Saturday


brain outline

Evolutionary Psychology in an Astrobiological Context

Recently I was reading about evolutionary biology and it struck me how it might be possible to place evolutionary psychology in an astrobiological context and thereby formulate a much more comprehensive conception of astrobiology that goes beyond biology narrowly conceived (as well as a much more comprehensive conception of evolutionary psychology). Evolutionary biology itself has gone beyond the strictly biological in the form of evolutionary psychology, which applies the theoretical framework of evolutionary biology to elucidate human nature, human behavior, and human thought. Evolutionary biology has also gone beyond the terrestrial in the form of astrobiology, which applies the theoretical framework of evolutionary biology to elucidate life on Earth in a cosmological context. To join together these extrapolations of biology in an even larger synthesis would provide a impressive point of view.

I cannot mention evolutionary psychology without pausing to acknowledge the controversy of this discipline, and evolutionary biology today has the (nearly) unique status of being disparaged by both the political left and the political right, but my readers will already have guessed where I am likely to stand on this controversy, especially if they have read my Against Natural History, Right and Left. That the tender sensibilities of the politically motivated are offended by the harsh insights of evolutionary psychology ought to be counted in its favor. Here I am reminded of something Foucault said:

“I think I have in fact been situated in most of the squares on the political checkerboard, one after another and sometimes simultaneously: as anarchist, leftist, ostentatious or disguised Marxist, nihilist, explicit or secret anti-Marxist, technocrat in the service of Gaullism, new liberal and so on. An American professor complained that a crypto-Marxist like me was invited in the USA, and I was denounced by the press in Eastern European countries for being an accomplice of the dissidents. None of these descriptions is important by itself; taken together, on the other hand, they mean something. And I must admit that I rather like what they mean.”

Foucault, Michel, “Polemics, Politics and Problematizations,” in Essential Works of Foucault, edited by Paul Rabinow, Vol. 1, “Ethics,” The New Press, 1998.

Being politically denounced in this way from all possible points of view is an admission that the existing framework of thought does not yet have a convenient pigeonhole in which a person or an idea can be placed and then forgotten.

Evolutionary psychology in the context of astrobiology becomes something even more difficult to place than it is at present, although it seems to me like the logical extrapolation of astrobiology placing biology in a cosmological context. I’m not the only one who has been thinking in these terms. About the same time that I started thinking about evolutionary psychology and astrobiology together, I happened across the work of Pauli Laine, who characterizes himself as a cognitive astrobiologist. Laine spoke at the 2013 and 2014 100YSS conferences (I spoke at the 2011 and 2012 100YSS conferences, so we didn’t cross paths).

The psychology of an organism that attains to consciousness will be constrained by the evolutionary history of that organism long before it made the breakthrough the consciousness. (However, it does not follow that the conscious mind is wholly determined by biological processes; this is a distinct thesis and must be separately defended.) The biology of the organism and its species is, in turn, constrained by the biosphere in which that organism evolved. The biosphere is, in turn, constrained by the planet upon which the biosphere emerged; the parameters of the planet are constrained by the protoplanetary disk from which it and its star formed, this protoplanetary disk is in turn constrained by the galactic ecology of its local galaxy, and the galaxy is constrained by the parameters of the universe. We need not assert determinism at any level in this sequence (i.e., we need not assert that any one level of emergent complexity is wholly and exhaustively determined by the preceding level of emergent complexity) in order to acknowledge the role of an earlier state of the universe in constraining a later state of the universe.

Following the above nesting of local constraints within global constraints, the consciousness and psychology of the individual is ultimately constrained by the parameters of the universe. However, these global constraints are relatively weak in comparison to the local constraints, such as the evolutionary history of the species to which the individual organism belongs.

The next step would be to begin the above nested sequence of transitive constraints with civilization, such that civilization is constrained by the minds that produce it, the minds that produce civilization are constrained by the evolutionary history of that organism long before it made the breakthrough the consciousness, and so on. This doesn’t work so neatly, as we can intuitively see that, while civilization is a product of mind, mind is in turn influenced by the civilization it creates, so that mind and civilization are coevolutionary. This is true of the other instances of transitive constraints mentioned. For example, evolutionary biology is constrained by the biosphere, but the biosphere is in its turn influenced by the organisms that emerge within it. This added complexity does not falsify the point I am trying to make, it just means that we have to take more factors into account. It also means that mind may ultimately play a role in the universe that ultimately constrains it, and if civilization expands throughout the cosmos it is easy to see how this could happen.

Elsewhere I have suggested that astrocivilization is civilization understood in a cosmological context, as astrobiology is biology understood in a cosmological context. I have cited the NASA definition of astrobiology as, “…the study of the origin, evolution, distribution, and future of life in the universe,” which invites the parallel formulation of astrocivilization as the study of the origin, evolution, distribution, and future of civilization in the universe. Astrocivilization is the extended conception of civilization that follows from transcending our native geocentrism and formulating a concept of civilization free from anthropocentrism and terrestrial bias (and one way to do this is to follow the Husserlian methodology of thought experiments).

Ultimately, our civilization is constructed gradually and piecemeal from countless individual decisions made by countless individuals, each following the promptings of a mind shaped by a long evolutionary history. This evolutionary history may be pushed back in time to the origins of the universe, and when science is capable of taking us beyond this point, the same evolutionary history will be pushed back even further in time to the antecedents of the observable universe. Somewhat more narrowly, given what I call the Principle of Civilization-Intelligence Covariance, the nature of astrocivilization follows from the nature of evolutionary psychology in a cosmological context.

I could have titled this post, “From Astrophysics to Astrocivilization” rather than “From Astrobiology to Astrocivilization,” because we can employ an even more comprehensive framework than that of astrobiology, according to which astrobiology is derived from astrophysics, and particular examples of evolution, ecology, and selection are local and limited instances of what on the largest scale is galactic ecology. But we still have much work to do in placing evolutionary psychology in an astrobiological context. We can think of this synthesis of evolutionary psychology and astrobiology (or, employing Laine’s term, cognitive astrobiology) as a higher form of naturalism, where “nature” is not our planet alone, but the whole of the cosmos. Naturalism in this sense is something like cosmologism. This would then answer the question, “What comes after naturalism?” That is to say, once contemporary philosophy has exhausted naturalism, what comes next? What comes next is the universe entire, and, after that, the universe beyond the scope of contemporary science.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Tuesday


The Human Future after Geopolitics:

amazing_stories

The Large Scale Structure of Political Societies


Some time ago in The Fundamental Theorem of Geopolitical Thought I formulated just such a theorem as follows: Human agency is constrained by geography. While geopolitics must remain central to understanding contemporaneous political thought, this will not always be so. The time will come when we will, of necessity, pass beyond geopolitics.

In many posts in which I have discussed the extraterrestrialization of terrestrial civilization (cf. e.g., Addendum on Extraterrestrialization and The Farther Reaches of Civilization) and the advent of Copernican civilization (cf. e.g., Civilization and the Technium and Earth Science, Planetary Science, Space Science) I have clearly implied that, as civilization expands off the surface of the earth, the political life of man will be forced to change in order to keep pace with these events, much as human societies have been forced to change rapidly as a result of the industrial revolution and its consequences. It does not matter how desperately those heavily-invested in the present global order will resist this change: the change will come if industrial-technological civilization continues its trajectory and does not succumb to existential risks.

If the political structure of extraterrestrialized civilization will be described by a future science of astropolitics, the fundamental theorem of astropolitics can be formulated as concisely as my fundamental theorem of geopolitics, and it would be formulated thus:

Human agency is constrained by the structure of space.

This is a straightforward generalization of my fundamental theorem of geopolitics, and as that theorem can be summarized as geography matters, the fundamental theorem of astropolitics can be similarly summarized as space matters.

The generalization of the scope of human agency from geography to the structure of space itself suggests that we also ought to generalize beyond the human, since by the time earth-originating civilization is an extraterrestrial civilization human beings will have become transhuman or post-human, and in the fullness of time homo sapiens will be followed by successor species. Thus…

Human and human-successor agency is constrained by the structure of space.

However, since this formulation of the fundamental theorem of astropolitics would hold for any peer civilization, there is no reason to limit the formulation to human beings, human successors, or earth-originating life. Thus…

Any conscious agency is constrained by the structure of space.

It is even superfluous to mention the qualification of “conscious” agency, since any naturalistic agency whatsoever is and will be constrained by the structure of space (supernatural agencies as comprehended in eschatological conceptions of history would presumably not be constrained by space). However, since our concern at present is to understand the large scale structure of political societies, we are concerned with those agents that represent peer industrial-technological civilizations that might establish (or have already established) a (peer) civilization beyond the surface of their homeworld.

Despite the many different formulations that might be given to the fundamental theorem of astropolitics, depending on the degree of generalization to be embodied in the formulation, all of these generalizations are intuitively continuous with the fundamental theorem of geopolitics, as well they ought to be. The geographical and topographical features that are central to geopolitical thought are the local structures of space corresponding to the human epistemic and perceptual order of magnitude. When the growth of civilization forces the parallel expansion of human epistemic and perceptual orders of magnitude, the structure of space itself will concern us more than the local mountain ranges, rivers, and deserts that now shape our terrestrial strategic thought.

The structural similarity between the fundamental theorem of geopolitics and the fundamental theorem of astropolitics masks the profound transformation of human political life that will come about in the event that human civilization expands to the degree that astropolitical thought will better describe strategic agency than geopolitical thought. A robust, self-sustaining human presence off the surface of the earth will impact human political societies so dramatically that it will eventually mean the end of the nation-state system. Such a change in human political thought will develop over more than a century, and will probably require two or three centuries to be fully assimilated throughout human civilization.

In my Political Economy of Globalization I attempted to describe the peculiar form of dishonesty that is employed in political thought that is to be found when our political ideas do not keep up with actual political developments:

…not every political entity that has a seat at the table at the United Nations conforms to the paradigm of the nation-state; some are more state, others more nation, yet others falling under neither category. Feudal monarchies rub elbows with republics and city-states, none of them representing any genuine national aspirations of a people or peoples for self-determination.

If the United Nations had existed in the eighteenth century, the Ottoman Empire would have been a member; if the United Nations had existed in the nineteenth century the Austro-Hungarian Empire would have been a member state. These empires are long since dissolved, but we can easily imagine that had the UN been in existence at the time of their dissolution these events would have been characterized in apocalyptic terms and attended with much hand wringing.

And if the dissolution of individual nation-states causes the level of distress one sees in the international system, it should be apparent that the end of the nation-state system itself will be viewed by some as a catastrophe of unparalleled proportions. However, it will take some time for the change to be noticed, which I also noted in my Political Economy of Globalization:

In the distant future, there will be, of course, political entities that will be called states. But the modern nation-state, eponymously defined in terms of nationhood, but in fact defined in terms of territorial sovereignty, cannot survive in its present form to be among the political entities of the future. Perhaps the new political entities will be called nation-states, as a holdover from our own time, but they will not have the character of nation-states any more than the Ottoman Empire had the character of a nation-state. While the latter was an identifiable state, to be sure, it was not a nation-state.

Conventional contemporary political and social science scarcely ever questions the role of the nation-state in human affairs (as though it were a permanent feature of civilization, which it is not), but we are under no obligation to allow these conventional limitations upon political imagination constrain our own formulations. It is enough to be constrained by the structure of space; there is no need to voluntarily burden oneself with additional constraints.

But we must unquestionably begin with the nation-state as the source of our present political situation, because all that follows in the future from the present situation will follow from the familiar nation-state system and the political thought of our time that privileges the nation-state system. The human, all-too-human scale of the nation-state system is the political parallel of the human, all-too-human scale of the geographical and topographical obstacles that are the present boundaries to human agency.

There is story I can’t resist repeating here about practical geopolitics, which is what military operations in the age of the nation-state represent. It is, in fact, a story within a story, as related by Hermann von Kuhl of Alfred von Schlieffen:

“He lived exclusively for his work and his great tasks. I remember how we once travelled through the night from Berlin to Insterburg, where the great staff ride was to begin. General Schheffen travelled with his aide-de-camp. In the morning the train left Königsberg and entered the Pregel valley, which was basking prettily in the rays of the rising sun. Up to then not a word had been spoken on the journey. Daringly the A.D.C. tried to open a conversation and pointed to the pleasant scene. ‘An insignificant obstacle,’ said the Graf — and conversational demands until Insterburg were therewith met.”

THE SCHLIEFFEN PLAN: Critique of a Myth, GERHARD RITTER, Foreword by B. H. LIDDELL HART, OSWALD WOLFF (PUBLISHERS) LIMITED, London, W.i, 1958, p. 99

Schlieffen’s single-minded focus on geographical features as exclusively representing opportunities or obstacles for campaigning — features that for others might represent aesthetics objects, or any kind of object significant in human experience — demonstrates geopolitical thought as at once practical and abstract. It is possible for geopolitics to be practical and abstract at the same time because the abstractions it considers are features like “insignficant obstacle,” while it takes no account of features such as “pleasant scene.” Astropolitics will be practical and abstract in the same way, although its objects will not be objects of ordinary human experience such as “insignificant obstacle” or “pleasant scene.”

The magnification of the scale of human concerns in astropolitics will not merely involve a larger canvas for human ambition, but will also introduce complexities not represented at the geopolitical scale. On the level of ordinary human experience time and space can be treated in isolation from each other, so that we have history and geography as abstract conceptions; at the higher energy levels, greater distances, higher speeds, and greater gravitational influences of a much-expanded spacefaring civilization, space and time will of necessity be treated together as space-time.

After I first formulated my fundamental theorem on geopolitical thought I followed it with two additional principles, the second law of geopolitics

The scope of human agency defines a center, beyond which lies a periphery in which human agency is marginal.

…and the third law of geopolitics

Human agency is essentially a temporal agency.

As I had summarized the fundamental theorem of geopolitical thought as geography matters, I summarized the third law of geopolitical thought as history matters. As we have seen above, the large scale structure of the universe must be understood in terms of space-time, meaning that we cannot isolate cosmological geography from cosmological history. History and geography on a cosmological scale are even more intimately bound up in each other than they are on the human, all-too-human scale of terrestrial politics.

This suggests a further generalization of the fundamental theorem of astropolitics:

Human agency (or any conscious agency) is constrained by space-time.

History and geography have always been intimately tied together, and his, of course, is one of the great lessons of geopolitics, that geography shapes history. It is also true, has been true, that history shapes geography, but the forces by which the history of life on earth have shaped geography have occurred on a timescale that is not apparent to human perception.

In a future political science of astropolitics, we will have a history that reflects the large scale structure of the cosmos, and a large scale structure of the cosmos that reflects the history of the universe. While human agency (or other conscious agents) has not yet acted on a scale to have shaped the initial 13.7 billion years of cosmic history, if our civilization or its successor institutions should endure, its history could well shape the large scale structure of space-time.

. . . . .

bodies superimposed on stars

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Monday


nuclear_explosion_on_earth_from_space small

What are the consequences from a cosmological point of view when an industrial-technological civilization comes to an end, whether destroying itself or succumbing to outside forces? What kind of trace will a vanished industrial-technological civilization leave in the universe?

halo of a vanished civilization

An industrial-technological civilization that masters electromagnetic spectrum communications — i.e., ordinary radio and television signals — generates an expanding globe of EM signals as long as it is transmitting these signals. If an industrial-technological civilization that has been transmitting EM signals comes to an end, these signals cease to be generated, and the expanding globe of EM signals tapers off to silence at the interior of this globe, which means that there will be an expanding sphere of weakening EM signals. The thickness of this three-dimensional halo in light years will correspond to the age in years of the now-vanished industrial-technological civilization.

If precise measurements of the EM halo were possible, and its exact curvature could be determined, it would be possible to extrapolate the original source of the signal. Once the curvature of the halo has been determined, and therefore also the source, the measurement of the distance from the source to the inner boundary of the halo to the source in light years will yield the number of years that have elapsed since the end of the industrial-technological civilization in question.

While such signals would be very faint, and largely lost in the background radio noise of the universe, we cannot discount the possibility that advanced detection technology of the future might reveal such EM structures. The universe might contain these ghostly structures as a sequence of overlapping bubbles of EM radiation that describe the past structure of industrial-technological civilization in the universe.

It has been said that astronomy is a form of time travel, and the farther we look from Earth, the farther back we see in time. (This is called “look back time.”) Thus we can think of astronomy as a kind of luminous archaeology. Another way to think of this is that the sky reveals a kind of luminous stratigraphy. The EM halos of vanished civilizations would also admit of a certain stratigraphy, since these halos would possess a definite structure.

The outermost stratigraphic layer of an EM halo would likely consist of the simplest kind of high energy radio signals without any kind of subtle modulation of the signal — like Morse code transmitted by radio, rather than vocal modulation. This would be followed, deeper within the EM halo, by analog radio modulation corresponding to spoken language. Next within the EM halo would be analogue television signals, and then digital television signals and data signals of the sort that would be transmitted by the radio link for the internet.

This, at least, is the approximate structure of Earth’s expanding EM halo, and if our civilization destroys itself (or is destroyed) in the near future, our EM halo would be approximately 100 light years thick. The longer we last, the thicker our EM halo.

An EM halo may drop off as an industrial-technological civilization makes the transition from openly radiated EM signals to the pervasive use of fiber optic cables, but if that civilization begins to expand within its solar system, and possesses numerous settlements in EM contact with each other (as I described in Cyberspace and Outer Space), then the halo will reflect these developments — this is further historical structure layered into the EM stratigraphy of the halo.

Given that the structure of a large EM halo would consist mostly of space empty of intelligent EM signals, much of the structure of these halos would be void. It is entirely possible that Earth at present lies within the void of an EM halo that both began and ceased to transmit prior to our ability to detect such signals.

EM halo 1

In the event of human exploration of the cosmos, as we move outward within a possible void within a halo, it is possible that our first contact with a xenomorphic exocivilization will take the form of encountering the inner boundary of an EM halo, which as we pass through it, will reveal in reverse order the development of that civilization, beginning with its destruction and ending with its emergence.

. . . . .

EM halo 2

. . . . .

A revised, updated, and expanded version of this post is available at The Halos of Vanished Civilizations: Revised, Updated, and Expanded. A spoken word version of this updated formulation is available at Burst 9 — The Halos of Vanished Civilizations.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


An Hypothesis in the Theory of Civilization

Not long ago in Eo-, Eso-, Exo-, Astro- I discussed how Joshua Lederberg’s distinctions between eobiology, esobiology, and exobiology can be used as a model for the concepts of eocivilization, esocivilization, and exocivilization, all of which are anterior to the more comprehensive conception of astrocivilization (like the more comprehensive conception of astrobiology).

My post on Eo-, Eso-, Exo-, Astro- was in part a correction to my earlier post Eo-, Eso-, Astro-, in which I had contrasted eobiology to exobiology, when I should have been contrasting esobiology to exobiology.

I had derived the contrast of eobiology and exobiology from Steven J. Dick and James E. Strick’s excellent book The Living Universe: NASA and the Development of Astrobiology, in which they cite Lederberg’s contrast of these terms. I had initially drawn the wrong contrast between the two concepts. When I started to read Lederberg’s writings, I realized that Lederberg was making a dramatic contrast between the scientific study of origins and the scientific study of destiny, rather than the contrast I expected. However, the contrast I originally drew remains a valid schema for understanding the comprehensive conception of astrobiology — and, by extension, the comprehensive conception of astrocivilization.

Astrobiology may be understood as the integration of esobiology — our biology, terrestrial biology — and exobiology — biology not of the Earth — into a comprehensive whole that places life in a cosmological context. Parallel to this, I define astrocivilization as the integration of esocivilization — our civilization, terrestrial civilization — and exocivilization — civilization not of the Earth — into a comprehensive whole that places civilization in a cosmological context. These concepts are not merely parallel, but the parallel between concepts of biology and concepts of civilization follows from a naturalistic conception of civilization as an extension of biology.

Civilization can be understood as a greatly elaborated result of behavioral adaptation. Just as evolutionary gradualism takes us imperceptibly over countless generations from the simple origins of life to the complexity of life we know today, so too evolutionary gradualism in the development of civilization takes us imperceptibly over countless generations from the simplest behavioral adaptations to the complexity of behavioral adaptation that culminates in civilization — and which may well culminate in some further post-civilizational social institution. (We must add this last proviso so as not to be mistaken for advocating some kind of teleological conception of civilization, as one might expect, for example, from strong formulations of the anthropic cosmological principle — something I had tried to address in Formulating an Anthropic Cosmological Principle Worthy of the Name.)

In reformulating my contrast of eocivilization and exocivilization as the contrast between esocivilization and exocivilization, the term “eocivilization” is freed up to assume its more etymologically accurate meaning, which properly should be “early civilization” (“eo-” coming from the Greek means “early”). This turns out to be a very useful concept, but it always points to an additional thesis in the theory of civilization.

As in astrobiology, in which we study life on Earth as a clue to life in the cosmos, so too in astrocivilization we study civilization on Earth as a clue to civilization in the universe. Life on Earth is the only life that we know of, and civilization on the Earth is the only civilization that we know of, but in so far as we approach life and civilization from the scientific perspective of methodological naturalism, we do not assume that these are necessarily the only instances of life or of civilization in the cosmos. There may be other instances of life and civilization of which we simply know nothing.

In light of the possibility of life and civilization elsewhere in the universe, but our only knowledge of civilization being terrestrial civilization, I will call the terrestrial eocivilization hypothesis the position that identifies early civilization, i.e., eocivilization, with terrestrial civilization. In other words, our terrestrial civilization is the earliest civilization to emerge in the cosmos. Thus the terrestrial eocivilization hypothesis is the civilizational parallel to the rare earth hypothesis, which maintains, contrary to the Copernican principle, that life on earth is rare. I could call it the “rare civilization hypothesis” but I prefer “terrestrial eocivilization hypothesis.”

It is possible to further distinguish between the position that terrestrial civilization is the first and earliest civilization in the cosmos, and the position that terrestrial civilization is unique and the sole source of civilization in the cosmos. There may be exocivilizations that have and will emerge after terrestrial civilization, meaning that there are several sources of civilization in the cosmos, but that terrestrial civilization is the earliest to emerge. Thus the terrestrial eocivilization thesis can be distinguished from the uniqueness of terrestrial civilization. We might call the non-uniqueness of industrial-technological civilization on the Earth the “multi-regional hypothesis” in astrocivilization (to borrow a term from hominid evolutionary biology), but I would prefer to simply call it the “Non-Uniqueness Thesis.”

In the event that human civilization expands cosmologically and is ultimately the source of civilization on exoplanets that are part of other solar systems and perhaps even other galaxies, the terrestrial eocivilization thesis will have more substantive content than it does now at present, when (if the thesis is true) eocivilization is simply identical to all civilization in the cosmos. All we can say at present, however, is that terrestrial civilization is identical to all known civilization in the cosmos. To assert more than this is to assert the terrestrial eocivilization hypothesis, which is underdetermined and goes well beyond available evidence.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


The Search for Extra-Terrestrial Industrialization

In the Past, Present, and Future


In several posts I have discussed the Fermi Paradox, which, stated in its simplest form, is this: if the universe if full of life and full of technological civilizations, then where are the aliens? My posts on the Fermi Paradox include:

Silent Worlds, Empty Worlds

Methodological Naturalism and the Eerie Silence

Why the Fermi paradox must be taken seriously

Addendum on the Fermi Paradox

I have also, in a number of posts, reflected on how the progress of scientific knowledge in cosmology has continued to affirm and to follow a Copernican trajectory, consistently demonstrating to us that the cosmological context of the earth is not unique and not even especially rare. These posts have included:

Other Worlds

Twenty Years of the Hubble Space Telescope

More Evidence for the Copernican Principle

Given the success in extrapolating the Copernican principle, and knowing that small, rocky planets with an atmosphere circling sun-like stars in their habitable zones are not rare, the same Copernican principle ought to allow us to posit the non-rarity of life, of sentience, of civilization, and of technology. If this is the case, why are we not hearing the EM (electro-magnetic spectrum) broadcasts of other industrial-technological civilizations in our neck of the woods, galactically speaking?

It was my point in SETI as a Process of Elimination that the attempts to detect the EM signatures of alien civilizations, while very limited in extent to date, would have told us by now if there had been an advanced industrial-technological civilization on a planet orbiting, say, Tau Ceti or Epsilon Eridani. If there were such a civilization “close by,” say, within 25 light years of us, you would probably be able to listen to their radio broadcasts or watch their television shows with an especially sensitive receiver. Thus we can eliminate the possibility of an advanced technological civilization that is “close” to us in galactic terms.

We cannot, at least not yet, rule out peer industrial-technological civilizations farther afield in the Milky Way, much less in other peer galaxies throughout the universe. We can, however, say a few things about the possibility that remains of contacting other industrial-technological civilizations.

I have come to realize that the Fermi paradox can be expressed according to a law of trichotomy of exocivilizations. Taking our terrestrial industrial-technological civilization as the base line (not because we should count it a privileged civilization, but only because it is the one civilization of which we know something, and whose time and place of origin we can definitely assert), any other industrial-technological civilization would have to have appeared either…

1.prior to the appearance of terrestrial industrial-technological civilization…

2. …at roughly the same time as the appearance of terrestrial industrial-technological civilization… or…

3.after the appearance of terrestrial industrial-technological civilization…

Here we must carefully define the time-frames we will be discussing, because without being careful about the time-frame of the trichotomy we will quickly descend into incoherence.

In terms of the individual human life, civilization is very old; in cosmological terms, civilization is very young, and its few thousand years of development on the earth is nothing but the blink of an eye in the cosmic scale of things. Taking this cosmic perspective, the few thousand years it takes a species to go from essentially nothing to industrial-technological civilization is negligible. This is one of the sources of the Fermi paradox, because it is sometimes asserted that earlier civilizations could have or even should have emerged and colonized the galaxy before us.

Recent cosmological thought, however, with a greater appreciation for the natural history of the universe, has come to realize that an industrial-technological civilization cannot emerge until the heavier elements that fuel such a civilization are available, and these heavier elements can only come about through several generations of stellar nucleosynthesis, meaning that several generations of stars must be formed and then scatter their substance through going supernova before the heavier elements are available in sufficient amount to create both life as we know it and industrial-technological civilization as we know it.

This point has been made in relation to the anthropic cosmological principle. I haven’t yet taken the time to write in any detail about the anthropic cosmological principle (except for the short note Formulating an Anthropic Principle Worthy of the Name), but I have mentioned on several occasions that, while I consider strong formulations of the anthropic principle to be seriously wrong, weak formulations of the anthropic principle seem to me to be tautologically true: only a universe consistent with the existence of observers can be observed. Here is how Barrow and Tipler formulate a weak version of the anthropic principle as it relates to the age and size of the universe:

“…for there to be enough time to construct the constituents of living beings the Universe must be at least ten billion years old and therefore, as a consequence of its expansion, at least ten billion light years in extent. We should not be surprised to observe the the Universe is so large. No astronomer could exist in one that was significantly smaller. The Universe needs to be as big as it is in order to evolve just a single carbon-based life-form.”

John S. Barrow, and Frank J. Tipler, The Anthropic Cosmological Principle, Oxford: Clarendon Press, 1986, p. 3

What this means is that we cannot simply extrapolate backward in time and assert that an industrial-technological civilization might have emerged at any time in the history of the universe. The universe has to be approximately as old as old as it is now — old enough to produce our sun and our planets with their relatively plentiful mineral resources — for a civilization to emerge with a technological infrastructure capable to creating radio transmitters and receivers.

This argument — it could be called an anthropic argument, but I would call it the argument from natural history — can be extended to the appearance of terrestrial civilization, which, since the industrial revolution that made contemporary technology possible, has been powered by fossil fuels. A civilization that exploits fossil fuels to bootstrap itself to rapidly achieve high technology cannot come about until these fossil fuels have been laid down and fossilized. So no more than the age of the universe being arbitrary is the age of the earth arbitrary when it comes to the production of industrial-technological civilization.

It would certainly be possible to have a technological civilization without fossil fuels, but there is still a temporal constraint on the emergence of a sufficiently sophisticated biological infrastructure to support a brain of sufficient complexity for sentience, consciousness, and instrumental intelligence to emerge.

Thus in terms of the first division of the trichotomy of exocivilizations, industrial-technological civilizations would be limited to the recent past, with “recent” understood on a biological time scale. It would be unlikely that another industrial-technological civilization would have emerged in the Milky Way, or in another galaxy of approximately the same age as the Milky Way, beyond, say, 10-20 million years ago. This still means that there could be a civilization in the Milky Way millions of years old, which would seriously out-class our terrestrial civilization. The point here is that we don’t have a past of 13.7 billion years (the current estimate for the age of the universe) possibly filled with civilizations.

In terms of the second division of the trichotomy of exocivilizations, industrial-technological civilizations roughly contemporaneous with our own — and here I place the emphasis on roughly — would presumably be of a roughly similar character to our own, having emerged in a similar cosmological context and at a similar age of the universe. Seeing civilization in its cosmological context, like seeing biology in its cosmological context as I wrote about yesterday in Eo-, Eso-, Exo-, Astro-, means that we understand exocivilization to have been constrained by the same physical laws and material resources as our own civilization, i.e., esocivilization (which I now realize might also be called endocivilization).

Once an industrial-technological civilization emerges, it progresses rapidly (as I discussed in The Industrial-Technological Thesis), so that an industrial-technological civilization a mere few thousand years more mature than our own — a very real possibility in cosmological and biological terms — would possess a significant technological advantage over terrestrial civilization. However, as contemporary civilizations on a cosmological time scale, we must think of exocivilizations a few thousand years older or younger than terrestrial civilization as near-peer civilizations.

Because of the size the universe, and the great gulf between galaxies, between galactic clusters, and between super-clusters, and because of the constraints placed on communication and transportation by relativistic physics, it may be that near-peer civilizations are prevented from talking to each other for all practical purposes by virtue of the light cone in which each civilization finds itself embedded. The light cone not only describes the propagation of light but of all EM spectrum radiation, including radio signals.

The third division of the trichotomy of exocivilizations, regarding exocivilizations that emerge after our terrestrial esocivilziation, would involve different consequences for the possibilities open to the development of contemporary industrial-technological civilization, which would include:

After the end of terrestrial esocivilization, precluding the possibility of communication

After the end of terrestrial industrial-technological civilization, which is to say, a stagnant successor to contemporary terrestrial civilization, capable of being “discovered” in its dotage (imagine all of human civilization as a terrestrial India, with ancient and venerable traditions but a marginal role)

During the existence of an intact terrestrial industrial-technological civilization, which implies a spatially expanding terrestrial esocivilization, and therefore exocivilizations subordinate to, and perhaps even subject to, human civilization

Once one begins thinking about the possibilities there are two many to list, and providing some kind of typology of the interrelationship of civilizations would require a significant investment of time. For example, an expansionary exocivilization might exapt terrestrial civilization, expanding through and around and on top of that which came before, as later cities have exapted earlier cities and grown through them. The effort to formulate the interrelationships of esocivilization and exocivilizations would be the project of astrocivilization, i.e., the totality of civilization in the universe.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Eo-, Eso-, Exo-, Astro-

11 September 2012

Tuesday


NASA has published a number of astrobiology graphic novels that are well worth taking a look at.

Last spring in Eo, Exo-, Astro- I discussed the importance of the distinction between eobilogy, exobiology, and astrobiology as representing a truly Copernican conception of the life sciences, as well as the applicability of concepts from astrobiology to the study civilization. This discussion was partly an outgrowth of my continuing work on the idea of spacefaring civilization, which I discussed when I spoke at last year’s 100 Year Starship Study symposium (100YSS). Now that I am preparing to speak at the 2012 100YSS (my topic this year will be “The Large Scale Structure of Spacefaring Civilization”) I have been working on these ideas again and I found a problem with my previous formualtions.

Joshua Lederberg in front of Mars Lander chart, from Profiles in Science, National Library of Medicine

I mentioned in my previous post on this topic the work of Joshua Lederberg, one of the founders of exobiology. I was lead to Lederberg’s work by the excellent book The Living Universe by Steven J. Dick and James E. Strick, which noted how Lederberg had contrasted eobiology and exobiology. I jumped to the conclusion that eobiology and exobiology were contrasted as terrestrial biology to non-terrestrial biology. While I was right about astrobiology being the more comprehensive synthesis, placing terrestrial biology in its cosmological context, I got Lederberg’s contrast of eobiology and exobiology wrong.

Lecture notes of Lederberg for his Cartwright Lecture at Columbia University on18 November 1981.

Joshua Lederberg wrote this about the formation of his ideas in the immediate post-Sputnik period:

At around this time, I coined the term “exobiology”, a smaller mouthful than “the scientific study of extraterrestrial life”. Exobiology has been panned as one of the few scientific disciplines that may have an empty set as its experimental objects. Regardless, what we have called biology until now should be limned “esobiology”, which can be backformed into “earth’s own biology”. It may be unique in the solar system, perhaps even the cosmos — howbeit, it is still parochial.

Joshua Lederberg, Terry Lectures, Yale University, Thurs – Fri: April 6, 7 and April 13, 14, 1989, “Origin and Extent of Life” (Notes for Terry Lecture #1)

Most if not all of Lederberg’s papers are available online, including several early articles in which he formulated his ideas of exobiology before the idea of astrobiology had emerged. The papers available at Profiles in Science are well worth reading.

Lederberg’s contrast between eobiology and exobiology was intended as a contrast between origins of life research and research into life in the universe beyond the earth, and hence beyond eobiology as the origins of biology. There is almost an element of csomological eschatology present in Lederberg’s visionary compass taking in the breadth of life from it earliest origins to its far-flung possibilities in the depths of space. Lederberg called eobiology “the ultimate creation myth of science,” and exobiology might in the same spirit be called the ultimate eschatological myth of science. Here is how Lederberg formulated the distinction between eobiology and exobiology in 1995:

The reconstruction of life’s origin, eobiology, is the ultimate creation myth of science — certainly it places the most stringent demands on the method of science. On the one hand, DNA and RNA are the most durable physical features of the planet: they have evolved in every detail, but their basic architecture can be inferred to have survived at least 3 billion years of terrestrial history…

Three avenues remain open to us. 1) The reconstruction of plausible emulations of biopoiesis in the laboratory. 2) Observational evidence and palaetiological interpretation of geo- and cosmochemical history of organic molecules: in free space and in condensates such as meteorites and comets. 3) The search for independent evolutions of life beyond narrow terrestrial limits, for an exobiology beyond our own esobiology…

As for exobiology, our principal avenues are 1) telescopic observations from earth, or near orbit, now mainly focused on the substantiation of circumstellar planetary systems like our own; 2) radio-telescopic surveys for possible intelligent signals, and 3) spacecrafted instrumentation visiting the surface of nearby planets, notably Mars.

Joshua Lederberg, Pasteur Centenary Rio February 19-25 ff 1995, I have edited the above remarks but you can read the original in its entirety at the link provided

Term “eobiology” comes from the work of N. W. Pirie, a scientist and philosopher of science — at least, The Living Universe, cited above, attributes “eobiology” to N. W. Pirie, though I was only able to find the term “eobiont” (and not “eobiology”) in Pirie’s work. In any case, with my improved understanding of Lederberg’s formulations of exobiology and related concepts we have the following four concepts that are of particular importance:

● Eobiology: the prefix “eo” means early, so “early biology” or the origins of life

● Esobiology: the prefix “eso” means “inner” or “within” so, in a sense, “our biology,” in other words, terrestrial biology

● Exobiology: the prefix “exo” means “outer” or “outside” so “outer biology” or, if you will, biology in outer space

● Astrobiology: the prefix “astro” means pertaining to the stars, so biology as it pertains to the stars, or biology in a cosmological context

Although I got the original contrast between eobiology and exobiology wrong, I can easily reformulate the distinction I wanted to make in Lederberg’s terms as the contrast between esobiology and exobiology, that is to say, the distinction between terrestrial biology and extraterrestrial biology, which taken together constitute the more comprehensive domain of astrobiology.

I characterized the emergence of astrobiology as being of great importance because it constitutes a fully Copernican science liberated from the prejudices of geocentric biology. My concern was to employ parallel concepts to formulate a similarly fully Copernican Conception of Civilization, and this I see I must now do with the following four concepts:

● Eocivilization the origins of civilization, wherever and whenever it occurs, terrestrial or otherwise

● Esocivilization our terrestrial civilization

● Exocivilization extraterrestrial civilization exclusive of terrestrial civilization

● Astrocivilization the totality of civilization in the universe, terrestrial and extraterrestrial civilization taken together in their cosmological context

Originally I contrasted eocivilization to exocivilization as synthesized in the greater whole of astrocivilization; it is obvious now that the contrast I should have made was that between esocivilization and exocivilization, these two latter of which are unified in astrocivilization.

Although the concepts of esobiology and exobiology can be considered to have been superseded by the concept of astrobiology, the earlier concepts remain useful distinctions within the field of astrobiology, and the same can be said of esocivilization, exocivilization, and astrocivilization: astrocivilization is the comprehensive, Copernican conception of civilization, but it is supplemented by the useful concepts of esocivilization (which for us is terrestrial civilization) and exocivilization (extraterrestrial civilizations), which continue to be valid and useful concepts for the study of civilization.

The original visionary contrast of eobiology and exobiology in Lederberg’s work can be reformulated in the context of civilization as the breadth of civilization from it earliest origins to its far-flung possibilities in the depths of space, which is a sweeping eschatological conception of civilization.

There remains a further subtle distinction that can be made here. Once we understand that the complementary concepts of esocivilization and exocivilization concern the distribution of civilization in space, we recognize that eocivilization is concerned with the distribution of civilization in time. This suggests another concept that would stand opposite that of eocivilization identifying the opposite pole of civilization’s origins — would this be the destiny, aim, or goal of civilization? Such terms are, of course, loaded, and we would be better to avoid them. I discussed in yesterday’s The Industrial-Technological Thesis the tendency of contemporary historians to avoid any mention of “progress,” and for similar reasons we might want to avoid any formulation that suggests a telos of civilization — but this is an interesting question that deserves its own separate discussion rather than a mere aside in passing.

What neutral term could be employed to indicate the opposite of eocivilization, and what term could be employed to indicate the synthesis of eocivilization and its other? The obvious choice would be the prefix “post-” except that I really don’t like the sound of “post-civilization” and what it implies (though I have used in on many occasions, as when I reference post-civilization successor institutions). I think I would prefer some Latinate formulation like Res cultus futurae, but this is awkward contrast to “eocivilization” and “cultus” is a very imperfect translation of “civilization” since ancient Latin had no word for civilization. So I will continue to think about the terminology, but I do want to get the concepts out there while I have them in mind:

● Eocivilization the origins of civilization

● After-civilization that state toward which civilization is evolving, and perhaps also that which comes after civilization

● Metaphysical civilization the totality of civilization in history; the temporal whole of civilization from its earliest origins to its transition into another kind of institution

Thus while I had originally been mistaken in contrasting eocivilization to exocivlization, which I now realize should be the contrast between esocivilization and exocivilization, the term and the concept “eocivilization” turns out to be very useful and highly suggestive (and from it we can arrive at the terrestrial eocivilization thesis).

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: