foresee that the ultimate benefit of space travel to man will be to make it possible for him once again to live as he lived throughout prehistoric time, in isolated small units. Once again his human qualities of clannish loyalty and exclusiveness will serve a constructive role…”

Once again, I completely concur, though this is not the whole story. One of the greatest demographic trends of our time is urbanization, and we have seen millions upon millions move from rural areas and small towns into the always growing cities, both for their opportunities and their intrinsic interest. So human beings possess these tribal instincts that Dyson would harness for the good, but also eusocial instincts that flower in the world’s megacities, which are centers of both economic and intellectual innovation. Thus I find much of value in Dyson’s vision, but I would supplement it with the occasional conurbation, and I would assume that, over the course of an individual’s life, that there would be times that they would prefer the isolated community, times when they would prefer urban life, and times when they would want to leave all human society behind and immerse themselves in wilderness and wildness — perhaps even in the wilderness of an alien biosphere.

All of the things I have been describing here are essentially biological visions of the human future, which suggest that biocentric civilization still has many ways that it can grow and evolve, even if it does not converge on a form implied by the technocentric thesis, in which biology is displaced by technology. Technology can replace biology, and, when it does, the ends of biocentric civilization come to served by technological means, but that technology can replace biology does not mean that technology will replace biology.

Perhaps one of the sources of our technophilia is that we tend to think in technological terms because technology attains its ends over human scales of time, even over the scale of time of the individual human life and the individual human consciousness. But what technology can do quickly, biology can also do, more slowly, over biological and geological scales of time. If human civilization should be wiped away by any number of catastrophes that await us, the technological path of development will be foreclosed, but the biological path to development will still continue to be open as long as life exists, though it will operate over a scale of time that human beings do not perceive and mostly do not comprehend.

. . . . .

Paul Klee, Bird Garden, 1924

Paul Klee, Bird Garden, 1924

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Technocentric Thesis

6 October 2016

Thursday


tech-v-man

A biological being among biological beings

A human being is a being among beings, and moreover a biological being among biological beings. We come to an awareness of ourselves, and of what we are, in a biological context. Biophilia, then, is a default consequence of being biological and finding oneself in a biological content; biophilia is a cognitive bias of biological beings. (Previously I considered the relationship between our biological nature and our biological bias in Biocentrism and Biophilia.) From both our biocentrism and our biophilia follows biocentric civilization, which I formulated in terms of the biocentric thesis, so it is natural that I would next attempt to formulate a technocentric thesis, as I have often contrasted biocentric and technocentric conceptions.

Until quite recently there was no possibility of pursing a non-biophilic bent, i.e., of pursuing a technocentric bent. Over the past several thousand years of human civilization, individual human beings had a limited opportunity to immerse themselves into the human world of civilization, and this civilization has been predominantly and pervasively biocentric. Since the Industrial Revolution, however, after which both agriculturalism and pastoralism became economically marginal, and the adoption of technology greatly increased, the ability to separate oneself from biocentric institutions has increased proportionately, but the individual has remained himself a biological being, tied to the biological world through existential needs for personal sustenance. Thus our being biological has repeatedly brought us back to our biological origins. If civilization were to fail, we could still return to an almost exclusively biocentric context and — at least for those who survived this traumatic transition — life would go on.

The emergence of a technological milieu following the industrial revolution suggests the possibility of a technocentric civilization that is the successor to biocentric civilization. Indeed, we may even understand the emergence of a fully technocentric civilization as the telos of industrialized civilization. We can formulate this in greater generality, as this process may hold for any civilization whatsoever that originates as a civilization of planetary endemism and makes the transition to a technological civilization.

Should the intelligent (biological) agents that build a civilization cease to be biological and become, for example, technological instead of biological, over time those intelligent agents could grow apart from their biocentric origins, and the social institutions in which these intelligent agents participate will become increasingly less biocentric. Biocentricity, then, is a function of biological origins, i.e., biocentrism is a consequence of being biological (as I put it in The Biocentric Thesis), and biophilia is an expression of biocentricity. As a technological civilization grows away from its biocentric origins, it is likely to become less biophiliac over time, which will in turn allow for greater expression of technophilia.

man-in-the-technological-age

An explicit formulation of the technocentric thesis

Let us try to give these ideas a more explicit formulation:

The Technocentric Thesis

Any fully technocentric civilization has evolved from a previous biocentric civilization by descent with modification.

…which implies its corollary formulated in the negative…

Technocentric Corollary

No civilization originates as a technocentric civilization.

By a “biocentric civilization” I mean a civilization that exemplifies the biocentric thesis. I have formulated a strong biocentric thesis (all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces) and a weak biocentric thesis (all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces), each of which has a corollary formulated in the negative. The technocentric thesis could also be given strong and weak formulations, e.g., all technocentric civilizations in our universe evolve from biocentric civilizations (strong) and all technocentric civilizations during the Stelliferous Era evolve from biocentric civilizations (weak). The weaker formulation is in each case constrained by temporal parameter while the stronger formulation is unconstrained.

The mechanism by which a technocentric civilization evolves from a biocentric civilization I call replacement, and replacement can be formulated as the replacement thesis:

The Replacement Thesis

All technocentric civilizations begin as biocentric civilizations and are transformed into technocentric civilizations through the replacement of biological constituents with technological constituents.

This in turn implies a negative formulation as its corollary:

Replacement Thesis Corollary

No technocentric civilization originates as a technocentric civilization, but emerges by replacement from a biocentric civilization of planetary endemism.

How far can replacement go? We can already see in our own industrialized civilization partial replacement, but can there be a complete replacement of biological constituents by technological constituents? For any civilizations originating in intelligent biological organisms, it is unlikely that living organisms could ever be completely eliminated, but they may be rendered superfluous for all practical purposes (i.e., superfluous to civilization).

eye-on-dark-background

The argument from consciousness

It would be possible to construct a scenario in which biology can never be completely eliminated as a constituent of civilization. Consider the following scenario, which I will call the argument from consciousness, based on the indispensability of consciousness to civilization and the unknown parameters of machine consciousness.

The Argument from Consciousness

I will assume that there is such a thing as consciousness, that human beings are conscious at least some of the time, and that this human consciousness plays a significant role in human existence and in the civilizations built by human beings. (It is necessary to make these rudimentary stipulations because it is not unusual to find consciousness dismissed, or called an “illusion,” or to see its role in the world minimized or marginalized.)

The view is prevalent, perhaps even dominant, in AI circles such that anything that can pass the Turing test must be called conscious. There is a degree of mutual reinforcement between this common view among AI researchers and the tacit positivism that continues to influence the development of contemporary science, which consigns consciousness of the sphere of metaphysics and thus rules out in principle any metaphysical entity that is consciousness. I will not here attempt to make a case for consciousness as a metaphysical entity, but I will assume, for the purposes of what follows, that a principled refusal to consider consciousness is a barrier to understanding human behavior, including the behavior of building civilizations.

Since we do not yet know what consciousness is, and we cannot produce a scientific account of consciousness, we do not know what the conditions of consciousness are. If we had a scientific theory of consciousness that allowed us to quantify consciousness by taking meaningful measures of consciousness, any putative consciousness, whether generated by a mechanism or by biology, natural or modified or fully synthetic, could be tested by such measures of consciousness and objectively determined to be conscious or not. We do not as yet possess any such science, nor can we take any such measurements.

Human and animal consciousness constitute existence proofs of the possibility of consciousness arising by natural means, and thus consciousness ought to be amenable to study by methodological naturalism, and also to replication. It is possible that consciousness can only be produced by biological means, i.e., it is possible that machine consciousness cannot be generated. The existence proof of consciousness provided by biological beings is not an existence proof of machine consciousness. Now, I personally think that machine consciousness will eventually come about, but we will not know that this is possible until it has been achieved.

Even if machine consciousness is impossible, it would still be possible to engineer consciousness by biological means, employing some variation on existing biological substrates of consciousness, or producing consciousness by way of synthetic or artificial biology. In this case, a civilization (or post-civilizational social institution) that preserves consciousness, or desires to preserve consciousness, will not be able to become purely technocentric in the sense of entirely eliminating biology, though the biology that is retained may be entirely subordinated to technical means and technical institutions. A civilization that retained consciousness through such biological means, but entirely within a technocentric context, could be called a technocentric civilization in which biology was ineradicable.

The argument from consciousness is merely an argument (and not a proof of anything), because the same absence of a science of consciousness that would allow us to take objective measures of consciousness is the absence of a science that would make it possible to prove either that consciousness can inhere in different kind of substrates (biological or mechanical, for example), or that consciousness can only be generated through biological means. Until we have a science of consciousness, we can advance this line of argumentation only through existence proofs, i.e., proofs of concept.

Even then, even given building a conscious machine, without a science of consciousness we would have no way to rigorously and objectively compare and contrast human consciousness with machine consciousness. One way to resolve this dilemma is the Turing test, as noted above, but no one who has any degree of scientific curiosity could be satisfied with cutting the Gordian knot of consciousness rather than unraveling it.

thinking-explicitly

Final thought

One of the virtues of explicitly formulating one’s ideas as theses (or as arguments), as in the above, is that one can then turn to the explicit criticism of these theses, especially to the task of unpacking the assumptions embedded in the theses. Another virtue of explicit formulations is that they can be explicitly falsified. The existence of a civilization not derived from biological complexity emergent on a planetary surface would falsify the biocentric thesis.

These explicit formulations, then, are not be taken as definitive formulations. I do not consider the biocentric thesis, the technocentric thesis, or the replacement thesis to be in any sense definitive, but rather to be a point of departure in an analysis of the nature of civilization taken in its broadest signification and extrapolated to a cosmological scale. Thus I hope to return to each of these theses in order to tease out their assumptions in order to analytically approach the intuitive conception of civilization with which I began.

. . . . .

cloud-tree

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Fast or Slow to Mars?

27 September 2016

Tuesday


Now that Elon Musk has delivered his highly anticipated talk “Making Humans a Multiplanetary Species,” providing an overview of his plan for a Martian settlement sufficiently large to be self-sustaining (he mentioned a million persons moving to Mars in a fleet of 1,000 spacecraft leaving Earth en masse), the detailed analysis of this mission architecture can begin. Musk said in his talk that he thought it was a good idea that there should be many different approaches, so he clearly was not making any claim that his plan was the one and only workable mission architecture.

As both public space agencies and private space companies go beyond the talking phase and begin the design, testing, and construction of a Mars mission (or missions), these designs will embody assumptions about the best way to get to Mars with contemporary technology (there are many ways to do this). The assumptions, as usual, aren’t often explicitly discussed, because assumptions are foundational, and you have to have a community of individuals who share the same or similar assumptions even to begin designing something as complex as a human mission to Mars. Foundational assumptions may be challenged in initial “brainstorming” sessions, but once we get to sketches and calculations, the assumptions are already built into the design.

One of the most important assumptions about Mars mission design is whether that mission should be slow or fast. In this context. “slow” means following one of the well-established gravitational transfer trajectories (Hohmann Transfer Orbits) that many uncrewed missions to Mars have followed, which requires a minimum of fuel use and little or no braking upon arrival, but instead requires time.

A Hohmann transfer orbit to Mars would require many months (six months or more; cf. Flight to Mars: How Long? Along what Path?, which gives a figure of 8.5 months), the window to make the journey only occurs every 25 months, and during a long voyage such as this the crew would have to be maintained in good health, protected from radiation, and have enough space onboard to keep from going stir crazy. A Mars cycler configuration would involve travel times on the order of years. This is definitely a “slow” option, but also an option that minimizes propellant use.

The Mars Design Reference Mission (which I recently quoted in A Distinctive Signature of an Early Spacefaring Civilization), a design document produced by NASA in July 2009 (the full title is Human Exploration of Mars: Design Reference Architecture 5.0), characterizes their mission architecture as “fast” (the document repeatedly cites “fast transit trajectory”), but involves a one-way transit time of 6 to 7.5 months:

“…the flight crew would be injected on the appropriate fast-transit trajectory towards Mars. The length of this outbound transfer to Mars is dependent on the mission date, and ranges from 175 to 225 days.”

A “slow” mission to Mars such as this (which NASA calls a “fast” mission) ought to be designed about a large, rotating habitat that can simulate gravity (this has featured in films, such as The Martian). No one wants to spend six months in a “capsule.” An additional benefit of a large and slow Mars mission is that the rotating habitat sent to Mars could be maintained in Mars orbit as a Martian space station (such as I wrote about in A Martian Space Station and A Passage to Mars) and subsequent missions could add to this Martian space station.

Alternatively, instead of a large and comfortable habitat in which to travel, a slow mission to Mars might involve induced torpor in the crew (effectively, human hibernation), and while this would require far less food and water for the journey, this option, too, might be best achieved with simulated gravity. Human bodies evolved in a gravity field, and don’t do well outside that gravity field (cf. Hibernation for Long-term Manned Space Exploration by Shen Ge, which includes many links to resources on induced torpor).

A “fast” mission to Mars I will identify as anything faster that the six months or so required for a Hohmann transfer orbit. Fast journeys could be anything from a gentle ion thrust, using very little propellant and only cutting a little time off the trip, to powering half way to Mars (preferably at 1 g acceleration in order to again simulate gravity) and then decelerating for the second half of the trip. Musk’s mission design as presented in his IAC talk called for initial transfer times “as low as” 80 days (i.e., less than three months; his graphic for this section of the talk showed transit durations from 80-150 days), perhaps improving to as little as 30 days further in the future, but little detail was offered on this part of the mission architecture.

The quickest “fast” trips to Mars contemplated with contemporary technology would be about two weeks. A nuclear-powered ion engine might make the trip in three months, which is a lot better than six months, and might be considered “fast,” but Musk’s 30-80 day transit times are all designed around well-known chemical rocket technology, which makes the effort much closer to being practical in the near term. If you have enough rocket engines, big enough engines, and enough fuel, you can make the trip to Mars more quickly with chemical rockets than is usually contemplated, and that seems to be the SpaceX approach; much of the talk was taken up with concerns of propellant, fuel transfer in Earth orbit, and producing fuel on Mars.

It is important to point out that most of the technologies I have mentioned above — rotating spacecraft, induced torpor, nuclear rockets, and so on — have been the object of much study, but little practical experience. (An early version of the Nerva nuclear rocket was built and tested, but it wasn’t flown into space; cf. Secrecy and the STEM Cycle.) However, we have a pretty good grasp of the science involved in these technologies, so building actual spacecraft incorporating them is primarily an engineering challenge, not a science challenge (except in so far as there is a science of technology design and engineering application; cf. Testing Technology as a Scientific Research Program: A Practical Exercise in the Philosophy of Technology). In other words, we don’t need any scientific breakthroughs for a mission to Mars, but we need a lot of technological development and engineering solutions.

Hearing a presentation such as Elon Musk gave today is exciting, and definitely communicates that this project can be done, and even that it can be done on a grand scale. This is invigorating, and stokes what Keynes called our “animal spirits” for a voyage to Mars. If the momentum can be maintained, the development of a spacefaring civilization can be a practical reality within decades rather then centuries. Musk discussed the “forcing function” of having a settlement on Mars, and he is correct that this human outpost away from Earth would entail continual improvements in space transportation, and moreover it would extend human consciousness to include Mars as a human concern.

Once humanity begins to make itself a home on Mars, and human beings can call themselves “Martians” (perhaps even with a certain sense of pride) and adopt a genuinely Martian standpoint, humanity will be a multiplanetary species, a multiplanetary human civilization will begin to emerge, and this multiplanetary civilization will be distinct from our planetary civilization of today. Mars, in this scenario, would be a point of bifurcation, the origin of a new kind of civilization, localized in the same way that the industrial revolution can be localized to England.

. . . . .

Human Exploration of Mars: Design Reference Architecture 5.0

Human Exploration of Mars: Design Reference Architecture 5.0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


A Century of Industrialized Warfare:

wwi-tank

Mechanized Armor Enters the Fray


On 15 September 1916 one of the pivotal events of industrialized warfare occurred: the tank was used in battle for the first time in history. Mobile fire has been the crucial offensive weapon of warfare since the beginning of civilization and warfare, whether that mobile fire took the form of chariot archers, mounted horse archers, a ship of the line, or mechanized armor, as with the tank. Before industrialized warfare the heaviest armored unit was heavy cavalry (or possibly elephants, though elephants were never armored to the extent that cataphracti or medieval knights were armored), which was a shock weapon — mobile, but not mobile fire. The tank was able to combine mobile fire with heavy armor in a way that no non-mechanized force was capable, and this made it a distinctive feature of industrialized warfare.

The Battle of the Somme had started on 01 July 1916, and with two and half months into the “battle” it was obvious that the Somme would be like most WWI battlefields: largely static and dominated by defense: trenches, barbed wire, and machine gun nests, which had arrested the progress of any offensive and so had precluded decisive attainment of objectives. Up to this time, the technology of the industrial revolution had strengthened the defense, but with the introduction of the tank all that changed. Mechanized armor brought mobile fire into the age of industrialized warfare, and mechanized armor has remained, for a hundred years, the primary spearhead of offensive action.

Despite its initial effectiveness as a “terror weapon,” the pace of tank development was somewhat slow for wartime conditions. The Germans did not introduce their first tank until the A7V was deployed in March 1918, and the first battle between tanks took place during the Second Battle of Villers-Bretonneux in April 1918. Early tanks were mechanically unreliable, and were fielded in smaller numbers than would have been necessary to fundamentally change the conditions of battle. In many ways, this paralleled the use of aircraft during the First World War: the technology was introduced, but not yet mastered.

It was not the introduction of the tank that ended the First World War. However, an adequate conceptualization of mechanized armor began to emerge during the interwar period, when tanks underwent extensive development and testing, and Heinz Guderian wrote his Achtung — Panzer! (much as Giulio Douhet wrote The Command of the Air during the interwar period). The tank truly came into its own during the Second World War, combined with close air support in a highly mobile form of maneuver warfare that came to be called Blitzkrieg. The largest tank battle in history took place during the Battle of Kursk in July 1943, almost thirty years after the tank was first used in combat.

In The End of the Age of the Aircraft Carrier I speculated that armored helicopters could take the place of tanks in a mechanized spearhead. Though helicopters will always be more vulnerable than a tank, because they can never be as heavily armored as tanks, they are today the premier weapon of mobile fire and could press forward the attack far faster than tanks. Helicopter gunships, however, have not yet been fully exploited for battlefield use, partly because they appeared on the scene at a point of time in history when peer-to-peer conflict among nation-states was already a declining paradigm, and so they have filled a very different combat role.

The paradigm of hybrid warfare that is emerging in our own time — a form of warfare probably more consistent with the existence of planetary civilization than the past paradigm of peer-to-peer conflict among nation-states — has no place for heavily armored mobile fire comparable to the place of the tank in twentieth century warfare. The forces now actually engaged in armed conflict (as opposed to appearing in military parades) tend to be lighter, faster, and stealthier. Despite the tendency of warfare to press forward the rapid development of technologies under conditions of existential threat, we have seen that it can take decades to fully assimilate a new technology into warfare, as was the case with the tank. It will probably take decades to get beyond doctrines of mechanized warfare established in the twentieth century and to adopt a doctrine more suitable for the forces employed today.

. . . . .

1914 to 2014

. . . . .

A Century of Industrialized Warfare

0. A Century of Industrialized Warfare

1. Assassination in Sarajevo

2. Headlines around the World

3. The July Crisis

4. A Blank Check for Austria-Hungary

5. Serbia and Austria-Hungary Mobilize

6. Austria-Hungary Declares War on Serbia

7. Ernst Jünger is Mobilized

8. The August Madness

9. The Battle of Coronel

10. The Somme after One Hundred Years

11. The Tank after One Hundred Years

. . . . .

twentieth century war collage

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Fifteen Years Since 9/11

11 September 2016

Sunday


september-9-11-attacks-anniversary-ground-zero-world-trade-center-pentagon-flight-93-empty-street_40004_600x450

It is now fifteen years since the coordinated terror attacks of 11 September 2001 on the US — specifically, on New York City and Washington, DC — and while the wars in Afghanistan and Iraq that were the immediate consequence of these attacks are now receding into history like 9/11 itself, we continue to live with the legacy of the altered geopolitical conditions of that day.

The ongoing turmoil in Syria, which began as an uprising against Assad and developed into a civil war, is one of the geopolitical consequences of 9/11. It is unlikely that the uprising against Assad would have occurred without the Arab Spring, and it is unlikely the Arab Spring would have occurred if the US had not toppled Saddam Hussein from power. I am not suggesting a direct chain of causality here — many other events were implicated as well — but only that one set of events is the background to another set of events, and 9/11 was the pivotal geopolitical event of the beginning of the 21st century. As such, the post-Cold War order grows out of the series of events set in motion by 9/11 (counting the last decade of the 20th century as a “buffer” between the Cold War and the War on Terror).

The sluggish recovery of growth following the subprime mortgage crisis and the Great Recession is probably a function of the ongoing geopolitical turmoil, and in this way we can also see that the populist reaction against globalization is also an indirect consequence of 9/11. When the “wealth effect” is contributing to a perception of a rising tide that raises all boats, there is little resentment against those at the top of the income pyramid, but when times are tough the wealth effect dissipates into thin air, and in the clarity of this thin air those who have not done well for themselves cast envious eyes on those who are living well despite tough times.

It would not be difficult to construct a counterfactual world in which 9/11 never happened, “irrational exuberance” continued apace (Keynes called this “animal spirits”), and the world was several percentage points per year wealthier than we are now from steadily growing global trade. We might compare ourselves to this world — not unlike the world of the late 19th and early 20th century, before the spell was broken by the First World War — as a kind of ongoing measure of what might have been.

Bertrand Russell wrote that no one could understand the assumptions of progress of the late Victorian, and then the Edwardian period, and how World War I ended all this, who was not there to experience it. But we have our own analogy, imperfect as it is. We remember the talk of what the post-Cold War world would be like, and how this dream evaporated with the attacks of 9/11. In one day, a world bright with promise for the 21st century simply vanished.

. . . . .

banksy-9-11

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

North Korea’s Missile Boats

10 September 2016

Saturday


The Dear Leader watches a SLBM test.

The Dear Leader watches a SLBM test.

The missile boat (SSBN) — a submarine capable of launching ballistic missiles (SLBM) while at sea — was the ultimate weapons system of the Cold War, and now North Korea has them. North Korea has just conducted its fifth nuclear teat, and before that it conducted a successful missile launch from a submarine. Thus North Korea possesses all the elements necessary to mount a nuclear weapon on a ballistic missile and to fire such missiles from a submarine at sea.

The official North Korean news agency has made the connection between ballistic missiles and the most recent nuclear test explicit in a press report DPRK Succeeds in Nuclear Warhead Explosion Test:

“The standardization of the nuclear warhead will enable the DPRK to produce at will and as many as it wants a variety of smaller, lighter and diversified nuclear warheads of higher strike power with a firm hold on the technology for producing and using various fissile materials. This has definitely put on a higher level the DPRK’s technology of mounting nuclear warheads on ballistic rockets.”

There are only nine (9) nation-states that possess nuclear weapons (the US, Russia, Britain, France, China, India, Pakistan, North Korea, and Israel, the latter a non-declared nuclear state), and seven (7) nation-states with a nuclear SLBM capability (the US, Russia, Britain, France, China, India, and North Korea). This is a small and exclusive club — half the number of nation-states who operate aircraft carriers (i.e., 15) — but, as we see, it is a club that can be crashed. If a nation-state like North Korea is willing to neglect the needs of its citizens and invest its national resources in weapons systems, even a poor and isolated nation-state can join this select club.

It should be noted that all of these advanced weapons systems — weapons systems such as submarines, ballistic missiles, and nuclear weapons, which require years, if not decades, to produce — have been developed or acquired while North Korea was actively engaged in “peace” negotiations (the “six party talks”), as well as throughout the era of “Sunshine Policy” diplomacy by South Korea (which was in place for almost a decade, from 1998 to 2007), which era included paying North Korea about 200 million USD to attend the June 2000 North–South summit. The most obdurate forms of denialism would be necessary in order to construe either diplomatic negotiations or the Sunshine Policy as possessing even limited efficacy, given that North Korea has developed its missile boats under these diplomatic umbrellas. We should not try to conceal from ourselves the magnitude of this failure.

Why would North Korea choose to invest its limited resources into the development of missile boats rather than providing for the basic needs of the North Korean people, such as food, electricity, education, hospitals, and shelter? John Delury, a professor at Yonsei University Graduate School of International Studies, was quoted on the BBC as saying:

“Above all else, North Korea’s nuclear programme is about security — it is, by their estimation, the only reliable guarantee of the country’s basic sovereignty, of the Communist regime’s control, and of the rule of Kim Jong-un.”

This quote perfectly illustrates the imperative of what J. Rufus Fears called “national freedom” (and which I recently discussed in Eight Permutations of Freedom, Following J. Rufus Fears): North Korea sees itself as securing its national freedom, i.e., sovereignty and autonomy, first and foremost. The imperative of sovereignty and the imperataive of regime survival, moreover, are identical when national sovereignty and the regime are identified, and this identification is usually a key goal of propaganda.

Given the imperatives of sovereignty and regime survival, why a missile boat? Why not a supersonic bomber? Why not an aircraft carrier? Why not build a hybrid warfare capacity? I have already noted above that the missile boat was the ultimate Cold War weapons system. Why was the missile boat the ultimate Cold War weapons system? Because it is difficult to track submarines under the sea (when submerged they can’t be seen by satellites), and because submarines can approach the coastline of any continent and fire missiles at close range. A missile fired off the coast of a nation-state on a depressed trajectory could reach its target with a nuclear warhead in ten minutes or less, which is too short of a response time for even the most advanced anti-missile systems. The US would have a reasonable chance of taking out a land-based ICBM launched from North Korean soil, but there is little that the US could do about an SLBM a few minutes away from a major coastal city.

Missile boats were originally conceived as a “second strike” capability; that is to say, if a major nuclear exchange took place between the superpowers, it was assumed that land-based ballistic missiles and air bases (which could put nuclear-armed bombers in the air) would be mostly destroyed in the first strike, but no nuclear planner was so optimistic as to believe that even a massive, thorough, and precise first strike could also destroy all missile boats at sea. Thus a nuclear “sneak attack” could not achieve a perfect counterforce result (i.e., disarming the enemy), and the attacker would still bear the brunt of nuclear retaliation. Nuclear deterrence was guaranteed by missile boats.

Understood as a second strike weapon upon its introduction, the SSBN was conceived as an integral part of the nuclear “triad,” which also included land-based ICBMs and nuclear-armed bombers. Continuing technological advances transformed the SSBN from one leg of the stool to the primary strategic weapon. Missiles became more accurate, and MIRVed warheads allowed one missile to carry multiple warheads. The only reason that ICBMs still exist today is because they have a political and economic constituency; there is no longer any military need for ICBMs, which are the most vulnerable part of the nuclear triad. There is still good reason to have nuclear-armed bombers, but submarines can carry more missiles than a bomber, can stay away from its base longer than a bomber, and is more difficult to find than a bomber. All of these advantages have contributed to making the SSBN the primary strategic weapons system.

Given the status of SSBNs as the primary strategic weapon, submarine warfare become increasingly important throughout the Cold War. Soviet and American subs tracked each other through the world’s oceans. There is an entire book devoted to the Cold War submarine theater, Blind Man’s Bluff: The Untold Story of American Submarine Espionage. I strongly recommend this book, as it describes in detail the technologically sophisticated but also dramatically human story of the attempt by both the US and the USSR to track each other’s missile boats at sea, which was a grand cat-and-mouse game that endured throughout the Cold War, and indeed probably endures to this day in a modified form. Now the impoverished and paranoid nation-state of North Korea is a player in this game.

Given the technical difficulty of submarine warfare, we should not expect North Korea’s first efforts to be any match for the Russians or the Americans, but the point is that, as they enter into this deadly game, they will incrementally improve their technology and operations. One would not expect that North Korean missile boats could patrol the west coast of North America without being discovered, at their present level of technology and operations, but in ten or twenty years that might change. At the present moment, the US and NATO allies possess definitive technological superiority over North Korean submarine assets, but we can easily predict that these assets will not be effectively employed against North Korea, because the same technological superiority was not employed to prevent them from developing these weapons systems in the first place. As long as no nation-state has the stomach to confront North Korea, it will continue to improve its arsenal of strategic weapons. By the time it becomes necessary to act to counter North Korea’s strategic weapons systems, these weapons systems will be better than they are today, and the confrontation more costly than it would be today.

. . . . .

Note Added 03 October 2016: Several articles have appeared today noting new satellite imagery that suggests North Korea is building a larger missile boat than anything presently in their submarine fleet, cf. North Korea Building Massive New Ballistic Missile Submarine For Nuclear Strikes.

. . . . .

north-korea-missile-test

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Islam Karimov received a grand send-off in Registan Square, a showpiece of Central Asia.

Islam Karimov received a grand send-off in Registan Square, a showpiece of Central Asia.

Islam Karimov, ruler of Uzbekistan for decades, has passed away (the date of his death is officially yesterday, 02 September 2016, but he may have passed away a day or two earlier). The fate of Central Asia hangs in the balance of the uncertainty created by his death. Karimov seamlessly made the transition from President of the Uzbek Soviet Socialist Republic to post-Soviet authoritarian, as Uzbekistan seamlessly made the transition from Soviet client to post-Soviet independent nation-state. As the Soviet model was the template for Karimov’s iron-fisted rule while alive, so too the Soviet model was the template for Karimov’s death: rumored to be in “ill-health” for several days, the state apparatus seemed to be gradually preparing the populace for the announcement of Karimov’s death. When the confirmation of Karimov’s death came, it came indirectly from a statement of condolences from the Turkey’s Prime Minister.

Central Asia during the Soviet period experienced decades of peace, at the cost of heavy-handed political repression. Those post-Soviet republics of Central Asia that managed to sustain the Soviet model after the end of the Soviet Union continued to enjoy peace, at the continued cost of political repression. Karimov followed the model of Soviet repression quite closely and was rewarded with a quiescent nation-state rarely mentioned in the news. It is easy to imagine, given the experiences of Afghanistan (never a Soviet republic) and Chechnya (never an independent nation-state), not to mention the wider disturbances of the region and the rise of terrorism as a major force in political affairs in the region, that some might be willing to openly endorse this kind of Soviet-style autocratic rule over the attempt to create open political institutions, which latter have never been successful in the region. The choice seems to one between state-sponsored repression or non-state repression.

The attempt, such as it was, to agitate for political openness and western-style democracy in Central Asia came in the form of the so-called “color revolutions” — primarily the “Rose” revolution in Georgia (November 2003), the “orange” revolution in Ukraine (November 2004), and the “Tulip” revolution in Kyrgyzstan (February 2005), though many other events are often counted as falling under this umbrella term. It is difficult to over-state the impact of the Central Asian “color revolutions” on the political elites of the region as well as in Russia, where they were perceived as an existential threat to the established political order. Visceral fear of another color revolution runs through the political class of Central Asia, and we even find the idea of a color revolution as a theme in hybrid warfare, as it is mentioned in the introduction to Russian General Valery Gerasimov’s article on hybrid warfare:

“The experience of military conflicts — including those connected with the so-called colored revolutions in north Africa and the Middle East — confirm that a perfectly thriving state can, in a matter of months and even days, be transformed into an arena of fierce armed conflict, become a victim of foreign intervention, and sink into a web of chaos, humanitarian catastrophe, and civil war.”

For authoritarians, the color revolutions were a metaphysical challenge to their rule, giving the appearance of an indigenous demand for political openness, but masking the reality of foreign-sponsored political division and chaos within the country. This may sound like the purest Soviet-style political paranoia, but, in this case, the false positives of Soviet-style political paranoia has been strongly selective: those old-guard leaders most effective in the repression of civil society have managed to retain their grip on power for the longest period of time. For an authoritarian to loosen his grip was to invite a flowering of civil society which might result in a color revolution, and, again from the authoritarian’s perspective, this would be a disaster (much as old-guard Chinese communists like Li Peng feared that the Tiananmen protest might be the seed of another Cultural Revolution, once again throwing China into chaos; cf. Twenty-one years since Tiananmen).

For western politicians, Soviet-style repression in Central Asia, while generally only gently criticized (if ever), was a metaphysical challenge to liberal democracy, giving the appearance of peace and prosperity on the surface, while masking the ugly reality of political repression, imprisonment, torture, and corruption. It is no wonder that the two sides cannot communicate with each other: they have different and incommensurable political ontologies.

There is, however, one point of agreement between authoritarians of Central Asia and their supporters on the one hand, and, on the other hand, the supporters of democracy and color revolutions: no one wants to see Uzbekistan, much less the whole of Central Asia, descend into chaos and anarchy. There is an overwhelming bias on behalf of stability, and this bias for stability will play a major role in the events that will unfold in the wake of the death of Islam Karimov.

The worry now, with Karimov out of the picture, is that a color revolution will occur, or Islamic forces will come to power, or both, and the state will tear itself apart in factional conflict between Karimov-style authoritarians, Islamists, and color revolutionists. In the event of chaos, each side will blame the other, but in the final result it doesn’t matter who starts it. And the worry beyond this worry is that, once one of the central nation-states of Central Asia descends into lawlessness, it will drag down the whole region in a domino effect of anarchy. No one wants to see a domino effect come to Central Asia, with the instability of any one nation-state spilling over into its neighbor, until the entire region becomes unstable and the factions become radicalized. None of this is inevitable. Turkmenistan managed to survive the death of a more bizarre autocratic ruler, Saparmurat Niyazov, who called himself “Türkmenbaşy,” and remains quiescent today. But it is unlikely that the Central Asia will remain quiescent forever.

. . . . .

Uzbekistan is central to Central Asia.

Uzbekistan is central to Central Asia.

. . . . .

Note Added 13 October 2016: The BBC has an interesting article about the succession in Uzbekistan, After Karimov: How does the transition of power look in Uzbekistan? by Abdujalil Abdurasulov

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Planet of Zombies

21 August 2016

Sunday


planet of zombies 2

The Fate of Mind in the Age of Turing

We are living today in the Age of Turing. Alan Turing was responsible for the theoretical work underlying contemporary computer science, but Turing’s work went far beyond the formal theory of the computer. Like Darwin, Turing’s thought ran ahead of the science he founded, and he openly speculated on the consequences of the future development of the computers that his theory made possible.

In his seminal paper “Computing Machinery and Intelligence” (the paper in which he introduced the “Turing Test,” which he called the “imitation game”) Turing began with the question, “Can machines think?” and went on to assert:

I believe that in about fifty years’ time it will be possible, to programme computers, with a storage capacity of about 109, to make them play the imitation game so well that an average interrogator will not have more than 70 per cent chance of making the right identification after five minutes of questioning. The original question, “Can machines think?” I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted.

A. M. Turing, “Computing machinery and intelligence,” Mind, 1950, 59, 433-460.

Turing’s prediction hasn’t yet come to pass, but Turing was absolutely correct that one can speak of machines thinking without being contradicted. Indeed, Turing was more right than he could have guessed, as his idea that computers should be judged upon their performance — and even compared in the same way to human performance — rather than on a vague idea of thinking or consciousness, has become so commonplace that, if one maintains the contrary in public, one can expect to be contradicted.

Turing was, in respect to mind and consciousness, part of a larger intellectual movement that called into question “folk concepts,” which came to seem unacceptably vague and far too unwieldy in the light of the explanatory power of scientific concepts, the latter often constructed without reference to folk concepts, which came to be viewed as dispensable. Consciousness has been relegated to the status of a concept of “folk psychology” with no scientific basis.

While I am in sympathy with the need for rigorous scientific concepts, the eliminative approach to mind and consciousness has not resulted in greater explanatory power for scientific theories, but rather has reinforced an “explanatory gap” (a term made prominent by David Chalmers) that has resulted in a growing disconnect between the most rigorous sciences of human and animal behavior on the one hand, and on the other hand what we know to be true of our own experience, but which we cannot formulate or express in scientific terms. This is a problem. The perpetuation of this disconnect will only deepen our misunderstanding of ourselves and will continue to weaken the ability of science to explain anything that touches upon human experience. Moreover, this is not merely a human matter. We misunderstand the biosphere entire if we attempt to understand it while excluding the role of consciousness. More on this below.

Science has been misled in the study of consciousness by an analogy with the study of life. Life was once believed to be inexplicable in terms of pure science, and so there was a dispute between “mechanism” and “vitalism,” with the vitalists believing that there was some supernatural or other principle superadded to inanimate matter, and that possession of this distinctively vital element unaccountable in scientific terms distinguished the animate from the animate. Physics and chemistry alone could explain inanimate matter, but something more was needed, according to vitalism, to explain life. But with the progress of biology, vitalism was not so much refuted as made irrelevant. We now have a good grasp of biochemistry, and while a distinction is made between inorganic chemistry and biochemistry, it is all understood to be chemistry, and no vital spark is invoked to explain the chemistry distinctive of life.

Similarly, consciousness has been believed to be a “divine spark” within a human being that distinguishes a distinctively human perspective on the world, but consciousness “explained” in this way comes with considerable theological baggage, as explicitly theological terms like “soul” and “spirit” are typically used interchangeably with “consciousness” and “mind.” From a scientific perspective, this leaves much to be desired, and we could do much better. I agree with this. Turing’s imitation game seems to present us with an operational definition of consciousness that allows us to investigate mind and consciousness without reference to the theological baggage. There is much to gained by Turing’s approach, but the problem is that we have here no equivalent of chemistry — no underlying physical theory that could account for consciousness in the way that life is accounted for by biochemistry.

Part of the problem, and the problem that most interests me at present, is the anthropocentrism of both traditional theological formulations and contemporary scientific formulations. If we understand human consciousness not as an exception that definitively separates us from the rest of life on the planet, not as a naturalistic stand-in for a “divine spark” that would differentiate human beings from the “lower” animals, but as a distinctive development of consciousness already emergent in other forms preceding human beings, then we understand that human consciousness is continuous with other forms of consciousness in nature, and that, as conscious beings, we are part of something greater than ourselves, which is a biosphere in which consciousness is commonplace, like vision or flight.

There are naturalistic alternatives to an anthropocentric conception of consciousness, alternatives that place consciousness in the natural world, and which also have the virtue of avoiding the obvious problems of eliminativist of reductivist accounts of consciousness. I will consider the views of Antonio Damasio and John Searle. I do not fully agree with either of these authors, but I am in sympathy with these approaches, which seem to me to offer the possibility of further development, as fully scientific as Turing’s approach, but without the denial of consciousness as a distinctive constituent of the world.

Antonio R. Damasio in The Feeling of What Happens distinguished between core consciousness and extended consciousness. Core consciousness, he wrote:

“…provides the organism with a sense of self about one moment — now — and about one place — here. The scope of core consciousness is the here and now. Core consciousness does not illuminate the future, and the only past it vaguely lets us glimpse is that which occurred in the instant just before. There is no elsewhere, there is no before, there is no after.”

Antonio R. Damasio, The Feeling of What Happens: Body and Emotion in the Making of Consciousness, San Diego, New York, and London: Harcourt, Inc., 1999, p. 16

…and…

“…core consciousness is a simple, biological phenomenon; it has one single level of organization; it is stable across the lifetime of the organism; it is not exclusively human; and it is not dependent on conventional memory, working memory, reasoning, or language.”

Loc. cit.

The simplicity of core consciousness gives it a generality across organisms, and across the life span of a given organism; at any one time, it is always more or less the same. Extended consciousness, on the other hand, is both more complex and less robust, dependent upon an underlying core consciousness, but constructing from core consciousness what Damasio calls the “autobiographical self” in contradistinction to the ephemeral “core self” of core consciousness. Extended consciousness, Damasio says:

“…provides the organism with an elaborate sense of self — an identity and a person, you or me, no less — and places that person at a point in individual historical time, richly aware of the lived past and of the anticipated future, and keenly cognizant of the world beside it.”

Loc. cit.

…and…

“…extended consciousness is a complex biological phenomenon; it has several levels of organization; and it evolves across the lifetime of the organism. Although I believe extended consciousness is also present in some nonhumans, at simple levels, it only attains its highest reaches in humans. It depends on conventional memory and working memory. When it attains its human peak, it is also enhanced by language.”

Loc. cit.

…but…

“…extended consciousness is not an independent variety of consciousness: on the contrary, it is built on the foundation of core consciousness.”

Op. cit., p. 17

One might add to this formulation by noting that, as extended consciousness is built on core consciousness, core consciousness is, in turn, built on the foundation of biological processes. I would probably describe consciousness in a somewhat different way, and would make different distinctions, but I find Damasio’s approach helpful, as he makes no attempt to explain away consciousness or to reduce it to something that it is not. Damasio seeks to describe and to explain consciousness as consciousness, and, moreover, sees consciousness as part of the natural world that is to be found embodied in many beings in addition to human beings, which latter constitutes, “…extended consciousness at its zenith.”

Damasio’s formulation of both core consciousness and extended consciousness as biological phenomena might be compared to what John Searle calls “biological naturalism.” What Searle, a philosopher, and Damasio, a neuroscientist, have in common is an interest in a naturalistic account of mind which is not eliminativist or reductivist. To this end, both emphasize the biological nature of consciousness. Searle has conveniently summarized his biological naturalism in six theses, as follows:

1. Consciousness consists of inner, qualitative, subjective states and processes. It has therefore a first-person ontology.

2. Because it has a first-person ontology, consciousness cannot be reduced to a third-person phenomena in the way that it is typical of other natural phenomena such as heat, liquidity, or solidity.

3. Consciousness is, above all, a biological phenomenon. Conscious processes are biological processes.

4. Conscious processes are caused by lower-level neuronal processes in the brain.

5. Consciousness consists of higher-level processes realized in the structure of the brain.

6. There is, as far as we know, no reason in principle why we could not build an artificial brain that also causes and realizes consciousness.

John R. Searle, Mind, Language and Society: Philosophy in the Real World, New York: Basic Books, 1999, p. 53

Searle’s formulations — again, as with Damasio, I would probably formulate these ideas a bit differently, but, on the whole, I am sympathetic to Searle’s approach — are a reaction against a reaction, i.e., against a reactionary theory of mind, which is the materialist theory of mind formulated in consciousness contradistinction to Cartesian dualism. Searle devotes a considerable portion of several books to the problems with this latter philosophy. I think the most important lesson to take away from Searle’s critique is not the technical dispute, but the thematic motives that underlie this philosophy of mind:

“How is it that so many philosophers and cognitive scientists can say so many things that, to me at least, seem obviously false? Extreme views in philosophy are almost never unintelligent; there are generally very deep and powerful reasons why they are held. I believe one of the unstated assumptions behind the current batch of views is that they represent the only scientifically acceptable alternatives to the antiscientism that went with traditional dualism, the belief in the immortality of the soul, spiritualism, and so on. Acceptance of the current views is motivated not so much by an independent conviction of their truth as by a terror of what are apparently the only alternatives.”

John R. Searle, The Rediscovery of the Mind, Cambridge and London: The MIT Press, Chap. 1

The biologism of both Damasio and Searle make it possible not only to approach human consciousness scientifically, but also to place consciousness in nature — the alternatives being denying human consciousness or approaching it non-scientifically, and denying consciousness a place in nature. These alternatives have come to have a colorful representation in contemporary philosophy in the discussion of “philosophical zombies.” Philosophical zombies are beings like ourselves, but without consciousness. The question, then, is whether we can distinguish philosophical zombies from human beings in possession of consciousness. I hope that the reader will have noticed that, in the discussion of philosophical zombies we encounter another anthropocentric formulation. (I previously touched on some of the issues related to philosophical zombies in The Limitations of Human Consciousness, A Note on Soulless Zombies, and The Prodigal Philosopher Returns.)

The anthropocentrism of philosophical zombies can be amended by addressing philosophical zombies in a more comprehensive context, in which not only human beings have consciousness, but consciousness is common in the biosphere. Then the question becomes not, “can we distinguish between philosophical zombies and conscious human beings” but “can we distinguish between a biosphere in which consciousness plays a constitutive role and a biosphere in which consciousness is entirely absent”? This is potentially a very rich question, and I could unfold it over several volumes, rather than the several paragraphs that follow, which should be understood as only the barest sketch of the problem.

As I see it, reconstructing biosphere evolution should include the reconstruction, to the extent possible, of the evolution of consciousness as a component of the biosphere — when did it emerge? When did the structures upon which is supervenes emerge? How did consciousness evolve and adapt to changing selection pressures? How did consciousness radiate, and what forms has it taken? These questions are obviously entailed by biological naturalism. Presumably consciousness evolved gradually from earlier antecedents that were not consciousness. Damasio writes, “natural low-level attention precedes consciousness,” and, “consciousness and wakefulness, as well as consciousness and low-level attention, can be separated.” Again, I would formulate this a bit differently, but, in principle, states of a central nervous system prior to the emergence of consciousness would precede even rudimentary core consciousness. If these states of a central nervous system prior to consciousness include wakefulness and low-level attention, this would constitute a particular seriation of the evolution of consciousness.

Damasio calls human consciousness, “consciousness at its zenith,” and a naturalistic conception of consciousness recognizes this by placing this zenith of human consciousness at the far end of the continuum of consciousness, but still on a continuum that we share with other beings with which we share the biosphere. A human being is not only a being among beings, but also one biological being among other biological beings. Given Searle’s biological naturalism, our common biology — especially the common biology of our central nervous systems and brains — points to our being a conscious being among other conscious beings. This seems to be borne out in our ordinary experience, as we usually understand our experience. We interact with other conscious beings on the level of consciousness, but the quality of consciousness may differ among beings. Interacting with other beings on the level of awareness means that our relationships with other conscious beings are marked by mutual awareness: not only are we aware of the other, but the other is also aware of us.

Above and beyond mere consciousness is sentient consciousness, i.e., consciousness with an emotional element superadded. We interact with other sentient beings on the level of sentience, that is to say, on the level of feeling. Our relationships with other mammals, especially those we have made part of our civilization, like dogs and horses, are intimate, personal relationships, not mediated by intelligence, but mostly mediated by the emotional lives we share with our fellow mammals, endowed, like us, with a limbic system. We intuitively understand the interactions and group dynamics of other social species, because we are ourselves a social species, Even when the institutions of, for example, gorilla society or chimpanzee society, are radically different from the institutions of human society, we can recognize that these are societies, and we can sometimes recognize the different rules that govern these societies.

Even when human beings are absent from interactions in the biosphere, there are still interactions on the level of consciousness and sentience. When a bobcat chases a hare, both interact on the level of two core consciousnesses, and also, as mammals, they interact on a sentient level. The hare has that level of fear and panic possible for core consciousness, and the bobcat, no doubt, experiences the core consciousness equivalent of satisfaction if it catches the hare, and frustration if the hare escapes. Or when a herd of wild horses panics and stampedes, their common sentient response to some environmental stimulation provides the basis of their interaction as a herd species.

All of this can be denied, and we can study nature as though consciousness were no part of it. While I have assimilated the denial of consciousness in nature to anthropocentrism, many more assimilate the attribution of consciousness to other species as a form of anthropocentrism. Clearly, we need to better define anthropocentrism, where and how it misleads us, and where and how it better helps us to understand our fellow beings with which we share the biosphere. That position that identifies consciousness as peculiarly human and denies it to the rest of the biosphere is, in effect asserting that a biosphere of zombies is indistinguishable from a biosphere of consciousness beings; I can understand how this grows out of a legitimate concern to avoid anthropocentric extrapolations, but I can also recognize the violation of the Copernican principle in this position. The view that recognizes consciousness throughout the macroscopic biosphere can also be interpreted as consistent with avoiding anthropocentrism, but also is consonant with Copernicanism broadly construed.

To adopt an eliminativist or reductionist account of consciousness, i.e., to deny the reality of consciousness, is not only to deny consciousness to human beings (a denial that would be thoroughly anthropocentric), it is to deny consciousness to the whole of nature, to deny all consciousness of all kinds throughout nature. It is to assert that consciousness has no place in nature, and that a planet of zombies is indistinguishable from a planet of consciousness agents. Without consciousness, the world entire would be a planet of zombies.

To deny consciousness is to deny that there are any other species, or any other biospheres, in the universe in which consciousness plays a role. If we deny consciousness we also deny consciousness elsewhere in the universe, unless we insist that terrestrial life is the exception, and that, again, would be a non-Copernican position to take. To deny consciousness is to deny that consciousness will ever inhere in some non-biological substrate, i.e., it is to deny that machines will never become conscious, because there is no such thing as consciousness. To deny consciousness is to constitute in place of the biosphere we have, in which conscious interaction plays a prominent role in the lifeways of megafauna, a planet of zombies in which all of these apparent interactions are mere appearance, and the reality is non-conscious beings interacting mechanically and only mechanically. I am not presenting this as a moral horror, that we should avoid because it offends us, but as naturalistically — indeed, biologically — false. Our world is not a planet of zombies.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: