Biological Bias

3 March 2018

Saturday


What does it mean to be a biological being? It means, among other things, that one sees the world from a biological perspective, thinks in terms of concepts amenable to a biological brain, understands oneself and one’s species in its biological context, which is the biosphere of our homeworld, and that one persists in a mode of being distinctive to biological beings (which mode of being we call life). To be a biological being is to be related to the world through one’s biology; one has biological desires, biological aversions, biological imperatives, biological expectations, and biological intentions. Human beings are biological beings, and so are subject to all of these conditions of biological being.

When we think in terms of human bias — and we are subject to many biases as human beings — we usually focus on exclusively human biases, our anthropocentrism, our anthropic bias, but we are also subject to biases that follow from the other ontological classes of beings of which we are members. We are human beings, but we are also cognitive beings (i.e., intelligent agents), linguistic beings, mammalian beings, biological beings, physical beings, Stelliferous Era beings, and so on. This litany may be endless; whether or not we are aware of it, we may belong to an infinitude of ontological classes in virtue of the kind of beings that we are.

Another example of a bias to which human beings are subject but which is not exclusively anthropic, is what I have called terrestrial bias. Some time ago in Terrestrial Bias: Thought Experiments I asked, “…is there, among human beings, any sense of identification with the life of Earth? Is there a terrestrial bias, or will there be a terrestrial bias when we are able to compare our response to terrestrial life to our response to extraterrestrial life?” As I write this it occurs to me that a distinction can be made between planetary bias, to which any being of planetary endemism would be subject, and terrestrial bias understood as a bias specific to Earth, to which only life on Earth would be subject. In making this distinction, we understand that terrestrial bias is a special case of planetary bias, which latter is the more comprehensive concept.

Similarly, anthropic bias is a special case of the more comprehensive concept of intelligent agent bias. Again, we can distinguish between intelligent agent bias and anthropic bias, with intelligent agent bias being the more comprehensive concept under which anthropic bias falls. However, intelligent agents could also include artificial agents, who would be peers of human intelligent agents in respect of intelligence, but which would not share our biological bias. The many biases, then, which attend and inform human cognition, are nested within more comprehensive biases, as well as overlapping with the biases of other agents that might potentially exist and which would share some of our biases but which would not fall under exactly the same more comprehensive concepts. In Wittgensteinian terms, there is a complicated network of biases that overlap and intersect (cf. Philosophical Investigations, sec. 66); these biases correspond to a complicated network of ontological classes that overlap and intersect.

Our biological biases overlap and intersect with our other biases, such as our biases as the result of being human (anthropic bias) or our biases in virtue of being composed of matter (material or physical bias). Biological bias occupies a point midway between these two ontological classes. Our anthropic bias is exclusive to human beings, but we share our biological bias with every living thing on Earth, and perhaps with living things elsewhere in the cosmos, while we share our material bias much more widely with dust and gas and stars, except that these latter beings, not being intelligent agents, cannot exercise judgment or act as agents, so that their bias can only be manifested passively. One might well characterize the Platonic definition of beingthe capacity to affect or be affected — as the passive exercise of bias, with each class of beings affecting and being affected by other beings of the same class as peers.

I have sought to exhibit and disentangle and overlapping and intersecting of biological baises in a number of posts related to biophilia and biophobia, including:

Biocentrism and Biophilia

The Biocentric Thesis

The Scope of Biophilia

Not all biases are catastrophic distortions of reasoning. In Less than Cognitive Bias I made a distinction between anthropic biases that characterize the human condition without necessarily adversely affecting rational judgment, and anthropic biases that do undermine our ability to reason rationally. And in The Human Overview I sketched out the complexity of ordinary human communication, which is dense in subtle biases, some of which compromise our rationality, but many of which are crucial to our ability to rapidly reason about our circumstances — a skill with high survival value, and a skill at which human beings excel and which will not soon by modeled by artificial intelligence on account of its subtlety. A tripartite distinction can be made, then, among biases that compromise our reason, biases that are neutral in regard to out ability to reason, and biases that augment our ability to reason.

Our biological biases coincide to a large extent with our evolutionary psychology, and, in so far as our evolutionary psychology enabled us to survive in our environment of evolutionary adaptedness, our biological biases augment our ability to reason cogently and to act effectively in biological contexts — though only in what might be called peer biological contexts, as far as our particular scale of biological individuality allows us to identify with other biological individuals as peers. Our peer biological biases do not allow us to interact effectively at the level of the microbiome or at the level of the biosphere, with the result that considerable scientific effort has been required for us to understand and to interact effectively at these biological scales.

A similar applicability of bias may be true more widely of our other biases, which help us in some circumstances while hurting us in other circumstances. Certainly our anthropic biases have helped us to survive, and that is why we possess them in such robust forms, though they have helped us to survive as a species of planetary endemism. In the event of humanity breaking out of our homeworld as a spacefaring civilization, our anthropic, homeworld, and planetary endemism biases may not serve us as well in cosmological contexts. however, we know what to do about this. The cultivation of science and rigorous reasoning has allowed us to transcend many of our biases without actually losing our biases. Instead of viewing this as a human, all-too-human failure, we should think of this as a human strength: we can, when we apply ourselves, selectively transcend our biases, but when we need them, they are there for us, and they will be there for us until we actually alter ourselves biologically. Thus there is a biological “way out” from biological biases, but we might want to think twice before pursuing this way out, as our biological biases may well prove to be an asset (and perhaps an asset in unexpected, instinctive ways) when we eventually explore other biospheres and encounter another form of biology.

What Carl Sagan called the “deprovincialization” of biology may also take place at the level of human evolutionary psychology. If so, we shouldn’t desire to transcend or eliminate our biological biases as we should desire to augment and expand them in order to overcome what will be eventually learn about our terrestrial and homeworld biases from the biology of other worlds.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Technocentric Thesis

6 October 2016

Thursday


tech-v-man

A biological being among biological beings

A human being is a being among beings, and moreover a biological being among biological beings. We come to an awareness of ourselves, and of what we are, in a biological context. Biophilia, then, is a default consequence of being biological and finding oneself in a biological content; biophilia is a cognitive bias of biological beings. (Previously I considered the relationship between our biological nature and our biological bias in Biocentrism and Biophilia.) From both our biocentrism and our biophilia follows biocentric civilization, which I formulated in terms of the biocentric thesis, so it is natural that I would next attempt to formulate a technocentric thesis, as I have often contrasted biocentric and technocentric conceptions.

Until quite recently there was no possibility of pursing a non-biophilic bent, i.e., of pursuing a technocentric bent. Over the past several thousand years of human civilization, individual human beings had a limited opportunity to immerse themselves into the human world of civilization, and this civilization has been predominantly and pervasively biocentric. Since the Industrial Revolution, however, after which both agriculturalism and pastoralism became economically marginal, and the adoption of technology greatly increased, the ability to separate oneself from biocentric institutions has increased proportionately, but the individual has remained himself a biological being, tied to the biological world through existential needs for personal sustenance. Thus our being biological has repeatedly brought us back to our biological origins. If civilization were to fail, we could still return to an almost exclusively biocentric context and — at least for those who survived this traumatic transition — life would go on.

The emergence of a technological milieu following the industrial revolution suggests the possibility of a technocentric civilization that is the successor to biocentric civilization. Indeed, we may even understand the emergence of a fully technocentric civilization as the telos of industrialized civilization. We can formulate this in greater generality, as this process may hold for any civilization whatsoever that originates as a civilization of planetary endemism and makes the transition to a technological civilization.

Should the intelligent (biological) agents that build a civilization cease to be biological and become, for example, technological instead of biological, over time those intelligent agents could grow apart from their biocentric origins, and the social institutions in which these intelligent agents participate will become increasingly less biocentric. Biocentricity, then, is a function of biological origins, i.e., biocentrism is a consequence of being biological (as I put it in The Biocentric Thesis), and biophilia is an expression of biocentricity. As a technological civilization grows away from its biocentric origins, it is likely to become less biophiliac over time, which will in turn allow for greater expression of technophilia.

man-in-the-technological-age

An explicit formulation of the technocentric thesis

Let us try to give these ideas a more explicit formulation:

The Technocentric Thesis

Any fully technocentric civilization has evolved from a previous biocentric civilization by descent with modification.

…which implies its corollary formulated in the negative…

Technocentric Corollary

No civilization originates as a technocentric civilization.

By a “biocentric civilization” I mean a civilization that exemplifies the biocentric thesis. I have formulated a strong biocentric thesis (all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces) and a weak biocentric thesis (all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces), each of which has a corollary formulated in the negative. The technocentric thesis could also be given strong and weak formulations, e.g., all technocentric civilizations in our universe evolve from biocentric civilizations (strong) and all technocentric civilizations during the Stelliferous Era evolve from biocentric civilizations (weak). The weaker formulation is in each case constrained by temporal parameter while the stronger formulation is unconstrained.

The mechanism by which a technocentric civilization evolves from a biocentric civilization I call replacement, and replacement can be formulated as the replacement thesis:

The Replacement Thesis

All technocentric civilizations begin as biocentric civilizations and are transformed into technocentric civilizations through the replacement of biological constituents with technological constituents.

This in turn implies a negative formulation as its corollary:

Replacement Thesis Corollary

No technocentric civilization originates as a technocentric civilization, but emerges by replacement from a biocentric civilization of planetary endemism.

How far can replacement go? We can already see in our own industrialized civilization partial replacement, but can there be a complete replacement of biological constituents by technological constituents? For any civilizations originating in intelligent biological organisms, it is unlikely that living organisms could ever be completely eliminated, but they may be rendered superfluous for all practical purposes (i.e., superfluous to civilization).

eye-on-dark-background

The argument from consciousness

It would be possible to construct a scenario in which biology can never be completely eliminated as a constituent of civilization. Consider the following scenario, which I will call the argument from consciousness, based on the indispensability of consciousness to civilization and the unknown parameters of machine consciousness.

The Argument from Consciousness

I will assume that there is such a thing as consciousness, that human beings are conscious at least some of the time, and that this human consciousness plays a significant role in human existence and in the civilizations built by human beings. (It is necessary to make these rudimentary stipulations because it is not unusual to find consciousness dismissed, or called an “illusion,” or to see its role in the world minimized or marginalized.)

The view is prevalent, perhaps even dominant, in AI circles such that anything that can pass the Turing test must be called conscious. There is a degree of mutual reinforcement between this common view among AI researchers and the tacit positivism that continues to influence the development of contemporary science, which consigns consciousness of the sphere of metaphysics and thus rules out in principle any metaphysical entity that is consciousness. I will not here attempt to make a case for consciousness as a metaphysical entity, but I will assume, for the purposes of what follows, that a principled refusal to consider consciousness is a barrier to understanding human behavior, including the behavior of building civilizations.

Since we do not yet know what consciousness is, and we cannot produce a scientific account of consciousness, we do not know what the conditions of consciousness are. If we had a scientific theory of consciousness that allowed us to quantify consciousness by taking meaningful measures of consciousness, any putative consciousness, whether generated by a mechanism or by biology, natural or modified or fully synthetic, could be tested by such measures of consciousness and objectively determined to be conscious or not. We do not as yet possess any such science, nor can we take any such measurements.

Human and animal consciousness constitute existence proofs of the possibility of consciousness arising by natural means, and thus consciousness ought to be amenable to study by methodological naturalism, and also to replication. It is possible that consciousness can only be produced by biological means, i.e., it is possible that machine consciousness cannot be generated. The existence proof of consciousness provided by biological beings is not an existence proof of machine consciousness. Now, I personally think that machine consciousness will eventually come about, but we will not know that this is possible until it has been achieved.

Even if machine consciousness is impossible, it would still be possible to engineer consciousness by biological means, employing some variation on existing biological substrates of consciousness, or producing consciousness by way of synthetic or artificial biology. In this case, a civilization (or post-civilizational social institution) that preserves consciousness, or desires to preserve consciousness, will not be able to become purely technocentric in the sense of entirely eliminating biology, though the biology that is retained may be entirely subordinated to technical means and technical institutions. A civilization that retained consciousness through such biological means, but entirely within a technocentric context, could be called a technocentric civilization in which biology was ineradicable.

The argument from consciousness is merely an argument (and not a proof of anything), because the same absence of a science of consciousness that would allow us to take objective measures of consciousness is the absence of a science that would make it possible to prove either that consciousness can inhere in different kind of substrates (biological or mechanical, for example), or that consciousness can only be generated through biological means. Until we have a science of consciousness, we can advance this line of argumentation only through existence proofs, i.e., proofs of concept.

Even then, even given building a conscious machine, without a science of consciousness we would have no way to rigorously and objectively compare and contrast human consciousness with machine consciousness. One way to resolve this dilemma is the Turing test, as noted above, but no one who has any degree of scientific curiosity could be satisfied with cutting the Gordian knot of consciousness rather than unraveling it.

thinking-explicitly

Final thought

One of the virtues of explicitly formulating one’s ideas as theses (or as arguments), as in the above, is that one can then turn to the explicit criticism of these theses, especially to the task of unpacking the assumptions embedded in the theses. Another virtue of explicit formulations is that they can be explicitly falsified. The existence of a civilization not derived from biological complexity emergent on a planetary surface would falsify the biocentric thesis.

These explicit formulations, then, are not be taken as definitive formulations. I do not consider the biocentric thesis, the technocentric thesis, or the replacement thesis to be in any sense definitive, but rather to be a point of departure in an analysis of the nature of civilization taken in its broadest signification and extrapolated to a cosmological scale. Thus I hope to return to each of these theses in order to tease out their assumptions in order to analytically approach the intuitive conception of civilization with which I began.

. . . . .

cloud-tree

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


Biophilia

In The Biocentric Thesis I gave an explicit formulation of the idea that civilizations of the Stelliferous Era originate in the actions of biological agents — actually, I gave two formulations, a weak and a strong, each with a corollary. What I failed to explicitly note in that post was that, in explicitly formulating the biocentric thesis, the idea of biocentricity is not confined to describing the biocentric thesis. In other words, we can identify as “biocentric” some state-of-affairs (presumably a civilization, or, more narrowly, an institution) regardless whether this state-of-affairs exemplifies the biocentric thesis. Thus the concept of the biocentric has a much wider scope than the biocentric thesis specifically.

It is worthwhile to make this distinction because the biocentric thesis is a particular idea about the origin of civilization (an extrapolation of Darwin’s thesis to astrobiological scope) while the idea of the biocentric, being of greater scope, has much wider applicability. If the biocentric thesis is true, that is to say, if all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces (or, in its strong form, if all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces), then biocentrism is not merely a feature of the human condition, it is the condition from which any and all civilizations originate (i.e., it is the common condition of eocivilization).

What is the human relationship to biocentrism beyond a narrowly conceived biocentric thesis on the origins of civilization? In my post Astrobiology Thought Experiment I wrote:

“…I have been trying to get at the human affinity to the rest of life on Earth, and trying to get at it in a primarily visceral sense in order to get around the hopeless tangle of rationalization and cognitive bias that we have painstakingly erected around the idea of humanity.”

What I called “the human affinity for the rest of life on Earth” is also known as biophilia. E. O. Wilson’s initial exposition of the idea of biophilia defined the term as meaning, “…the innate tendency to focus on life and lifelike processes.” This appears on the very first page of his book Biophilia. Elsewhere, in his book The Diversity of Life, Wilson has defined biophilia as, “…the connections that human beings subconsciously seek with the rest of life.”

In formulating the idea of biophilia Wilson already anticipated the extrapolation of biophilia beyond terrestrial life. (Though Wilson’s term biophilia has rapidly gained currency and has been widely discussed, his original vision embracing a biophilia not limited to Earth has not enjoyed the same level of interest.) Also on the first page of Biophilia is this brief reflection on extraterrestrial life:

“From infancy we concentrate happily on ourselves and other organisms. We learn to distinguish life from the inanimate and move toward it like moths to a porch light. Novelty and diversity are particularly esteemed; the mere mention of the word extraterrestrial evokes reveries about still unexplored life, displacing the old and once potent exotic that drew earlier generations to remote islands and jungled interiors.”

Wilson, E. O., Biophilia: the Human Bond with Other Species, Cambridge and London: Harvard University Press, 2003, p. 1.

It seems likely that we would naturally extrapolate both our biophilic and biophobic reactions to any extraterrestrial life we may find. However, it is also likely that, in our encounters with extraterrestrial life in the future, there may be instances in which we cannot as clearly distinguish between the animate and the inanimate as we can with terrestrial life. Our biophilic intuitions may need to be educated and augmented if they are to applied beyond terrestrial life, just as our mathematical intuitions are educated and augmented when we learn advanced mathematical concepts that were no part of our intuitive endowment of mathematical knowledge (we can cite geometrical intuition as an instance of the latter). Unlike the example of educating our mathematical intuitions, however, we cannot educate and augment our biophilic and biophobic reactions without actually traveling to other biospheres and learning directly about other lifeforms, preferably in their native habitats. In other words, progress in biology is ultimately predicated upon progress in space travel. This is implicit in the very idea of astrobiology.

An interest in life as yet unexplored implies the possibility of xenophilia as a special case of biophilia. Wilson seems to unproblematically assume that this is the case, but I have regarded this as an open question. For example, in Terrestrial Bias: Thought Experiments I wrote:

“Is life itself, regardless of its origins, of value to our biophilic minds, or are our anthropogenic minds so focused on differential survival and reproduction of homo sapiens that life itself is an abstract idea that can find no purchase in our sentiments? How far does biophilia extend? Is biophilia really only terrestrial biophilia? Is xenophilia possible for terrestrially evolved minds?”

We can we a bit more systematic about this: we can distinguish between biophilia in a narrow sense and biophilia in an extended sense, and the meaning of biophilia can be extended in more than one way. Biophilia in its narrowest sense is the affinity that human beings have for other terrestrial life. The generalization of this narrow sense of biophilia would be human affinity for all life, wherever that life may be found (as implied by E. O. Wilson). The formalization of the narrow sense of biophilia would be the affinity that any intelligent agent would feel for the biota of its homeworld, and from this formalizaton we can deduce the possibility of a particular intelligent species with its affinity for its particular homeworld (and this is a distinct concept than the purely formal concept of any species’ affinity for its homeworld). The formalization of the generalization of human biophilia would be affinity that any intelligent biological being would have for any life to be found in the universe. These are the permutations of biophilia, and each permutation may be regarded as an open question inviting further research.

Biophilia in the extended sense of the formalization of human biophilia (the affinity that any biological being would have for the biota of its homeworld) can be taken as a foundational posit of cognitive astrobiology, as predictable in shaping minds as natural selection is predictable in shaping bodies. Biophilia is the cognitive expression of biocentrism, and in so far as biocentrism is likely to typify any intelligent biological being, any intelligent biological being is likely to embody the same kind of biophilia found among human beings. In this sense, biophilia is a central phenomenon of cognitive astrobiology.

However, we can also posit that any intelligent agent that builds a technological civilization, and eventually a spacefaring civilization by technological means, will have, to some degree, marginalized native biophilia to the extent that this is necessary in order for a class of persons in this civilization to be fully immersed in a technological milieu. I take this latter condition to be a sine qua non of the development of advanced technological capabilities; perhaps this idea — i.e., the idea of at least one class of persons under the umbrella of a larger society to be immersed in a technological milieu — demands independent analysis and exposition. This I will reserve for a future post.

. . . . .

pictogram biophilia

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Biocentric Thesis

19 July 2016

Tuesday


The biocentric character of contemporary civilization is strikingly evident in aerial photographs.

The biocentric character of contemporary civilization is strikingly evident in aerial photographs.

The Centrality of Biology to Civilization

Beyond the formulation of the biological conception of civilization and the ecological conception of civilization, both of which employ concepts from biology, we can identify a particular thesis (or particular theses) addressing the centrality of biological relationships and biological entities to civilization (as we have known civilization to date). I have expressed the centrality of biology to civilization as the biocentric thesis.

Although I have not previously formulated the biocentric thesis explicitly (here I will attempt to do this) though I have used the idea many times. Previously I wrote about biocentric civilizations in From Biocentric Civilization to Post-biological Post-Civilization, Addendum on the Stages of Civilization, and Another Way to Think about Civilization, inter alia, without attempting to clarify my use of “biocentric,” while in The Biological Conception of Civilization and The Ecological Conception of Civilization I considered biologically-derived conceptions of civilization.

Even our mythologies have involved the close association of human beings with fellow biological beings, as in this depiction of the earthly paradise. ('The garden of Eden with the fall of man,' Peter Paul Rubens and Jan Brueghel the Elder, 1615)

Even our mythologies have involved the close association of human beings with fellow biological beings, as in this depiction of the earthly paradise. (‘The garden of Eden with the fall of man,’ Peter Paul Rubens and Jan Brueghel the Elder, 1615)

On Being Biological

Let us begin with the basics: human beings, the progenitors of terrestrial civilization, are biological. Being ourselves biological entities, human life has been integral with the biological world from which it arose. We live by consuming other biological entities, and, when we die, our bodies decompose and their constituents are reintegrated with the biological world from which we sprang. When human beings began the civilizational project, we remained integral with the biological world, exapting it for our new-found purposes, which involved the tightly-coupled coevolutionary cohort of species that I employed as the biological conception of civilization. In western thought it as been traditional to oppose nature to culture, but, being biological, we understand our civilization by understanding ourselves, and we understand ourselves by understanding biology.

Biology is both an old and a young science. Plato had little use for biology, and in reading Plato’s dialogues one could be forgiven for supposing that the Greeks had ever lived in any condition other than a civilization in which nature is kept at a certain distance. Aristotle, on the contrary, was a careful observer of nature, thus we may say that biology as science goes back at least to Aristotle’s treatises The History of Animals, On the Parts of Animals, On the Motion of Animals, and On the Gait of Animals.

Biology in its contemporary form goes back to Darwin, from which time biology has rapidly advanced and is today a mature science, as sophisticated in its own way as particle physics. And while we do not usually think of the growing rigor and sophistication of a body of scientific knowledge as an exercise in introspection, in the case of biology we can think of it in this way — if only we have the hardihood to apply what we have learned from biology to ourselves and to our biologically-based civilization. Because we are biological beings, knowledge of biology is knowledge of ourselves.

In this photograph we not only see the human imprint on the landscape, but also the projection of human civilization into Earth orbit.

In this photograph we not only see the human imprint on the landscape, but also the projection of human civilization into Earth orbit.

Being Biological in an Astrobiological Context

Astrobiology is a very young science, but in so far as it takes up the torch of biology and extrapolates biological concepts to their ultimate cosmological context, astrobiology is simply a greatly expanded biology, and in this sense not a new science at all. In From an Astrobiological Point of View I characterized the emergence of astrobiology in this spirit of continuity as the fourth of four great revolutions in biology, the previous three revolutions being Darwinism, Mendelian genetics, and evolutionary developmental biology (better known as “evo-devo”).

In the context of astrobiology, understanding the conditions for life in the universe is a greatly expanded form of human introspection, in which an evolving body of scientific knowledge has the capability of demonstrating the cosmological context of human life. Once again, in understanding astrobiology we can better understand ourselves, if only we have the willingness to understand ourselves scientifically. Beyond understanding ourselves, astrobiology also holds the promise of better understanding our civilization. An astrobiological formulation of the biological conception of civilization would extrapolate this conception of civilization to a cosmological scope.

In Astrobiology is island biogeography writ large I suggested that spaceflight is to astrobiology as flight is to biogeography, which is an application of the principle that technology is the pursuit of biology by other means. Given technologically-enabled spaceflight (made possible by a technological civilization), terrestrial life can expand beyond Earth and beyond our planetary system to other worlds, just as the innovation of flight made it possible for terrestrial organisms (even those that do not fly) to establish themselves on distant, isolated islands — hence the analogy between biogeographical distribution patterns and astrobiological distribution patterns. This is still a biocentric paradigm, but extrapolated to cosmological scope.

8x10.ai

Biocentric Theses

With these considerations of what it means to be a biological being in an astrobiological context, I will attempt an explicit formulation of weak and strong biocentric theses. All of these formulations involve what I have earlier called planetary endemism.

The Weak Biocentric Thesis

All civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces.

This thesis is “weak” because it addresses only civilizations during the Stelliferous Era. A corollary of the weak biocentric thesis excludes the possibility of any Stelliferous Era civilization that does not arise from biology, as follows:

Corollary of the Weak Biocentric Thesis

No civilizations during the Stelliferous Era existed prior to the advent of Stelliferous Era biota.

The weak biocentric thesis and its corollary implies a strong biocentric thesis, not limited to the Stelliferous Era:

The Strong Biocentric Thesis

All civilizations in our universe begin as biocentric civilizations originating on planetary surfaces.

The strong biocentric thesis also has a strong corollary:

Corollary of the Strong Biocentric Thesis

No civilizations existed in our universe prior to the biocentric civilizations of Stelliferous Era.

Both strong and weak biocentric theses and their corollaries entail that the emergent complexity of civilization arises from the previous emergent complexity of life, and, in their strongest formulations, that it could be no other way. This excludes the possibility that there exist forms of emergent complexity other than life — sufficiently distinct from life as we know it than any identification of this emergent complexity as life would be problematic — from which civilization might independently arise. This is a rather sweeping claim, and, though it is supported by our parochial knowledge of life and civilization on Earth, it would be quite a stretch to assert this for the universe entire. On the other hand, we would still want to entertain this possibility, as there may be universes in which the only emergent complexity upon which civilization can supervene is life, more or less as we know it.

If the Strong Biocentric Thesis and its corollary are true, then there are no pre-Stelliferous Era civilizations, and all post-Stelliferous Era civilizations are derived from Stelliferous Era civilizations having their origins in planetary endemism. Post-Stelliferous Era civilizations would include Degenerate Era civilizations, Black Hole Era civilizations, and Dark Era civilizations. This might be formulated as another thesis in turn.

According to this understanding of civilization, the Stelliferous Era is uniquely generative of civilizations. In so far as we understand civilizations to belong to a suite of emergent complexities, we might say instead that the Stelliferous Era is uniquely generative of emergent complexity. At least, we say that now, prior to the emergent complexities unique to the Degenerate Era. It seems likely, however, that at some point the universe will reach peak complexity, and after that point it will begin to decay, and emergent complexities will begin to disappear, one by one.

Earth-Moon-System

The Terrestrial Eocivilization Hypothesis and Darwin’s Thesis

The above is closely related to what I have previously called the Terrestrial Eocivilization Hypothesis, which I characterized as follows:

“I will call the terrestrial eocivilization hypothesis the position that identifies early civilization, i.e., eocivilization, with terrestrial civilization. In other words, our terrestrial civilization is the earliest civilization to emerge in the cosmos. Thus the terrestrial eocivilization hypothesis is the civilizational parallel to the rare earth hypothesis, which maintains, contrary to the Copernican principle, that life on earth is rare. I could call it the ‘rare civilization hypothesis’ but I prefer ‘terrestrial eocivilization hypothesis’.”

This might, more simply, be called the “priority thesis,” and is to be distinguished from the “uniqueness thesis,” i.e., that there is one and only one civilization in the universe, and that one is terrestrial civilization. Thinking over this again in retrospect, I realize that priority, uniqueness, and biocentricity can be distinguished. A civilization might be unique in virtue of being first (i.e., having priority), or by being the only civilization, or by being the last of all civilizations. Thus priority is only one form of uniqueness among others. And priority and uniqueness can both be distinguished from biocentricity: according the biocentric theses above, biocentric civilization has priority (at least during the Stelliferous Era) but it not necessarily unique in the universe, nor unique to Earth. Terrestrial civilization is a biocentric civilization, and it may also have priority and it may be unique.

The biocentric theses are also related to what I have called Darwin’s Thesis on the Origins of Civilization, according to which civilization emerges from non-civilization, much as naturalistic accounts of life hold that life emerges from non-life (sometimes called abiogenesis). Whereas the priority thesis (i.e., the terrestrial eocivilization hypothesis, that the earliest civilization is terrestrial civilization) is specific to Earth, Darwin’s thesis, like the biocentric theses above, can be applied universally without reference to the historical accidents of civilization on Earth (including its emergence, and whether this emergence was earlier than or later than any other emergence of civilization).

From a scientific standpoint, then, it is more important to determine the exact logical relationships between the biocentric theses and Darwin’s thesis, as the details of what happened on Earth belong to the accidents of cosmological history. As I said in my post on Darwin’s thesis, these ideas about civilization are rudimentary in the extreme, but since a science of civilization does not yet exist, we must begin with these simplest of concepts if we are ever to think clearly about civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Monday


Ecological niche construction in the natural world.

Ecological niche construction in the natural world.

Recently in The Biological Conception of Civilization I defined civilization as a tightly coupled cohort of coevolving species. In proposing this definition, I openly acknowledged its limitations. This biological conception of civilization defines a biocentric civilization, and if civilization continues in its technological development, it may eventually pass from being a biocentric civilization, dependent upon intelligent organic species originating on planetary surfaces, to being a technocentric civilization, no longer dependent in this sense.

Even given these limitations of the biological conception of civilization, we need not abandon a biological framework entirely to converge upon a yet more comprehensive conception of civilization, beyond the biocentric, but still roughly characterized by conditions that we have learned from our tenure on Earth. Being ourselves an intelligent organic species existing on the surface of a planet, biological modes of thought can be made especially effective for minds such as ours, and it is in our cognitive interest to cultivate a mode of thought for which we are specially adapted.

Let us, then, go a little beyond a strictly biological conception of civilization and formulate an ecological conception of civilization. To make this conception immediately explicit, here is a first formulation…

The Ecological Conception of Civilization:

Civilization is niche construction by an intelligent species.

This formulation of the ecological conception of civilization could be amended to read, “by an intelligent species or by several intelligent species,” in order to anticipate the possibility of intelligence-rich biospheres that give rise to civilizations constituted by multiple intelligent species.

What is niche construction? Here is a sketch of the idea from a book on niche construction:

“…organisms… interact with environments, take energy and resources from environments, make micro- and macrohabitat choices with respect to environments, construct artifacts, emit detritus and die in environments, and by doing all these things, modify at least some of the natural selection pressures present in their own, and in each other’s, local environments.”

Niche Construction: The Neglected Process in Evolution, F. John Odling-Smee, Kevin N. Laland, and Marcus W. Feldman, Monographs in Population Biology 37, Princeton University Press, 2003, p. 1

The authors go on to say:

“All living creatures, through their metabolism, their activities, and their choices, partly create and partly destroy their own niches, on scales ranging from the extremely local to the global.”

Ibid.

Human interaction with the terrestrial environment is an obvious example of taking energy and resources from the environment on a global scale, altering the selection pressures on our own evolution as a species by both creating and destroying a niche for ourselves. We are not the first terrestrial organisms to act upon the planet globally; when stromatolites (microbial mats composed of cyanobacteria) were the dominant life form on Earth, their photosynthetic processes ultimately produced the Great Oxygenation Event and catastrophically changed the biosphere. Had it not been for that global catastrophic change of the biosphere, oxygen-breathing organisms such as ourselves could not have evolved.

'The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen in Earth's atmosphere.'  from Wikipedia (https://en.wikipedia.org/wiki/Great_Oxygenation_Event)

‘The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen in Earth’s atmosphere.’ from Wikipedia (https://en.wikipedia.org/wiki/Great_Oxygenation_Event)

Though we are not the first terrestrial organism to shape the biosphere entire, we are the first intelligent terrestrial agents to shape the biosphere, and it has been the application of human intelligence to the problem of human survival that has resulted in human beings adapting their activity to every terrestrial biome and so eventually constructing civilization. At the stage of the initial emergence of civilization, the biological and ecological conceptions of civilizations coincide, as niche construction takes the form of engineering a coevolving cohort of species beneficial to the intelligent agent intervening in the biosphere. In later stages in the development of civilization, the ecological conception is shown to be more comprehensive than the biological conception of civilization, and subsumes the biological conception of civilization.

Not any cohort of coevolving species constitutes a civilization. Pollinating insects (bees) and flowers are involved in what might be called a tightly-coupled cohort of coevolving species, but we could not call bees and flowers together a civilization. Perhaps on other worlds the distinction between what we call civilization and coevolution in the natural world would not be so evident, and we could not as confidently make the distinction. For us, however, this distinction seems obvious. Why? At least one difference between civilization and naturally occurring coevolution is that the tightly-coupled cohort of coevolving species that we call civilization has been purposefully engineered for the benefit of the intelligent species that has demonstrated its agency through this engineering of a niche for itself. Moreover, the engineered niche is entirely dependent upon ongoing intervention to maintain this engineered niche. In the absence of civilization, the tightly-coupled cohort(s) of coveolving species would unravel, while naturally occurring instances of coevolution would continue unchanged, i.e., they would continue to coevolve. (I leave it as an exercise to the reader to compare this observation to Schrödinger’s definition of life in thermodynamic terms.)

The necessary role of an intelligent agent in maintaining a coevolutionary cohort of species points beyond the biological conception of civilization to the ecological conception of civilization, which in term points beyond civilizations constructed by biological agents to the possibility of niches constructed by any intelligent agent whatsoever. This makes the ecological conception of civilization more comprehensive than the biological conception of civilization, as the intelligent agents involved in niche construction need not be biological beings. However, biological beings are likely to be the intelligent agents with which civilization begins.

In the kind of universe we inhabit, during the Stelliferous Era biology represents the first possible emergence of intelligent agency, hence the first possibility of intelligent niche construction. (I could hedge a bit on this and instead assert that biological agents are the first likely emergence of intelligent agents, as Abraham Loeb has posited the possibility of life in the very early universe — cf. “The Habitable Epoch of the Early Universe” — but I consider this scenario to be unlikely, and the possibility of such life yielding civilization even less likely.) This biocentric possibility of intelligent niche construction can later be supplemented or replaced by later forms of emergent complexity consistent with intelligent agency and capable of niche construction (which latter could involve either building on existing forms of intelligent niche construction or innovating new forms of intelligent niche construction transcending what we today understand as civilization).

The biological conception of civilization — an engineered coevolving cohort of species — constitutes one possible form of niche construction. That is to say, in managing an ecosystem so that it produces a disproportionate number of the plants and animals consumed as food or other products for the use of the directing intelligent agent (human beings in our case), human beings have attained the first possible stage of intelligent niche construction, which is essentially a delineation of biocentric civilization, but the ecological conception of civilization can be adapted to the understanding of non-biocentric civilizations, as, for example, in the case the technocentric civilizations. The various kinds of civilization that we have seen on Earth — including but not limited to agrarian-ecclesiastical civilization and industrial-technological civilization — represent distinct forms of intelligent niche construction, and therefore all fall within the ecological conception of civilization. Civilizations constructed by post-biological agents in the form of technological beings may build upon these constructed niches or construct niches more distinctly adapted to post-biological agents (which may be technological agents).

The ecological conception of civilization lends itself to technocentric extrapolation in so far as the ecological recognition of the biology of planetary endemism being dependent on solar flux is readily adapted to conceptions of civilization that have emerged from the work of Dyson and Kardashev. Dyson famously imagined stars so surrounded by the productions of a technological civilization that only the waste heat of these civilizations would be visible to us in the infrared spectrum, and Kardashev equally famously translated this idea into a formalism representing civilization types in terms of total energy resources commanded by a civilization. Even these distant extrapolations of the possibility of our technological civilization are still recognizably dependent upon stellar flux, no less than the biomass of our terrestrial environment is dependent upon solar flux, as stellar flux represents the primary source of readily available energy during the Stelliferous Era. In this way, even technocentric civilizations constructed by post-biological intelligent agents are continuous with the civilizations of planetary endemism emerging from the biology of planetary surfaces, and both are describable in ecological terms.

ecological relationships

It could be said that the ecological conception of civilization presupposes the biological conception, because ecological systems supervene on biological systems (or, at least, ecological systems have supervened upon biological systems to date, but this is not a necessary relationship and may be superseded in the fullness of time), and an ecological perspective provides a conceptual framework placing civilization in the context of the natural world from which it emerged and upon which it depends, as well as placing any given civilization in the context of other civilizations. This latter function — providing a systematic framework for the interaction of civilizations — ultimately may be the most valuable aspect of the ecological conception of civilization, but one that can only be suggested at present. The ecological relationships familiar to us from the study of living organisms — mutualism (or symbiosis), commensalism, predation, and parasitism — may hold for civilizations also, but this kind of parallelism cannot be assumed. The ecological relationships among civilizations — i.e., among intelligent species that have engaged in niche construction — may well be more complex than the ecological relationships among organisms, but this is a matter for further study that I will not attempt to elaborate at present.

. . . . .

Niche construction by intelligent agents.

Niche construction by intelligent agents.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Settled agriculturalism in the European Middle Ages.

Settled agriculturalism in the European Middle Ages.

It was until recently uncontroversial that civilization begins with settled agriculturalism. The excavations at Göbekli Tepe have shown an unexpected light on some of the earliest human communities. The structures at Göbekli Tepe seem to have been been ritual spaces — perhaps the world’s earliest example of monumental architecture, one of the sure markers of civilization — but evidence suggests that the peoples who gathered at Göbekli Tepe neither cultivated grains nor actively engaged in pastoralism. If Göbekli Tepe provides an alternative to the agricultural model of what civilization might have been, it was not a model that was widely adopted; indeed, the site seems to have been not only abandoned, but purposefully covered over, and does not seem to have served as a social model for any other society except for the other hills in the immediate area that probably contain similar remains. An obvious alternative hypothesis is that Göbekli Tepe represents a transitional stage on the way to the development of settled agricultural civilization.

Göbekli Tepe, where large-scale social organization may have preceded both agriculturalism and pastoralism.

Göbekli Tepe, where large-scale social organization may have preceded both agriculturalism and pastoralism.

Thus while settled agriculturalism might not be the earliest or only model for the origins of civilization, it is unquestionably the most pervasive and the most successful. Independently in widely separated geographical regions peoples settled in communities and engaged in the production of staple crops. From these communities cities grew, and a network of such cities has meant civilization. Just as there were likely alternative paths to civilization that were abandoned in favor of the most robust path, so there have been alternative forms of the development of civilization. Several thousand years after the breakthrough to settled agriculturalism as a form of large-scale social organization, an alternative form emerged in Central Asia: pastoralism, in which the large-scale domestication and herding of animals substituted for the large-scale domestication of staple crops. This is not commonly recognized as a distinct form of civilization, because nomadic herders have rarely developed written languages, whereas settled agriculturalists did invent written languages, wrote histories, and called the nomadic pastoralists “barbarians” — a cultural slander that has endured to the present day.

Nomadic pastoralism: “The Qashqai of Iran use a system of opportunistic management that has evolved over centuries of dependence on a varied and unpredictable environment.” (from http://www.fao.org/nr/giahs/candidate-system/candidate/qashqai/en/)

Nomadic pastoralism: “The Qashqai of Iran use a system of opportunistic management that has evolved over centuries of dependence on a varied and unpredictable environment.” (from http://www.fao.org/nr/giahs/candidate-system/candidate/qashqai/en/)

Common to both settled agriculturalism and nomadic pastoralism as large-scale forms of social organization is the coupling of the fate of other species with human beings. Domestication, whether of plants or animals, lies at the basis of civilization as we know it. This suggests what I call the biological conception of civilization. I first explicitly formulated the biological conception of civilization in my Centauri Dreams post Transhumanism and Adaptive Radiation:

“Each biome into which human beings inserted themselves during our planetary diaspora out of our African origins has made available a unique cohort of species, some of which have been domesticated and the fates of which have thus become tied to human beings and their civilization (no less than our fate is joined to theirs). Terrestrial food production involves this tightly-coupled cohort of co-evolving species dependent upon one another as a consequence of domestication (which latter formulation would constitute a biologically minimalist conception of civilization). This species cohort varies according to endemic species, topography, and climatic conditions… Thus each region of Earth not only possesses a cultural diversity of civilizations, but also a biological diversity of civilizations, each of which may be defined in terms of the unique cohort of tightly-coupled co-evolving species. To date, this process has been an exclusively terrestrial one, but when cohorts of species representative of terrestrial civilizations leave Earth and establish themselves in other environments, the same principles will be iterated at higher orders of magnitude.”

Occasionally I refer to civilizations as “biocentric” (as, for example, in From Biocentric Civilization to Post-biological Post-Civilization). Biocentric civilization can defined in terms of the biological conception of civilization: a biocentric civilization is a civilization that can be exhaustively described by the biological conception of civilization. As a civilization begins to transcend its biocentric origins, the biological conception of civilization becomes less adequate for the description of that civilization. If a civilization were ever to wholly transcend its biocentric origins, the biological conception of civilization would be wholly inadequate and would at that point fail to capture the meaning of civilization. Yet as long as civilization continues to be associated with the biological beings from which it originated, it will continue to have recognizably biocentric features.

One consequence of the biocentric origins of civilization as we know it (which I recently formulated in Another Way to Think about Civilization), is that the human control of the reproduction of plants and animals has led to a radical change in the biology of our homeworld. One way to understand this radical change in the terrestrial biosphere due to civilization would be to identify the advent of civilization with initiating the process of creating an artificial biosphere in which naturally occurring ecosystems are progressively supplanted by artificial ecosystems constructed for the purpose of meeting the needs of civilization.

The interpolation of artificially maintained ecosystems within a wild ecosystem would simply disappear if it were not sustained by the agents who originated it. But as the artificial ecosystem of civilization expands and supplants the wild ecosystem of the planet, its expansion becomes a selection event that selects for domesticated species (as well as a range of parasitical species) and selects against non-domesticated species. As civilization has expanded, wild ecosystems have been pushed to the margins of the civilized world and the greater part of the planet has become dominated by human activities that have shaped the biosphere in a distinctive way. Non-agricultural peoples have also been pushed to the margins. When artificial ecosystems were first introduced by human beings, almost all of the world was the province of nomadic hunter-gathers who wandered freely through a wild landscape. Now the entire surface of our homeworld has been meticulously divided up among nation-states that all have their origins in the states or empires of agrarian-ecclesiastical civilization.

On Earth, the artificial biosphere created and maintained by biocentric civilization supplants a wild biosphere, but biocentric civilization could continue its development, facilitated by the resources of emergent technocentric civilization, through the extension of civilization’s artificial biospheres to other worlds or to artificial habitats. If the artificial biosphere of civilization is transitioned into artificial habitats, artificial ecosystems can be expanded without limit under controlled conditions that will allow for an even greater precision in the management artificial ecosystems. In so far as the initial creation of artificial ecosystems has aimed at greater human control over agricultural outcomes, we can regard this as the telos of agriculture, evident since the earliest stirrings of civilization, and the only context in which the implications of artificial ecosystems can be fully explored. Thus the departures from a strictly biological conception of civilization that point to a nascent technocentric civilization becomes another form of exaptation of coevolution, in which technology coevolves with biology by providing new scope to biocentric civilization.

The biological conception of civilization outlined above is neither anthropocentric nor necessarily tied to terrestrial forms of life, although we must express the concept by means of life as we know it; the biological conception of civilization is generalizable to any biota. Any biosphere that is sufficiently complex for the emergence of intelligent life will embody a high degree of biodiversity, i.e., a large number of distinct species forming complex biological communities, and we can furthermore expect that species will be grouped in the biomes to which they are endemic. Thus the same conditions as are found on Earth, and which have been exapted by human intelligence to produce civilization in the form of a cohort of coevolving species, will likely be present on any world with an intelligent species, and equally available for exaptation in the civilizing process.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


'Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.' (NASA)

“Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.” (NASA)

In earlier posts of this series on Civilizations of Planetary Endemism we saw that planets not only constitute a “Goldilocks” zone for liquid water, but also for energy flows consistent with life as we know it. I would like to go into this in a little more detail, as there is much to be said on this. It is entirely possible that energy flows on a planet or moon outside the circumstellar habitable zone (CHZ) could produce sufficient heat to allow for the presence of liquid water in the outer reaches of a planetary system. Indeed, it may be misleading to think of habitable zones (for life as we know it) primarily in terms of the availability of liquid water; it might be preferable to conceive a habitable zone primarily in terms of regions of optimal energy flow (i.e., optimal for life as we know it), and to understand the availability of liquid water as a consequence of optimal energy flow.

Our conception of habitability, despite what we already know, and what we can derive from plausible projections of scientific knowledge, is being boxed in by the common conceptions (and misconceptions) of biospheres and CHZs. We can posit the possibility of “oasis” civilizations on worlds where only a limited portion of the surface is inhabitable and no “biosphere” develops, although enough of a fragment of a biosphere develops in order for complex life, intelligence, and civilization to emerge. We do not yet have an accurate term for the living envelope that can emerge on a planetary surface, but which does not necessary cover the entire planetary surface. I have experimented with a variety of terms to describe this previously. For example, I used “biospace” in my 2011 presentation “The Moral Imperative of Human Spaceflight,” but this is still dissatisfying.

As is so often the case, we run into problems when we attempt to extrapolate Earth sciences formulated for the explicit purpose of accounting for contingent terrestrial facts, and never conceived as a purely general scientific exercise applicable to any comparable phenomena anywhere in the universe. This is especially true of ecology, and since I find myself employing ecological concepts so frequently, I often feel the want of such formulations. Ecology as a science is theoretically weak (it is much stronger on its observational side, which goes back to traditional nature studies that predate ecology), and its chaos of criss-crossing classification systems reflects this.

There are a great many terms for subdivisions of the biosphere — ecozone, bioregion, ecoregion, life zone, biome, ecotope — which are sometimes organized serially from more comprehensive to less comprehensive. None of these subdivisions of a biosphere, however, would accurately describe the inhabited portion of a world on which biology does not culminate in a biosphere. Perhaps we will require recourse to the language and concepts of topology, since a biosphere, as a sphere, is simply connected. The bioring of a tidally locked M dwarf planet would not be simply connected in this topological sense.

If we conceptualize habitable zones not in terms of a celestial body being the right temperature to have liquid water on its surface, or perhaps in a subsurface ocean, but rather view this availability of liquid water as a consequence of habitable zones defined in terms of the presence of energy flows consistent with life as we know it, then we will need to investigate alternative sources of energy flow, i.e., distinct from the patterns of energy flow that we understand from our homeworld. Energy flows consistent with life as we know it are consistent with conditions that allow for the presence of liquid water on a celestial body, but this also means energy flows that would not overwhelm biochemistry and energy flows that are not insufficient for biochemistry and the origins and maintenance of metabolism.

Energy flows might be derived from stellar output (thus a consequence of gravitational confinement fusion), from radioactivity, which could take the form of radioactive decay or even a naturally-occurring nuclear reactor, as as Oklo in Gabon (thus a consequence of fission), from gravitational tidal forces, or from the kinetic energy of impacts. All of these sources of energy flows have been considered in another connection: suggested ways to resolve the faint young sun paradox (the problem that the sun was significantly dimmer earlier in its life cycle, while there still seems to have been liquid water on Earth) are the contributions of other energy sources to maintaining a temperature on Earth similar to that of today, including greater tidal heating from a closer moon, more heating from radioactive decay, and naturally occurring nuclear fission.

It would be possible in a series of thought experiments to consider counterfactual worlds in which each of these sources of energy flow are the primary source of energy for a biosphere (or a subspherical biological region of a planetary surface). The Jovian moon Io, for example, is the most volcanically active body in our solar system; while Io seems to barren, one could imagine an Io of more clement conditions for biology in which the tidal heating of a moon with an atmosphere was the basis of the energy flow for an ecosystem. A world with more fissionables in its crust than Earth (the kind of worlds likely to be found during the late Stelliferous Era under conditions of high metallicity) might be heated by radioactive decay or natural fission reactors (or some combination of the two) sufficient to generate energy flows for a biosphere, even at a great distance from its parent star. It seems unlikely that kinetic impacts from collisions could provide a sufficiently consistent flow of energy without a biosphere suffering mass extinctions from the same impacts, but this could merely be a failure of imagination. Perhaps a steady rain of smaller impacts without major impacts could contribute to energy flows without passing over the threshold of triggering an extinction event.

Each of these exotic counterfactual biospheres suggests the possibility of a living world very different from our own. The source of an energy flow might be inconsistent, that is to say, consistent up to the point of making life possible, but not sufficiently consistent for civilization, or the development of civilization. That is to say, it is possible that a planetary biosphere or subspheric biological region might possess sufficient energy flows for the emergence of life, but insufficient energy flows (or excessive energy flows) for the emergence of complex life or civilization. Once can easily imagine this being the case with extremophile life. And it is possible that a bioregion might possess sufficient energy flows for the emergence of a rudimentary civilization, but insufficient for the development of industrial-technological civilization that can make the transition to spacefaring civilization and thus ensure its longevity.

Civlizations of planetary endemism on these exotic worlds would be radically different from our own civilization due to differences in the structure and distribution of energy flow. Civilizations of planetary endemism are continuous with the biosphere upon which they supervene, so that a distinct biosphere supervening upon a distinct energy flow would produce a distinct civilization. Ultimately and ideally, these distinct forms of energy flow could be given an exhaustive taxonomy, which would, at the same time, be a taxonomy of civilizations supervening upon these energy flows.

However, the supervenience of civilization upon biosheres and biospheres upon energy flows is not exhaustive. Civilizations consciously harness energy flows to the benefit of the intelligent agent engaged in the civilizing process. The first stage of terrestrial civilization, that of agricuturalism and pastoralism, was a natural extension of energy flows already present in the bioshere, but once the breakthrough to industrialization occurred, energy sources became more distant from terrestrial energy flows. Fossil fuels are, in a sense, stored solar energy, and derive from the past biology of our planet, but this is the use of biological resources at one or more remove. As technologies became more sophisticated, in became possible to harness energy sources of a more elemental nature that were not contingent upon extant energy flows on a planet.

It may be, then, that biocentric civilizations are rightly said to supervene upon biospheres. However, with the breakthrough to industrialization, and the beginning of the transition to a technocentric civilization, this supervenience begins to fail and a discontinuity is interpolated between a civilization and its homeworld. According to this account, the transition from biocentric to technocentric civilization is the end point of civilizations of planetary endemism, and the emergence of a spacefaring civilization as the consequence of technologies enabled by technocentric civilization is a mere contingent epiphenomenon of a deeper civilizational process. This in itself provides a deeper and more fundamental perspective on civilization.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

● Civilizations of Planetary Endemism: Part IV

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


Michel Foucault

Michel Foucault

Among the many theoretical innovations for which Michel Foucault is remembered is the idea of biopower. We can think of biopower as a reformulation of perennial Foucauldian themes of the exercise of power through institutions that do not explicitly present themselves as being about power. That is to say, the subjugation of populations is brought about not through the traditional institutions of state power, but by way of new institutions purposefully constituted for the reason of monitoring and administrating the unruly bodies of the individuals who collectively constitute the body politic.

Foucault introduced the idea of biopower in The History of Sexuality, Vol. 1, in the chapter, “Right of Death and Power over Life.” Like his predecessor in France, Descartes, Foucault writes in long sentences and long paragraphs, so that it is difficult to quote him accurately without quoting him at great length. His original exposition of biopower needs to be read in full in its context to appreciate it, but I will try to pick out a few manageable quotes to give a sense of Foucault’s exposition.

Here is something like a definition of biopower from Foucault:

“…a power that exerts a positive influence on life, that endeavors to administer, optimize, and multiply it, subjecting it to precise controls and comprehensive regulations.”

Michel Foucault, The History of Sexuality, Vol. 1, translated from the French by Robert Hurley, New York: Pantheon, 1978, p. 137

Later Foucault names specific institutions and practices implicated in the emergence of biopower:

“During the classical period, there was a rapid development of various disciplines — universities, secondary schools, barracks, workshops; there was also the emergence, in the field of political practices and economic observation, of the problems of birthrate, longevity, public health, housing, and migration. Hence there was an explosion of numerous and diverse techniques for achieving the subjugation of bodies and the control of populations, marking the beginning of an era of ‘biopower’.”

Michel Foucault, The History of Sexuality, Vol. 1, translated from the French by Robert Hurley, New York: Pantheon, 1978, p. 140

Prior to the above quotes, Foucault begins his exposition of biopower with an examination of the transition from the traditional “power of life and death” held by sovereigns, which Foucault says was in fact restricted to the power of death, i.e., the right of a sovereign to deprive subjects of their life, to a fundamental change in emphasis so that the “power of life and death” became the power of life, i.e., biopower. The shift from right of death to power over life is what marks the emergence of biopower. Foucault, however, explicitly acknowledged that,

“…wars were never as bloody as they have been since the nineteenth century, and all things being equal, never before did regimes visit such holocausts on their own populations.”

Michel Foucault, The History of Sexuality, Vol. 1, translated from the French by Robert Hurley, New York: Pantheon, 1978, pp. 136-137

This thanatogenous phenomenon is what Edith Wyschogrod called “The Death Event” (which I wrote about in Existential Risk and the Death Event), but if Foucault is right, it is not the Death Event that defines the social milieu of industrial-technological civilization, but rather a “Life Event” that we must postulate parallel to the Death Event.

What is the Life Event parallel to the Death Event? This is nothing other than the loss of belief in an otherworldly reward after death (which defined social institutions from the Axial Age to the Death of God, and which may be the source of the relation between agriculture and the macabre), and the response to this lost possibility of eternal bliss by the quest for health and felicity in this world and in this life.

A key idea in Foucault’s exposition of biopower hinges upon how the contemporary power over life that has replaced the arbitrary right of death on the part of the sovereign has been seamlessly integrated into state institutions, so that state institutions are the mechanism by which biopower is applied, enforced, expanded, and preserved over time. From this perspective, biopower becomes the unifying theme of Foucault’s series of earlier books on asylums for the insane, prisons for the criminal, and clinics for the diseased, all of which institutions had the character of the, “subjugation of bodies and the control of populations” through “precise controls and comprehensive regulations.” (At this point Foucault could have profited from the work of Erving Goffman, who identified a particular subset of “total institutions” that completely regulated the life of the individual.)

What we are seeing today is that the “success” of the imperative of biopower has resulted in longer and healthier lives among docile populations, who dutifully report to their mind-numbing labor of choice and rarely riot. To step outside the confines of acceptable social behavior is to find oneself committed to a total institution such as an asylum or a prison, so that that individual self-censors and self-restrains in order to preempt state action that would bring his behavior into conformity with the norm. With the imperative of biopower largely established and largely uncontested, the next frontier is the imperative of extending biopower to the mind, and rendering the population intellectually docile in the way that bodies have been regulated and rendered docile.

The extension of biopower to the life of the mind might be called psychopower. This extension presumably involves parallel regimes of psychic hygiene that will give the individual mind a longer, healthier life, as biopower has bequeathed a longer, heathier life to the body, but the healthy and hygienic mind is also a mind that has subjugated to precise controls and comprehensive regulation. Cognitive pathology here becomes a pretext for state intervention into the private consciousness of the individual.

The proliferating regimes of therapy, counseling, psychiatric services, so-called “social” services that today almost invariably have a psychiatric component, not to mention the bewildering range of psychotropic medications available to the public — and apparently prescribed as widely as they are known and available — are formulated with an eye to regimenting the intellectual life of the body politic. And this “eye” is none other than the medical gaze now trained upon the individual’s introspection.

The mechanism by which psychopower is obtained has, to date, been the same state institutions that have overseen biopower, but this is already changing. The emergence of biopower in the period of European history that Foucault called “The Classical Age” (“l’âge classique”) was a product of agricultural civilization (specifically, agrarian-ecclesiastical civilization) at its most mature and sophisticated stage of development, shortly before all that agrarian-ecclesiastical civilization had built in terms of social institutions would be swept away by the unprecedented social change resulting from the industrial revolution, which would eventually begin to converge upon a new civilizational paradigm, that of industrial-technological civilization.

Thus biopower at its inception was the ultimate regulation of a biocentric civilization. As civilization makes a transition from being biocentric to technocentric, new instrumentalities of power will be required to implement a regime of docility under radically changed socioeconomic conditions, i.e., technocentric socioeconomic conditions, and this will require technopower, which will take up where biopower leaves off. Biopower conceived after the manner of biocentric civilization, of which agrarian-ecclesiastical civilization is an expression, cannot answer to the regulatory needs of a technocentric civilization, which thus will require a regime of technopower.

Already this process has begun, though the transition from biocentric civilization is likely to be as slow and as gradual as the transition from hunter-gatherer nomadism to the discipline of settled civilization, in which the institutions of biopower first begin to assume their inchoate forms. What we are beginning to see is the transition from state power being embodied in and exercised through social institutions to state power being embodied in and exercised through technological infrastructure. Central to this development is the emergence of the universal surveillance state, in which the structures of power are identical to the structures of electronic surveillance.

The individual participates in social media for the presumptive opportunities for self-expression and self-development, which are believed to have many of the positive social effects that the regulation of docile bodies has had upon longevity and physical comfort. The structure of these networks, however, serves only to reinforce the distribution of power within society. The more alternatives we have for media, the more we hear only of celebrities (in what is coming to be called a “winner take all” economic model). At the same time that the masses are encouraged to occlude their identity through the iteration of celebrity culture that renders the individual invisible and powerless, the individual self is relentlessly marginalized. In Is the decontextualized photograph the privileged semiotic marker of our time? I argued that the proliferating “selfies” that populate social media, as a self-objectification of the self, are nothing but the “death of the self” prognosticated by post-modernists.

It is unlikely in the extreme that most or even many individuals have any kind of ideological commitment to the emerging universal surveillance state or to the death of the subject, but the technological institutions that are increasingly the mediators of all expression and commerce are becoming inescapable, and as they converge upon totality they will effect a reconstruction of society that will consolidate technopower in the hands of the systems administrators of the technocentric state. These structures are already being constituted, and the channeling of power through apparently benign networks will be the triumph of technopower as it replaces biopower.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: