'Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.' (NASA)

“Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.” (NASA)

In earlier posts of this series on Civilizations of Planetary Endemism we saw that planets not only constitute a “Goldilocks” zone for liquid water, but also for energy flows consistent with life as we know it. I would like to go into this in a little more detail, as there is much to be said on this. It is entirely possible that energy flows on a planet or moon outside the circumstellar habitable zone (CHZ) could produce sufficient heat to allow for the presence of liquid water in the outer reaches of a planetary system. Indeed, it may be misleading to think of habitable zones (for life as we know it) primarily in terms of the availability of liquid water; it might be preferable to conceive a habitable zone primarily in terms of regions of optimal energy flow (i.e., optimal for life as we know it), and to understand the availability of liquid water as a consequence of optimal energy flow.

Our conception of habitability, despite what we already know, and what we can derive from plausible projections of scientific knowledge, is being boxed in by the common conceptions (and misconceptions) of biospheres and CHZs. We can posit the possibility of “oasis” civilizations on worlds where only a limited portion of the surface is inhabitable and no “biosphere” develops, although enough of a fragment of a biosphere develops in order for complex life, intelligence, and civilization to emerge. We do not yet have an accurate term for the living envelope that can emerge on a planetary surface, but which does not necessary cover the entire planetary surface. I have experimented with a variety of terms to describe this previously. For example, I used “biospace” in my 2011 presentation “The Moral Imperative of Human Spaceflight,” but this is still dissatisfying.

As is so often the case, we run into problems when we attempt to extrapolate Earth sciences formulated for the explicit purpose of accounting for contingent terrestrial facts, and never conceived as a purely general scientific exercise applicable to any comparable phenomena anywhere in the universe. This is especially true of ecology, and since I find myself employing ecological concepts so frequently, I often feel the want of such formulations. Ecology as a science is theoretically weak (it is much stronger on its observational side, which goes back to traditional nature studies that predate ecology), and its chaos of criss-crossing classification systems reflects this.

There are a great many terms for subdivisions of the biosphere — ecozone, bioregion, ecoregion, life zone, biome, ecotope — which are sometimes organized serially from more comprehensive to less comprehensive. None of these subdivisions of a biosphere, however, would accurately describe the inhabited portion of a world on which biology does not culminate in a biosphere. Perhaps we will require recourse to the language and concepts of topology, since a biosphere, as a sphere, is simply connected. The bioring of a tidally locked M dwarf planet would not be simply connected in this topological sense.

If we conceptualize habitable zones not in terms of a celestial body being the right temperature to have liquid water on its surface, or perhaps in a subsurface ocean, but rather view this availability of liquid water as a consequence of habitable zones defined in terms of the presence of energy flows consistent with life as we know it, then we will need to investigate alternative sources of energy flow, i.e., distinct from the patterns of energy flow that we understand from our homeworld. Energy flows consistent with life as we know it are consistent with conditions that allow for the presence of liquid water on a celestial body, but this also means energy flows that would not overwhelm biochemistry and energy flows that are not insufficient for biochemistry and the origins and maintenance of metabolism.

Energy flows might be derived from stellar output (thus a consequence of gravitational confinement fusion), from radioactivity, which could take the form of radioactive decay or even a naturally-occurring nuclear reactor, as as Oklo in Gabon (thus a consequence of fission), from gravitational tidal forces, or from the kinetic energy of impacts. All of these sources of energy flows have been considered in another connection: suggested ways to resolve the faint young sun paradox (the problem that the sun was significantly dimmer earlier in its life cycle, while there still seems to have been liquid water on Earth) are the contributions of other energy sources to maintaining a temperature on Earth similar to that of today, including greater tidal heating from a closer moon, more heating from radioactive decay, and naturally occurring nuclear fission.

It would be possible in a series of thought experiments to consider counterfactual worlds in which each of these sources of energy flow are the primary source of energy for a biosphere (or a subspherical biological region of a planetary surface). The Jovian moon Io, for example, is the most volcanically active body in our solar system; while Io seems to barren, one could imagine an Io of more clement conditions for biology in which the tidal heating of a moon with an atmosphere was the basis of the energy flow for an ecosystem. A world with more fissionables in its crust than Earth (the kind of worlds likely to be found during the late Stelliferous Era under conditions of high metallicity) might be heated by radioactive decay or natural fission reactors (or some combination of the two) sufficient to generate energy flows for a biosphere, even at a great distance from its parent star. It seems unlikely that kinetic impacts from collisions could provide a sufficiently consistent flow of energy without a biosphere suffering mass extinctions from the same impacts, but this could merely be a failure of imagination. Perhaps a steady rain of smaller impacts without major impacts could contribute to energy flows without passing over the threshold of triggering an extinction event.

Each of these exotic counterfactual biospheres suggests the possibility of a living world very different from our own. The source of an energy flow might be inconsistent, that is to say, consistent up to the point of making life possible, but not sufficiently consistent for civilization, or the development of civilization. That is to say, it is possible that a planetary biosphere or subspheric biological region might possess sufficient energy flows for the emergence of life, but insufficient energy flows (or excessive energy flows) for the emergence of complex life or civilization. Once can easily imagine this being the case with extremophile life. And it is possible that a bioregion might possess sufficient energy flows for the emergence of a rudimentary civilization, but insufficient for the development of industrial-technological civilization that can make the transition to spacefaring civilization and thus ensure its longevity.

Civlizations of planetary endemism on these exotic worlds would be radically different from our own civilization due to differences in the structure and distribution of energy flow. Civilizations of planetary endemism are continuous with the biosphere upon which they supervene, so that a distinct biosphere supervening upon a distinct energy flow would produce a distinct civilization. Ultimately and ideally, these distinct forms of energy flow could be given an exhaustive taxonomy, which would, at the same time, be a taxonomy of civilizations supervening upon these energy flows.

However, the supervenience of civilization upon biosheres and biospheres upon energy flows is not exhaustive. Civilizations consciously harness energy flows to the benefit of the intelligent agent engaged in the civilizing process. The first stage of terrestrial civilization, that of agricuturalism and pastoralism, was a natural extension of energy flows already present in the bioshere, but once the breakthrough to industrialization occurred, energy sources became more distant from terrestrial energy flows. Fossil fuels are, in a sense, stored solar energy, and derive from the past biology of our planet, but this is the use of biological resources at one or more remove. As technologies became more sophisticated, in became possible to harness energy sources of a more elemental nature that were not contingent upon extant energy flows on a planet.

It may be, then, that biocentric civilizations are rightly said to supervene upon biospheres. However, with the breakthrough to industrialization, and the beginning of the transition to a technocentric civilization, this supervenience begins to fail and a discontinuity is interpolated between a civilization and its homeworld. According to this account, the transition from biocentric to technocentric civilization is the end point of civilizations of planetary endemism, and the emergence of a spacefaring civilization as the consequence of technologies enabled by technocentric civilization is a mere contingent epiphenomenon of a deeper civilizational process. This in itself provides a deeper and more fundamental perspective on civilization.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

● Civilizations of Planetary Endemism: Part IV

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Eo-, Exo-, Astro-

19 March 2012


This post has been superseded by Eo-, Eso-, Exo-, Astro-, which both corrects and extends what I wrote below.

The Philosophical Significance of Astrobiology as a

Cosmological Extrapolation of Terrestrial Biology

In yesterdays’ Commensurable Perspectives I finished with this observation:

Ecology is the master world-narrative that unifies the sub-narratives employed by individual species in virtue of their perceptual and cognitive architecture. Ultimately, astrobiology would constitute the universal narrative that would unify the ecological narratives of distinct worlds.

The naturalistic narrative has the power to unify even across species and across worlds. This power may not be particularly evident at present, but in the long term future of our species (if our species does in fact have a long term future) this power will prove to be crucial.

If indeed astrobiology is the universal narrative of life, that gives astrobiology a privileged position among the sciences. That is a tall order. But what is astrobiology? At one time I had heard both the terms “exobiology” and “astrobiology” and I was not quite clear about the exact difference between the two, or how each was defined. Thereby hangs a tale. The distinction between the two is in fact a very interesting story, and it is a story to which an entire book has been devoted, The Living Universe: NASA and the Development of Astrobiology, by Steven J. Dick and James E. Strick.

I urge the reader to get this book and peruse it for yourself for the detailed version of the emergence of astrobiology as a scientific discipline. I will give only the bare bones of that story here, which will be only enough to grasp the crucial concepts involved. And our interest is in the concepts, not the personalities.

Joshua Lederberg before he had formulated the distinction between eobiology and exobiology.

Exobiology is the older term, introduced by Joshua Lederberg (first used in a public lecture in 1960), and contrasted by him to eobiology. Exobiology has some currency in the public mind, but I didn’t know about eobiology until I read about the history of the discipline. However, the contrast between the two terms is conceptually important. Exobiology is concerned with biology off the surface of the earth, while eobiology is biology on the surface of the earth. (cf. p. 29) In other words, all biological science prior to human spaceflight was eobiology, even if we didn’t know that it was eobiology. Another way to formulate this distinction is to say that eobiology is the biology of the terrestrial biosphere, while exobiology is the biology of everything else.

In the book The Living Universe: NASA and the Development of Astrobiology the authors give a lot of background on the internal politics and budgeting of NASA and how this affected the emergence of astrobiology. It is an interesting story, but I will not go into it here, as our interest at present is exclusively with the conceptual infrastructure of the discipline. Suffice it to say that in 1996 the first attempts were made to define astrobiology (cf. p. 202), and within a couple of years there was a virtual Astrobiology Institute.

The NASA astrobiology website characterizes astrobiology as follows:

“Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. This multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System, the search for evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space.”

The NASA strategic plan of 1996 gives this definition of astrobiology:

“The study of the living universe. This field provides a scientific foundation for a multidisciplinary study of (1) the origin and distribution of life in the universe, (2) an understanding of the role of gravity in living systems, and (3) the study of the Earth’s atmospheres and ecosystems.”

The important lesson to take away from this is that astrobiology is the more comprehensive concept, and that in fact we can consider astrobiology the union of eobiology and exobiology. This sounds simple enough (and it is), but it is important to understand the conceptual leap that has been taken here.

From the perspective of astrobiology, earth sciences are only fragments of far larger and more comprehensive sciences. Just as all biology was once eobiology, the same observation can be made in regard to the other earth sciences, and the same tripartite conceptual distinction can be brought to the other earth sciences. We can formulate eogeology and exogeology unified in astrogeology; we can formulate eohydrology and exohydrology unified in astrohydrology; we can formulate eovulcanology and exovulcanology unified in astrovulcanology; we can formulate eoclimatology and exoclimatology unified in astroclimatology. All of these are cosmological extrapolations of earth sciences. One suspects that, in the future, the prefixes will be dropped and we will return to climatology simpliciter, e.g., but while the conceptual revolution is underway it is important to retain the prefixes as a reminder that science is no longer defined by the boundaries of the earth.

I assert that this is a conceptual leap of the first importance because what we have with astrobiology is the formulation of the first truly Copernican science; astrobiology includes eobiology but it is not exhausted by eobiology; it is supplemented by exobiology. The earth, for obvious reasons, remains important to us, but it no longer dictates the center of our science. All mature sciences will eventually need to take this Copernican turn and dethrone the earth from the center of its concern.

We can take a further step beyond this conceptual formulation of Copernican sciences by observing that traditional earth sciences began as local enterprises, and it has only been in recent decades that truly global sciences have emerged. These global sciences have culminated in objects of scientific study that take the world entire as their object. Thus biology has converged upon study of the biosphere; hydrology has converged on study of the hydrosphere; glaciology has culminated in the study of the cryosphere. Copernican sciences based on the model of astrobiology can go one better than this, transcending earth-defined “-spheres” in favor of more comprehensive concepts.

When I spoke last year on “The Moral Imperative of Human Spaceflight” at the NASA/DARPA 100 Year Starship Study symposium it was my intention to spend some time on the emergence of Copernican sciences, but I didn’t have enough time to elaborate. I cut most of that material out and still was rushed. The point that I wanted to make there was that the concepts of the biosphere, the lithosphere, the geosphere, hydrosphere, cryosphere, atmosphere, anthrosphere, sociosphere, noösphere, and technosphere are essentially Ptolemaic concepts. (If the proceedings of the symposium are published, and if my paper is included, this contains my first sketch of Copernican sciences as transcending these earth-defined “-spheres.”) The Copernican Revolution entails the formulation of Copernican concepts to supersede Ptolemaic concepts, and this work is as yet unfinished. In some spheres of human thought, it has scarcely begun.

One way to transcend our Ptolemaic concepts and to replace them with Copernican concepts, and thus to extend the ongoing shift to a truly Copernican perspective, is to substitute for the earth-defined “-spheres” a conception of the object of the sciences not dependent upon the earth, and this can be done by defining, respectfully, biospace (in place of the biosphere), lithospace, geospace, hydrospace, cryospace, atmospace, anthrospace, sociospace, noöspace, and technospace. In so far as we can facilitate the emergence of Copernican sciences, we can contribute to the ongoing Copernican Revolution, which will someday culminate in a Copernican civilization (if we do not first destroy ourselves).

We can pass beyond the earth sciences and the natural sciences and similarly extend our conceptions of a the social and political sciences. Although concepts from the social sciences are not usually expressed in geocentric terms — except for the above-mentioned anthrosphere, sociosphere, noösphere, and technosphere (which are not employed very often) — our social and political thought is usually even more tied to planetary prejudices than the concepts of the natural sciences. Thus we can extend our conception of politics by distinguishing between eopolitics and exopolitics, both of which are subsumed under astropolitics. Similarly, we can formulate eoeconomics and exoeconomics, subsumed by astroeconomics, eostrategy and exostrategy, subsumed by astrostrategy, and so forth.

As a final note, it is ironic that the breakthrough to a Copernican science should occur first with biology, because biology was among the latest of the sciences to actually attain a scientific status. Prior to Darwin, biological theories were essentially theological theories with but a few exceptions. Darwin put biology on a firm biological footing and created the discipline in its modern scientific form. Thus biology was among the last of the sciences to attain a modern scientific form, though it was the first to attain to a Copernican form.

. . . . .

This post has been superseded by Eo-, Eso-, Exo-, Astro-.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: