Friday


Review of Part I

In Part I of this series of posts on technological civilization, it was asked, What is technological civilization? And in the attempt to answer this question, a model of civilization was applied to the problem of technological civilization, it was asked whether technology can function as the central project of a civilization, and an inquiry was made into the idea of technology as an end in itself; from these inquiries preliminary conclusions were drawn, and the significance of these preliminary conclusions for the study of civilization were considered.

It was asserted in Part I that a technological civilization in the narrowest sense (a properly technological civilization) is a civilization that takes technology as its central project, and in a civilization that takes technology as its central project, the economic infrastructure and intellectual superstructure cannot remain indifferent to technology, so that technology must be assumed to be pervasively present throughout the institutional structure of a properly technological civilization. However, it was also determined that properly technological civilization are probably rare, and that the common usage of “technological civilizations” covers those cases in which technology is absent in the central project, or only marginally represented in the central project, but is pervasive in the economic infrastructure and the intellectual superstructure.

In this post, Part II of the series, we will further investigate what it means for technology to be pervasively present throughout the institutional structure of civilization, and how this pervasive presence of technology throughout society distinguishes technological civilizations from civilizations that employ technology but which we do not usually call technological.

Australian firehawks intentionally spread fires by carrying and dropping burning sticks.

The prehistory of technological civilization

Technological civilizations do not appear suddenly and without precedent, but have a deep history that long precedes civilization. Thus we must treat technological civilizations developmentally, and, as we shall see, comparatively; technological development and comparative measures are closely linked.

The prehistory of technological civilization is the history of technology prior to civilization, and the history of technology prior to civilization can be pushed back not only into human prehistory, but into pre-human history, and even the use of technology by other species. Whereas it was once a commonplace and human beings were the only tool-using species, we now know that many other species use tools. Perhaps the most famous example of this are the observations of chimpanzees in the wild stripping leaves from a branch, and then using this bare branch to extract termites from a termite mound, which are then consumed. Primate tool use (as well as primate modification of the environment that they inhabit) is now sufficiently recognized that there is a growing discipline of primate archaeology, which employs the methods of archaeology developed for studying the human past in order to study the material culture of non-human primates.

Other species have even been observed using fire, which is another instance of technology previously assumed to be unique to human beings. Australian Firehawks have been observed in the, “transport of burning sticks in talons or beaks,” intentionally spreading fire for purposes of fire foraging (cf. Intentional Fire-Spreading by “Firehawk” Raptors in Northern Australia by Mark Bonta, Robert Gosford, Dick Eussen, Nathan Ferguson, Erana Loveless, and Maxwell Witwer). The deep history of technology in the biosphere, then, recognizes that many species have used tools, and have done so for millions of years; the scope of technology is both larger and older than human history. In this context, the human use of technology is a continuous development of earlier tool use, bringing tools to a level of development and sophistication far beyond that of other species.

One of the unique features of human tool use (in so far as our present knowledge extends) is the production of durable tools that are used repeatedly over time, and, in some cases, continuously modified, as when a chipped stone or flint tool is used until it becomes dull, and then the edge is sharpened by additional chipping. Tool use by other species has not involved the production of durable tools used over time. However, if we interpret shelters as tools, then the nest of the weaver bird or the lodge of the beaver are durable constructions used over time and often repeatedly improved. (Shelter can be understood as a form of niche construction, and it would be an interesting inquiry to examine the relationship between niche construction and technology, but we will not explicitly consider this in the present context.)

Another unique feature of human tool use is the use of tools to make other tools. When a flint cutting edge is used to cut strips of bone and tendon that are then layered together to make a compound bow, this is the use of one tool to make another tool. The iteration of this process has led ultimately to the sophisticated tools that we manufacture today, and nothing like this has been seen in other species, even in other hominid species (though future investigations in archaeology may prove otherwise). Human ancestors used durable stone tools for millions of years, often with little or no change in the design and use of these tools, but the use of tools to make other tools seems to be restricted to homo sapiens, and perhaps also to the Neanderthals.

The point of this discussion of prehistoric technology is to emphasize that tools and technology are not only older than civilization, but also older than humanity, although humanity does bring tool development and use to a degree of complexity unparalleled elsewhere in terrestrial history. Given this deep history of tools in the biosphere, the late appearance of civilization in the past ten thousand years emerges in a context in which human technology had already reached a threshold of complexity unequaled prior to human beings. At its origin, civilization already involved durable tools of iterated manufacture. If this is what has been meant when we speak of “technological civilization,” then the very first civilizations were technological from their inception; in other words, technology according to this usage would provide no differentiation among civilizations because all civilizations are technological.

Charles Darwin approached the origin of civilization naturalistically, which was, in his time, the exception rather than the rule.

Darwin’s Thesis on the origin of civilization

Civilization, then, begins in medias res with regard to technology. Technology gets its start at the shallow end of an exponential growth curve, incrementally and with the simplest0 innovations. The emergence of distinctively human technologies represents an inflection point in the development of technology. This inflection point occurs prior to the advent of civilization, but civilization contributes to the acceleration of technological development. With civilization, more time and resources become available for technological development, and, as civilization expands, technology expanded and grew in power and sophistication.

The origins of civilization, like the origins of technology, are similarly simple and incremental. In an earlier post I posited what I called Darwin’s Thesis on the origin of civilization, or, more simply, Darwin’s Thesis, based on this passage from Darwin:

“The arguments recently advanced… in favour of the belief that man came into the world as a civilised being and that all savages have since undergone degradation, seem to me weak in comparison with those advanced on the other side. Many nations, no doubt, have fallen away in civilisation, and some may have lapsed into utter barbarism, though on this latter head I have not met with any evidence… The evidence that all civilised nations are the descendants of barbarians, consists, on the one side, of clear traces of their former low condition in still-existing customs, beliefs, language, &c.; and on the other side, of proofs that savages are independently able to raise themselves a few steps in the scale of civilisation, and have actually thus risen.”

Charles Darwin, The Descent of Man, Chapter V (I have left Darwin’s spelling in its Anglicized form.)

It may seem pointless to assert something as apparently obvious as Darwin’s thesis, but the state in which the study of civilization finds us (i.e., that it does not yet exist in anything like a scientific form) makes it necessary that we begin with the most rudimentary ideas and state them explicitly so that they can be understood to characterize our theoretical orientation, and can be tested against other similarly rudimentary ideas when we reach the point of being able to perceive that we are assuming these other ideas and that we therefore need to make these other ideas explicit also. Our understanding of civilization — like the origins of technology and civilization themselves — must begin simply and incrementally.

There is a characteristically amusing passage from Bertrand Russell in which Russell mentions beginning with assumptions apparently too obvious to mention:

“My desire and wish is that the things I start with should be so obvious that you wonder why I spend my time stating them. This is what I aim at because the point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it.”

Bertrand Russell, The Philosophy of Logical Atomism, 2, “Particulars, Predicates, and Relations”

Elsewhere, and in this case specifically in relation to history, Russell mentioned the rudimentary beginnings of scientific thought:

“…comparatively small and humble generalizations such as might form a beginning of a science (as opposed to a philosophy) of history.”

Bertrand Russell, Understanding History, New York: Philosophical Library, 1957, pp. 17-18

Perhaps Russell may have distinguished the scientific from the philosophical understanding of history such that philosophical understanding ends in paradox while scientific understand does not. In any case, whether we take Darwin’s Thesis to be too obvious to state, or to be a small and humble generalization (or both), it is at this level of simplicity that we must begin the scientific study of civilization.

The passage quoted above from Darwin makes reference to “barbarism” and “savagery,” which we today take to be evaluative terms with a strongly condescending connotation, but in Darwin’s time these were technical terms, and, moreover, they were technical terms related to a people’s level of technological development. These terms were very common in the late 19th and early 20th century, and subsequently fell out of use. In falling out of use, we have largely forgotten what these terms meant, and so there has been an prochronic misreading of older texts as though these terms were being used formerly as they are used today.

In my post Savagery, Barbarism, and Civilization I discussed the taxonomy of human development developed by Edward Burnett Tylor and expounded by Lewis Henry Morgan, which distinguished between savagery, barbarism, and civilization. For Tylor and Morgan, savagery extends through pre-pottery developments, barbarism from the invention of pottery to metallurgy, and civilization is reserved for societies that have a written language. This taxonomy is broken down in greater detail into eight stages of technological accomplishment — three stages of savagery, three of barbarism, and one of civilization (cf. Chapter I of Morgan’s Ancient Society).

Thus when Darwin wrote that savages have raised themselves by their own efforts a few degrees in the scale of civilization, what he meant was that hunter-gatherer nomads have, over time, developed technologies such as pottery, agriculture, herding, and metallurgy — something that most today would not dispute, even if they would not use the particular language that Darwin employed. Indeed, if Darwin were writing today he would himself employ different terminology, as the Tylor and Morgan terminology has been completely abandoned by the social sciences.

Edward Gibbon focused on the decline and fall of Rome, but he also noted that some technological achievements survived the process of decline he detailed.

Gibbon on the Continuity of Technology

Societies thus, following Darwin’s Thesis, begin in an uncivilized condition and raise themselves up through stages of technological development, and, following Tylor and Morgan, these stages can be quantified by the presence or absence of particular technologies. One might disagree concerning which particular technologies ought to be taken as markers of civilizational achievement, and yet still agree with the principle that technological development over time can be used to differentiate stages of development. One might, for instance, chose different representative technologies — say, the use of the bone needle to sew form-fitting clothing, the production of textiles, etc. It would be another matter to throw out the underlying principle.

Darwin also mentioned the possibility that, “Many nations… have fallen away in civilisation,” which implies that technological accomplishments can be lost. Implicit in this claim is the familiar idea of a cyclical conception of history. One might maintain that societies rise up in technological accomplishment, only to experience a crisis and to be returned to their original state, starting over from scratch in regard to technological development. We find an explicit argument against this in Edward Gibbon.

Gibbon is remembered as the historian of the decline and fall of the Roman Empire, and given Gibbon’s focus on declension it is especially interesting that Gibbon argued for the retention of technological achievement notwithstanding the collapse of social, political, and legal institutions. At the end of Volume 3 of The Decline and Fall of the Roman Empire Gibbon wrote a kind of summary, “General Observations On The Fall Of The Roman Empire In The West,” which includes Gibbon’s thoughts on the technological progress of civilization. Gibbon presents a view that is entirely in accord with common sense, but one that is rarely expressed, though Gibbon has expressed this view in a strong form that probably admits of important qualifications:

“The discoveries of ancient and modern navigators, and the domestic history, or tradition, of the most enlightened nations, represent the human savage, naked both in body and mind and destitute of laws, of arts, of ideas, and almost of language. From this abject condition, perhaps the primitive and universal state of man, he has gradually arisen to command the animals, to fertilize the earth, to traverse the ocean and to measure the heavens. His progress in the improvement and exercise of his mental and corporeal faculties has been irregular and various; infinitely slow in the beginning, and increasing by degrees with redoubled velocity: ages of laborious ascent have been followed by a moment of rapid downfall; and the several climates of the globe have felt the vicissitudes of light and darkness. Yet the experience of four thousand years should enlarge our hopes, and diminish our apprehensions: we cannot determine to what height the human species may aspire in their advances towards perfection; but it may safely be presumed, that no people, unless the face of nature is changed, will relapse into their original barbarism. The improvements of society may be viewed under a threefold aspect. 1. The poet or philosopher illustrates his age and country by the efforts of a single mind; but those superior powers of reason or fancy are rare and spontaneous productions; and the genius of Homer, or Cicero, or Newton, would excite less admiration, if they could be created by the will of a prince, or the lessons of a preceptor. 2. The benefits of law and policy, of trade and manufactures, of arts and sciences, are more solid and permanent: and many individuals may be qualified, by education and discipline, to promote, in their respective stations, the interest of the community. But this general order is the effect of skill and labor; and the complex machinery may be decayed by time, or injured by violence. 3. Fortunately for mankind, the more useful, or, at least, more necessary arts, can be performed without superior talents, or national subordination: without the powers of one, or the union of many. Each village, each family, each individual, must always possess both ability and inclination to perpetuate the use of fire and of metals; the propagation and service of domestic animals; the methods of hunting and fishing; the rudiments of navigation; the imperfect cultivation of corn, or other nutritive grain; and the simple practice of the mechanic trades. Private genius and public industry may be extirpated; but these hardy plants survive the tempest, and strike an everlasting root into the most unfavorable soil. The splendid days of Augustus and Trajan were eclipsed by a cloud of ignorance; and the Barbarians subverted the laws and palaces of Rome. But the scythe, the invention or emblem of Saturn, still continued annually to mow the harvests of Italy; and the human feasts of the Læstrigons have never been renewed on the coast of Campania.”

Edward Gibbon, The Decline and Fall of the Roman Empire, “General Observations On The Fall Of The Roman Empire In The West,” end of Chapter XXXVIII: Reign Of Clovis. Part VI.

Gibbon himself had detailed the extirpation of private genius and public industry in the case of the decline and fall of Rome, but he had also observed that, “…the more useful, or, at least, more necessary arts,” can survive on a local level which does not (or perhaps need not) experience dissolution even when larger social and political wholes fail and result in the extirpation of private genius and public industry on a larger scale. Gibbon concluded this summary as follows:

“Since the first discovery of the arts, war, commerce, and religious zeal have diffused, among the savages of the Old and New World, these inestimable gifts: they have been successively propagated; they can never be lost. We may therefore acquiesce in the pleasing conclusion, that every age of the world has increased, and still increases, the real wealth, the happiness, the knowledge, and perhaps the virtue, of the human race.”

Edward Gibbon, ibid.

In making the distinctions he did, Gibbon provided a relatively nuanced historical account of technological development, such that certain developments like the scythe would continue to be used even while more sophisticated manufactures fell out of production, and eventually out of use. Certainly this is what appears to have occurred with the decline of the industries of classical antiquity.

At some point in the ancient world, industry advanced to the point that it could produce artifacts like the Antikythera mechanism, and then at some point this industrial capacity was lost. One can speculate that the Antikythera mechanism was probably produced in the workshop of some city in which science, technology, and engineering had come together in a critical mass of knowledge and expertise to allow for the construction of such a device, and when Roman cities failed, this critical mass was scattered and the capacity to build devices like the Antikythera mechanism was lost. However, at the same time, the manorial estates and small villages to which urbanites fled when their cities ceased to function were able to keep lower levels of technology functioning. An estate or a village would have a forge at which iron sufficient for agricultural purposes could be produced, even if the ability to manufacture more sophisticated technologies was lost.

This idea of certain technologies being preserved in broadly-based human knowledge, in contradistinction to the technological accomplishments of gifted individuals or public institutions, I will call Gibbon’s Thesis on the Persistence of Technology, or, more simply, Gibbon’s Thesis. If contemporary civilization were to fail catastrophically, Gibbon’s Thesis would suggest to us that the heights of our technological accomplishments would be lost, but that technologies and techniques that could be locally produced and maintained, even without any particularly gifted individual or a larger socioeconomic structure, would persist — perhaps electric lights and basic telephone service, for example.

The Antikythera Mechanism

Technological Horizons

Darwin’s Thesis and Gibbon’s Thesis are theses on the origins and development of technological civilization, but the examples employed by Darwin and Gibbon do not bring us up to the level of technological accomplishment that we usually associate with the term “technological civilization,” though we could clearly associate their examples with nascent technological civilization, or embryonic technological civilization.

Gibbon’s Thesis can be used to define what I will call a horizon of technological development. I have previously discussed the archaeological use of the term “horizon” in Horizons of Spacefaring Civilizations, in which I quoted three definitions of horizon in archaeology, including David W. Anthony’s definition: “…a single artifact type or cluster of artifact types that spreads suddenly over a very wide geographic area.” While I have taken the term “horizon” from its use in archaeology, I have adapted it a bit (or more than a bit) for my own purposes. An artifact type may be an artistic style or a particular technology; in the present context we will only consider technologies and classes of technology that become common and hence widely represented in material culture.

The archaeological usage distinguishes horizon from tradition, and tends to view horizons as being of short duration (and traditions as being of long duration). I will use “horizon” to mean any relatively rapid expansion of some cluster of technologies, which may be the initial appearance of these artifact types, which may (but may not necessarily) remain common from that time forward, until their terminal horizon, if they disappear rapidly. For example, if human civilization were suddenly destroyed by a nuclear war, the technosignature of our EM spectrum radiation into to space would have a sudden terminal horizon when these EM signals ceased at about the same time.

The commonly used and understood technologies that Gibbon’s Thesis posits will survive the absence of gifted individuals and larger socioeconomic institutions are technological horizons of widely available technology that spread rapidly (though rapidity is relative to historical context) and which, if archaeologists were to excavate the appropriate layer, would be commonly represented in the material culture of a given time. When archaeologists dig up classical sites, they find pottery sherds everywhere; they find oil lamps; they find agricultural implements. To date, only one Antikythera mechanism has been found; it is the exception, and not the rule, so it represents a level of accomplishment, but not a horizon.

If a future archaeologist were to dig up the future remains of the present age, in what were industrialized nation-states there would be a horizon of electronic devices — computers, smart phones, DVD players — although outside the wealthy regions of the contemporary world these devices would be much less in evidence. And perhaps, in some technological enclaves, the ability to produce devices like this might continue even when a wider social order had failed. This is doubtful, however, so it may be necessary to reformulate Gibbon’s Thesis a little. Most of us today use technology that we do not understand, and we do not seem to be converging upon a society of engineers and technologists in which most people would understand (and be able to re-create) most of the technology they employ on a daily basis.

With this reflection, we have one possible way to distinguish proper technological civilizations: they are civilizations in which, because technology is the central project of the civilization, knowledge of technology is so widespread and so enthusiastically received that the technological horizon of the society is maintained at such a high level that even a small, local community could produce and maintain the advanced technologies they use on a daily basis.

If the ancient world had attained this kind of technological horizon, archaeologists would find devices like the Antikythera mechanism in every small town, and this kind of technology would have stayed in use and continued in development, rather than being lost of human memory. Our society today also is not at this technological horizon. Our most advanced technologies would be lost in a great social disruption, rather than continuing in use and development.

Those technologies that do persist in use throughout social disruptions also tend to continue in development, though that development may be very gradual. Gibbon cites the example of the scythe; we might also cite the example of the plow. From the first digging sticks employed at the dawn of agriculture to the mechanized plows of today, the plow has been in continual, gradual development for thousands of years. There is scarcely a period of human history in which plow technology did not experience some slight improvement, because it was a widely used technology, easily understood by those who used the technology, and so subject to continual minor improvement.

The Horizon of Industrialization and Technological Civilization

Agricultural civilization coincides with the horizon of agricultural technology. From a human perspective, the thousands of years of agricultural civilization is in no sense rapid or sudden, but from an archaeological, and even more so from a geological or paleontological perspective, the whole of agricultural civilization would represent a very thin layer in the geological record, a layer that in most cases would be lost due to other geological processes, but which is so widely present in the Earth that it could probably be found (especially if one knew what to look for).

Industrialized civilization coincides with the horizon of industrial technologies, and it is from the industrial technologies that our present advanced technologies are derived. Our present advanced technologies give us a hint of the technologies that might be available to a truly advanced civilization — say, a civilization that experienced the equivalent of our industrial revolution and then continued to develop for thousands of years, i.e., the development of industrial technologies on an historical order of magnitude equivalent to that of our experience of agricultural technologies. And this is probably what we intuitively have in mind when we use a term like “technological civilization.”

When industrialized civilization has endured for thousands of years, possibly with several minor disruptions, but not enough of a disruption to prevent the persistence of basic technologies (as per Gibbon’s Thesis), industrialized civilization, like agricultural civilization, will leave only a very thin and easily expungible layer in the Earth’s geological record. But this thin layer will be the industrial horizon, and, from the point of view of a future archaeologist who is digging up the Anthropocene, there won’t be much differentiation between the earliest part of this layer and the latest part of this layer, which latter is several thousand years beyond us yet. In this compactified history of industrial civilization, we are, for all practical purposes, indistinguishable from an advanced technological civilization.

Looking Ahead to Part III

Part II has been a bit of a detour into the origins and development of technological civilization, a departure from the more theoretical concerns about the institutional structure of technological civilizations introduced in Part I. However, this detour has allowed us to introduce and discuss Darwin’s Thesis, the Tylor-Morgan taxonomy, Gibbon’s Thesis, and the idea of technological horizons, which can then be employed in future installments for the exposition of further theoretical issues in the definition of technological civilization.

In Part III we will introduce more theoretical concepts to complement those of Part I, but which bear upon the development of technological civilization, unlike the theoretical concepts introduced in Part I which could be taken to characterize the structure of a civilization irrespective of its history or development.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

. . . . .

Advertisements

Thursday


Queen Victoria reigned 20 June 1837 to 22 January 1901.

There is not only an insufficient appreciation of the Victorian achievement in history, but perhaps more importantly there is an insufficient understanding of the Victorian achievement. Victorian civilization — and I will avail myself of this locution understanding that most would allow that the Victorianism was a period in the history of western civilization, but not itself a distinct civilization — achieved nothing less than the orderly transition from agricultural civilization to industrialized civilization. As such, Victorianism became the template for other societies to make this transition without revolutionary violence.

The transition from agriculturalism to industrialism was the most disruptive in the history of civilization, and can only be compared in its impact to the emergence of agricultural civilization from pre-civilized nomadic hunter-gatherers. But whereas the the transition from hunter-gatherer nomadism to settled agriculturalism occurred over thousands of years, the transition from agricultural civilization to industrialized civilization has in some cases occurred within a hundred years (though the transition is still underway on a planetary scale). The Victorians not only managed this transition, and were the first people in history to manage this transition, they moreover managed this transition without catastrophic warfare, without the widespread breakdown of civil order, and with a certain sense of style. It could be argued that, if the Victorians had not managed this transition so well, rather than a new form of civilization taking shape, the industrial revolution might have resulted in the collapse of civilization and a new dark age.

Today we think of Victorianism as a highly repressive social and cultural milieu that was finally cast aside with the innovations of the Edwardian era and then the great scientific and social revolutions that characterized the early twentieth century and which then instituted dramatic social and cultural changes that ever after left the Victorian period in the shadows of history. But Victorian repression was not arbitrary; it served a crucial social function in its time, and it may well have been the only possible social and cultural mechanism that would have made it possible for any society to be the first to make the transition from agriculturalism to industrialism.

Victorianism not only made an orderly transition possible from agriculturalism to industrialism, it also made possible an orderly transition from a social order (i.e., a central project) based on religious tradition to a social order that was largely secular. Americans (especially Americans who don’t travel) are not aware of the degree to which European society is secularized, and much of this occurred in the nineteenth century. Matthew Arnold’s poem Dover Beach was an important early expression of secularization.

Nietzsche already saw this secularization happening in the nineteenth century, and, of course, Darwin, a proper English gentleman, worked his own scientific revolution in the midst of the Victorian period, which played an important role in secularization. Rather than being personally destroyed for his efforts — which is what almost any other society would have done to a man like Darwin — Darwin was buried in Westminster Abbey and treated like a national hero.

Considerable intellectual toughness was a necessary condition of making a peaceful transition from agriculturalism to industrialism, and we can find the requisite toughness in the writers of nineteenth century England. The intellectual honesty of Matthew Arnold is bracing and refreshing. Arnold’s “Sweetness and Light” is a remarkable essay, and not at all how we today would characterize the aspirations of Victorian society, but in comparison to the horrific counterfactual that might have attended the industrial revolution under other circumstances, the grim Victorian world described so movingly by Charles Dickens is relatively benign. Since we have, for the most part, in our collective historical imagination, consigned nineteenth century English literature to our understanding of a genteel and proper Victorianism, it is easy to believe that the men of the nineteenth century did not yet possess the kind of raw, unsparing honesty that the twentieth century forced upon us. Reading Arnold now, in the twenty-first century, I see that this is not true.

Matthew Arnold’s world may have been innocent of World Wars, Holocausts, genocides, nuclear annihilation, and the rigorously realized horrors bequeathed to us by the twentieth century, but it was not an innocent world. History may always reveal new horrors to us, but even in the slightly less horrific past, there were horrors aplenty to preclude any kind of robust innocence on the part of human beings. And it is interesting to reflect that, while the Victorian Era is remembered for its social and cultural repression, it is not remembered for the scope and scale of its atrocities.

This is significant in light of the fact that the twentieth century, which has been seen as a liberation of society once Victorian constraints were swept away, is remembered for the scope and scale of its atrocities. Again, the Victorians did a better job than we did in managing the great transitions of our respective times. Voltaire famously said (during the Enlightenment) that we commit atrocities because we believe absurdities. If this is true, then the absurdities believed by the Victorians were less pernicious than the absurdities believed in the twentieth century.

The late-Victorian or early Edwardian Oscar Wilde in his De Profundis was raw and unsparing, but was rather too self-serving to measure up to the standard of intellectual honesty set by Matthew Arnold. (I fully understand that most of my contemporaries would probably disagree with this judgment.) However, Wilde’s heresies, like Arnold’s honesty, was characterized by a great sense of style. We may criticize the Victorian legal and penal system for essentially destroying Wilde, but it was also the Victorian cultural milieu that made Oscar Wilde possible. If Wilde had not been quite so daring, he might have gotten by without provoking the authorities to respond to him as it did.

Oscar Wilde’s The Soul of Man Under Socialism is a wonderful essay, employing the resources of Wilde’s legendary wit in order to to make a serious point. Like many of Wilde’s famous witticisms, his central motif is the contravention of received wisdom, forcing us to see things in a new perspective. Though we know in hindsight the caustic if not criminal consequences for individualism under socialism, Wilde did not have the benefit of hindsight, and Wilde makes the case that socialism will make authentic individualism possible for the first time. Wilde’s conception of individualism under socialism was in fact a paean to his own individualism, carved out within the limitations of Victorian society. This, too, is an ongoing legacy of Victorianism, which was sufficiently large and comprehensive to include individuals as diverse as Queen Victoria, Charles Darwin, Matthew Arnold, and Oscar Wilde.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


Nadia Savchenko, a Ukrainian pilot being held by Russia.

Nadia Savchenko, a Ukrainian pilot until recently incarcerated in Russia.

The Defiance of Nadiya Savchenko

I don’t believe that I have ever seen a more complete or perfect expression of defiance than that on the face of Nadiya Savchenko, a Ukrainian pilot who was until quite recently imprisoned in Russia (and who was elected to the Ukrainian parliament during her imprisonment). This display of defiance is an appropriate opportunity to consider the nature of defiance as an emotion (specifically, a moral emotion) and its place within human life.

It is a natural human response to feel angry when confronted with obvious injustice. When that injustice is not merely observed, but involves ourselves personally, there is also a personal element to the anger. When an individual is angry for an injustice done to themselves, and is not yet defeated, but possesses the strength and the energy to persevere despite on ongoing injustice, that is defiance.

I am sure everyone reading this has had this experience to some degree; this is a universal that characterizes the human condition. This kind of defiance is a staple of classic literature; for example, we know defiance as the spirit of the protagonist of Jane Eyre:

“When we are struck at without a reason, we should strike back again very hard; I am sure we should — so hard as to teach the person who struck us never to do it again… I must dislike those who, whatever I do to please them, persist in disliking me; I must resist those who punish me unjustly. It is as natural as that I should love those who show me affection, or submit to punishment when I feel it is deserved.”

The young friend of Jane Eyre, Helen Burns, replies:

“Heathens and savage tribes hold that doctrine, but Christians and civilised nations disown it.”

When published Jane Eyre was considered something of a scandal, and Matthew Arnold (of “Sweetness and Light” fame) said of the novel, “…the writer’s mind contains nothing but hunger, rebellion and rage and therefore that is all she can, in fact, put in her book.” Another Victorian critic wrote, “…the tone of mind and thought which has overthrown authority and violated every code human and divine abroad, and fostered Chartism and rebellion at home, is the same which has also written Jane Eyre.” (Elizabeth Rigby, The London Quarterly Review, No. CLXVII, December, 1848, pp. 82-99) Today we recognize ourselves in the protagonist without hesitation, for what comes naturally to the unbroken spirit of Jane Eyre comes naturally to all of us; it resonates with the human condition (except, perhaps, for the condition of Victorian literary critics). There is much more that could be said in regard to Victorian attitudes to defiance, especially among children, but I will save this for an addendum.

Savchenko 0

Defiance as a Moral Emotion

Our conventional idea of an emotion as something that we passively experience — emotions were traditionally called passions because they are affects that we suffer, and not actions that we take — is utterly inadequate to account for an emotion like defiance, which is as much action as passion. At least part of the active nature of defiance is its integration with our moral life, which latter is about active engagements with the world. For this reason I would call defiance a moral emotion, and I will develop the idea of moral emotion in the context of emotive naturalism (see below).

Moral emotions are complex, and it scarcely does them justice to call them emotions. The spectrum of emotion ranges from primarily visceral feelings with little or no cognitive content, and indistinguishable from bodily states, to subtle states of mind with little or no visceral feelings associated with them. Some of our emotions are simple and remain simple, but many states of human consciousness that we carelessly write off as emotions are in fact extremely sophisticated human responses that involve the entire person. Robert C. Solomon’s lectures Passions: Philosophy and the Intelligence of Emotions do an excellent job of drawing out the complexities of how our emotional responses are tied up in a range of purely intellectual concerns on the one hand, and on the other hand almost purely visceral feelings.

Solomon discusses anger, fear, love, compassion, pride, shame, envy, jealousy, resentment, and grief, though he does not explicitly take up defiance. In several posts I have discussed fear (The Philosophy of Fear and Fear of Death), hope (The Structure of Hope and Very Short Treatise on Hope, Perfection, Utopia, and Progress), pride (Metaphysical Pride), modesty (Metaphysical Modesty), and ressentiment (Freedom and Ressentiment), though it could in no sense be said that I have done justice to any of these. The more complex moral emotions are all the more difficult to do justice to; specifically moral emotions such as defiance present a special problem for theoretical analysis.

The positivists of the early twentieth century propounded a moral theory that is known as the emotive theory of ethics, which explicitly sought a reduction of morality to emotion. This kind of reductionism is not as popular with philosophers today, and for good reason. While we would not want to reduce morality to emotion (as the positivists argued), nor to reduce emotions to corporeal sensations (a position sometimes identified with William James), in order to make sense of our emotional and moral lives it may be instructive to briefly consider the origins of emotion and morality in the natural history of human beings. This natural historical approach will help us to account for the relevant evidence without insisting upon reductionism.

Savchenko 1

Emotive Naturalism

What emotions are natural for a human being to feel? What thoughts are natural for a human being to think? What moral obligations is it natural for a person to recognize? All of these are questions that we can reasonably ask about human beings, since we know that human beings feel, think, and behave in accordance with acknowledged obligations. I wrote above that it is natural for one to feel anger over injustice. If you, dear reader, have never experienced this, I would be surprised. No doubt there are individuals who do not, and who never have, experienced anger as a result of injustice, but this is not the typical human response. But the typical “human” response is descended with modification from the typical responses of our ancestors, extending into the past long before modern human beings evolved.

I have elsewhere quoted Darwin on the origins of morality, and I think the idea contained in the following passage cannot be too strongly emphasized:

“The following proposition seems to me in a high degree probable — namely, that any animal whatever, endowed with well-marked social instincts… the parental and filial affections being here included, would inevitably acquire a moral sense or conscience, as soon as its intellectual powers had become as well, or nearly as well developed, as in man.”

Charles Darwin, The Descent of Man, CHAPTER III, “COMPARISON OF THE MENTAL POWERS OF MAN AND THE LOWER ANIMALS”

I would go further than Darwin. I would say that animals with intellectual powers less developed than those of humanity might acquire a moral sense, and that we see such a rudimentary moral sense in most social animals, which are forced by the circumstances of lives lived collectively to adopt some kind of pattern of behavior that makes it possible for group cohesion to continue.

There are many species of social animals that live in large groups that necessitate rules of social interaction. Indeed, we even know from paleontological evidence that some species of flying dinosaurs lived in crowded rookeries (there is fossil evidence for this at Loma del Pterodaustro in Argentina), so that we can derive the necessity of some form of social interaction among residents of the rookery. Many of these social animals have very little in the way of intellectual powers, such as in the case of social insects, but there are also many mammal species, all part of the same adaptive radiation of mammals that followed the extinction of the dinosaurs and of which we are a part, and constituting the sentience-rich biosphere that we have today. Social mammals add to the necessity of social rules for group interactions an overlay of emotive responses. Already in groups of social mammals, then, we begin to see a complex context of social interaction and emotional responses that cannot be isolated one from the other. With the emergence human intellectual capacity, another overlay makes this complex context of social interaction more tightly integrated and more subtle than in prior social species.

I call these deep evolutionary origins of human emotional responses to the world emotive naturalism, but I could just as well call it moral naturalism — or indeed, intellectual naturalism, because by the time human beings emerge in history emotions, morality, and cognition are all bound up in each other, and to isolate any one of these would be to falsify human experience.

savchenko 2

Being and Emotion

While the philosophy of emotion is usually discussed in terms of philosophy of mind or philosophical psychology, I usually view philosophical problems through the lens of metaphysics, and the active nature of defiance as a moral emotion gives us an especially interesting case for examining the nature of our emotional and moral being-in-the-world. This accords well with what Robert Solomon argued in the lectures cited above, which characterize emotions as engagements with the world. What is it to be engaged with the world?

My framework for thinking about metaphysics is a definition of being that goes back all the way to Plato, which I discussed in Extrapolating Plato’s Definition of Being (and which I further elaborated in Agents and Sufferants). Plato held that being is the power to affect or to be affected, i.e., to act or to be acted upon. From this starting point we can extrapolate four forms be being, such that non-being is to neither act nor be acted upon, the fullness of being is to both act and be acted upon, while narrower forms of being involve acting only without being acted upon, or being acted upon only without acting. One may think of these four permutations of Plato’s definition of being as four modalities of engagement with the world.

An interesting example of metaphysical engagement with the world in terms of a moral emotion radically distinct from defiance is to be found with our engagements with the world mediated by love. Saint Bernard of Clairvaux in Sermon 50 of his Sermons on the Song of Songs wrote, “Love can be a matter of doing or of feeling.” In other words, love can be active or passive, acting or being acted upon. St. Bernard goes on to give several illuminating examples that develop this theme.

How does the moral emotion of defiance specifically fit into this framework of engagements with the world? We typically employ the term “defiance” when an individual’s circumstances severely constrain their ability to respond, as was the case with Nadiya Savchenko, who was incarcerated and who therefore was prevented from the ordinary freedom of action enjoyed by those of us who are not incarcerated. Nevertheless, she was able to remain defiant even while in prison, and under such circumstances the emotion itself becomes a response. (The reader who is familiar with Sartre’s thought will immediately recognize the connection with Sartre’s theory of emotion; cf. The Emotions: Outline of a Theory) This may sound like a paltry form of “action,” but if it contributes to the differential survival of the individual, defiance has a selective advantage, as it almost certainly must. Defiant individuals have not given up, and they continue to fight despite constrained circumstances.

Nadiya Savchenko has now been freed from incarceration in Russia.

Nadiya Savchenko has now been freed from incarceration in Russia.

The Social Context of Defiance

The survival value of belief in one’s existential choices, which I discussed in Confirmation Bias and Evolutionary Psychology, is exemplified by defiance. Defiance, then, has the ultimate evolutionary sanction: it is a form of confirmation bias — belief in oneself, and in one’s own efficacy — that contributes to the individual’s differential survival. As such, defiance as a moral emotion is selected for and is likely disproportionately represented in human nature because of the selective advantage it possesses. As a feature of human nature, we must reckon with defiance as a socially significant emotion, i.e., an emotion that shapes not only individuals, but also societies.

While we do not often explicitly talk about the role of defiance in human motivation, I believe it is one of the primary springs to action in the human character. Looking back over a lifetime of conversations occurring in the ordinary business of life (for I am an old man now and I can speak in this idiom), I am struck by how often individuals express their displeasure at pressures being brought to bear upon them, and they usually respond by pushing back. This “pushing back” is defiance. Typically, the other side then pushes back in turn. This is the origin of tit-for-tat strategies. Individuals push back when pressured, as do social wholes and political entities. Those that push back most successfully, i.e., the most defiant among them, are those that are most likely to have descendants and to pass their defiance on to the next generation of individuals or social wholes.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Monday


Darwin’s Thesis on the Origin of Civilization

Charles Darwin

Charles Darwin

and its extrapolation to exocivilizations


In the scientific study of civilization we are beginning at the beginning because there is no established body of scientific knowledge about civilization — much historical knowledge, to be sure, but no science of civilization, sensu stricto, and therefore no scientific knowledge sensu stricto — and this demands that we begin with the simplest and most obvious propositions about civilization. The simplest and most obvious propositions about civilization are such as most discussions of civilization would simply pass over in silence as necessary presuppositions, or which would be dismissed by hand-waving and the assertion, “It is obvious that…” We will take a different point of view. Only a mathematician would think that the Jordan curve theorem was an idea in need of proof, and only someone engaged in attempting to formulate a science of civilization would think asserting that civilization originates in a pre-civilized condition was a condition of civilization that requires discussion.

Our point of departure in this discussion will be what I call Darwin’s Thesis on the origins of civilization, or, more simply, Darwin’s Thesis. I call this Darwin’s Thesis (and called it such in my presentation “What kind of civilizations build starships?”) because of the following passage from Darwin about the origins of civilization:

“The arguments recently advanced… in favour of the belief that man came into the world as a civilised being and that all savages have since undergone degradation, seem to me weak in comparison with those advanced on the other side. Many nations, no doubt, have fallen away in civilisation, and some may have lapsed into utter barbarism, though on this latter head I have not met with any evidence… The evidence that all civilised nations are the descendants of barbarians, consists, on the one side, of clear traces of their former low condition in still-existing customs, beliefs, language, &c.; and on the other side, of proofs that savages are independently able to raise themselves a few steps in the scale of civilisation, and have actually thus risen.”

Charles Darwin, The Descent of Man, Chapter V (I have left Darwin’s spelling in its Anglicized form.)

Darwin was here taking the same naturalistic stance in regard to civilization that he had earlier taken in regard to biology. Darwin made biology scientific by making it a domain of research approached by way of methodological naturalism; prior to Darwin there was biology of a kind, but not any study of biology that could be reconciled with methodological naturalism. Darwin applied this same reasoning to civilization, and this is the reasoning we must apply to civilization if we are to formulate a science of civilization that can be reconciled with methodological naturalism.

As far as ideas about civilization go, this is extremely basic. However, I will again stress the need to begin a science of civilization with the most basic and rudimentary propositions possible. While this is a proposition so rudimentary as to be mundane, there can be no more interesting question for the science of civilization than that of the origin of civilization (the question of the end of civilization is equally interesting, but I wouldn’t say it is more interesting).

While the simplest theses on civilization seem so mundane as to be uninteresting, they can nevertheless be deductively powerful in their application. We can only address the longevity of a civilization, for example, once we have established a point in time at which civilization begins, and counting forward in whatever temporal units we care to employ up to its demise (which also must be defined, if the civilization in question has come to an end), or up to the present day (if the civilization in question is still in existence).

According to Darwin’s Thesis, then, civilization is descended from a prior savage or barbaric condition (not terms we would likely employ today, but certainly terms we still understand). How are we to characterize this pre-civilized condition of humanity? What constitutes the non-civilization that preceded civilization?

A somewhat discerning distinction, albeit one with moral overtones, was made between savagery, barbarism, and civilization. Like the “three age” system of prehistory — stone age, bronze age, iron age — we still find traces of these distinctions in contemporary thought. Here is how I described it previously:

“Edward Burnett Tylor proposed that human cultures developed through three basic stages consisting of savagery, barbarism, and civilization. The leading proponent of this savagery-barbarism-civilization scale came to be Lewis Henry Morgan, who gave a detailed exposition of it in his 1877 book Ancient Society… A quick sketch of the typology can be found at Anthropological Theories: Cross-Cultural Analysis. One of the interesting features of Morgan’s elaboration of Tylor’s idea is his concern to define his stages in terms of technology. From the ‘lower status of savagery’ with its initial use of fire, through a middle stage at which the bow and arrow is introduced, to the ‘upper status of savagery’ which includes pottery, each stage of human development is marked by a definite technological achievement. Similarly with barbarism, which moves through the domestication of animals, irrigation, metal working, and a phonetic alphabet.”

Elsewhere I suggested that the non-civilization prior to civilization could be called proto-civilization. I just re-read my post on proto-civilization and now I find it inadequate, but I still endorse at least this much of what I said there:

“In the case of civilization, a state-of-affairs existed long before the idea of civilization was made explicit. But in projecting the idea of civilization backward in history, we already have the idea suggested by a particular cultural milieu, and the question becomes whether this idea can be applied further than the context in which it was initially proposed.”

This would be one methodology to employ: take the concept of civilization as it has been elaborated and seek to apply it to past social structures; determining at what point this concept no longer applies gives a point in time for the origin of civilization. This could be called the “retroactive method.”

Given the far greater archaeological data we possess than we possessed at the time the concept of civilization was first formulated, this method has new information to work with that it did not have at the time of its formulation. This is one of the points that I attempted to make, however poorly I did so, in my post on proto-civilization: we have an enormous amount of archaeological data on the Upper Paleolithic and Early Neolithic in the Old World, which is usually described in terms of “cultures” rather than “civilizations.” But when European explorers of the Early Modern period came to the New World, they encountered peoples that had social institutions that we today call civilizations, though these civilizations were closer to the “Stone Age” of the Old World than to the early civilizations of Egypt and Mesopotamia (to take to paradigm cases of civilization).

An alternative to the retroactive method would be to study the artifacts of the past on their own merits, to construct a definition of civilization on the basis of the earliest known human societies (on the basis of their material culture), and then apply this conception of civilization forward in time (for lack of a better term I will call this the proactive method, simply to contrast it to the retroactive method). It is arguable that some archaeologists do in fact follow this method, but I don’t know of anyone who has explicitly advanced this procedure as desirable (much less as necessary), although it does bear some resemblance to the implicit formalism of the cultural processual school in archaeological thought.

Both retroactive and proactive methods incorporate obvious problems that derive from parachronic distortions of evidence (the most obvious parachronism is the familiar idea of an anachronism, i.e., a survival from the past preserved into the present, where it is obviously out of place; the contrary parachronic distortion is that of projecting the present into the past).

To pull back from the provincial considerations of civilization studied by archaeology to date — that is to say, exclusively terrestrial civilizations — we can further develop the idea of Darwin’s Thesis in a cosmological context. Once we do this, we immediately understand that we have been asking questions focused on a particular set of conditions that are characteristic of civilizations during the Stelliferous Era, and our ideas worked out for terrestrial civilization (civilizations of planetary endemism during the Stelliferous Era) may not apply more generally to the largest scales of civilization achieved (or which may yet be achieved) in the cosmos.

Civilizations during the Degenerate Era may possess a different character due to their need to derive energy flows from sources other than stellar flux, which latter defines the conditions of the origins of civilization from intelligent biological agents during the Stelliferous Era, which might also be called the Age of Planetary Endemism. If the Degenerate Era begins with the universe having been exhaustively settled or inhabited by life and civilization, this densely inhabited universe not only would prevent the emergence of new civilizations, but also would mean an end to this living cosmos of starlight. In this case the Degenerate Era begins with what I have called the End-Stelliferous Mass Extinction Event (ESMEE), when widely distributed life and civilization of the Stelliferous Era, primarily supported by energy flows from stellar flux (and concentrated on planetary surfaces), comes to an end as the stars wink out one by one.

The cohort of emergent complexity that survives this transition is likely to be a post-civilization successor institution that is (by this time in the evolution of the universe) further removed from the origins of civilization than we are today removed from the origin of the universe. At this point, the origins of emergent complexity will be a distant question, largely inapplicable to contemporaneous concerns, and the central question will be what of the Stelliferous Era can survive into the Degenerate Era, and how it can perpetuate itself in a universe converging on heat death.

Would these civilizations of the Degenerate Era be newly originating civilizations, or would they be derivative from civilizations of the Stelliferous Era? The obvious answer would seem to be that these civilizations would be derivative, except that over such cosmological spans of time the concept of civilization (and the threshold of what constitutes a civilization) is likely to evolve as much as, if not more than, civilization itself. As civilization develops, and a greater degree of science, technology, and intellectual achievement is believed to be indispensable to what constitutes civilization, civilization may be redefined as something close to prevailing conditions, and everything prior to this is redefined as proto-civilization. For example, civilization today might be considered unimaginable without the conveniences of modern life, and everything prior is consigned to barbarism. This reasoning can be extended to hold that civilization is unimaginable without fusion energy, without strong AI, without interstellar travel, and so on. All of this is entirely consistent with Darwin’s Thesis, which holds regardless of whether we consider the Upper Paleolithic to be utter savagery, or 2016 to be utter savagery.

If we consciously make an effort to formulate and to retain a comprehensive conception of civilization, that is not continually revised forward in time in the light of the later developments of civilization, we can avoid the above problem, and it is this approach that gives us longer ages for our civilization today. I have often mentioned that it was once commonplace, and perhaps still commonplace, to fix the origins of civilization with the origins of written languages (i.e., the origins of the “historical period” sensu stricto), but scientific historiography has been slowly chipping away at the distinction between history and prehistory until it is no longer tenable. Hence I identify the origins of civilization with the emergence of cities during or shortly after the Neolithic Agricultural Revolution, which makes our civilization about ten thousand years old, rather than five thousand years old.

As our archaeological knowledge of the past improves, we may be able to set quantifiable conditions for the origins of civilization (say, a number of cities with a given population size, or a particular degree of sophistication in metallurgy, which latter seems to me to mark the ultimate origins of technological civilization). Again, Darwin’s Thesis is entirely in accord with this method also. Moreover, I think that this method gives a greater degree of independence to the determination of the origins of civilization, as it would also give us metrics by which we could determine the independent origin of a new civilization, say, even in the Degenerate Era, if this were to prove possible (which we really don’t know at present).

Beyond these concerns, and beyond the immediate scope of this post, we may need to posit a condition for the continuity of civilization — say, e.g., that metallurgical technological never lapses below a certain threshold — so that once given Darwin’s Thesis and some definition of civilization, we can determine when a civilization has originated de novo, and when a civilization is an evolutionary mutation of an earlier civilization, or a developmental achievement of an earlier civilization, rather than something new in history. This applies whether we take the threshold of achievement to be the smelting of copper or the building of starships. For example, if a civilization can smelt copper (or better), and never loses this technological capacity, it retains a minimal degree of continuity with the first civilization capable of this achievement, when an unbroken continuity of this capacity can be shown from the origins of this technology forward to some arbitrary date in the future.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


biogeography2

This Island Earth

Some time ago (on Twitter) I observed that astrobiology is island biogeography writ large. I return to this idea regularly, but have not yet adequately fleshed it out. I touched on this again in From an Astrobiological Point of View, but it would take considerable exposition to do justice to the idea. This post is an unsatisfactory response to my return to an idea that deserves to be studied in his own right and at some length.

Chart of the Galápagos Islands

Chart of the Galápagos Islands

Island biogeography has its origins in the origins of Darwin’s Origin of Species. As we all know, Darwin visited the Galápagos Islands during the voyage of the Beagle that Darwin recounted in The Voyage of the Beagle. Decades of thought and gestation followed, but it was in part the peculiar mix of species in the Galápagos that was crucial for Darwin’s breakthrough to the idea of natural selection. I have myself visited the Galápagos Islands (I wrote about this in Happy Birthday Charles Darwin!) and it is a spectacular lesson in natural history that I cannot recommend highly enough.

theory of island biogeography

Although island biogeography begins with Darwin, it was brought to explicit formulation and theoretical maturity by E. O. Wilson and Robert H. MacArthur in The Theory of Island Biogeography. There the authors say in their opening remarks:

“By studying clusters of islands, biologists view a simpler microcosm of the seemingly infinite complexity of continental and oceanic biogeography. Islands offer an additional advantage in being more numerous than continents and oceans. By their very multiplicity, and variation in shape, size, degree of isolation, and ecology, islands provide the necessary replications in natural ‘experiments’ by which evolutionary hypotheses can be tested.”

Robert H. MacArthur and Edward O. Wilson, The Theory of Island Biogeography, Princeton: Princeton University Press, 1967, Chap. 1, p. 3

Much of this remains valid when translated, mutatis mutandis, into astrobiology. The key, however, is how one goes about arriving at the mutatis mutandis. How can all other things remain equal when we are translating from terrestrial ecosystems in miniature, thus a bit easier to understand than the whole of the terrestrial biosphere, or some major division such as a biome, into worlds entire isolated in the blackness of interplanetary and interstellar space? The analogy is not perfect, but it is suggestive of parallel avenues of approach.

How do you quantify the life of an entire world? Higher biological taxa. This graph shows families rather than species.

How do you quantify the life of an entire world? Higher biological taxa. This graph shows families rather than species.

Scaling up biogeography

While the flora and fauna of islands are sufficiently restricted in scope to make it possible to do a detailed count not only of species present (already in The Voyage of the Beagle we see Darwin noting the number of genera and species present on various islands), but sometimes also of individuals. Obviously we are not going to be able to count species, much less individuals, for entire worlds. We must draw back, look at the big picture, and employ the kind of metrics we see in studies of mass extinctions. In detailing the loss of biodiversity of mass extinctions it is not merely species or even genera that go extinct; sometimes entire families, orders, and classes go extinct. These we can count; in fact, we could reasonably expect to count higher taxa for entire worlds.

taxnomic rank

The reformulation of island biogeographical ideas for astrobiology will be the labor of the production of a new science. The scaling up of our scope to higher biological taxa is only one among many scaling changes in our thought we must pursue in order to develop concepts adequate to the fate of life in the context of galactic ecology.

galactic ecology

Flight and its Technological Equivalents

Geologically young islands — as with the well-known example of the Galápagos Islands, mentioned above — are primarily populated by birds and marine animals. Birds bring with them a variety of plant life; moreover, many plants can float, and are brought to islands by ocean currents. Least common to arrive and to survive are those terrestrial species that find themselves on islands due to sweepstakes dispersal routes, i.e., somewhat unusual circumstances in which a breeding pair of terrestrial animals are able to ride a floating log or mass of vegetation to an otherwise isolated island and can there reproduce, like the marine iguanas on the Galápagos, who have learned to feed by diving into the ocean and forage on inter- and subtidal algae. That is to say, the least common colonists are life forms that cannot swim or fly; being able to traverse planetary distances is a limiting factor in the distribution of a life form.

Darwin Greenhouse

Darwin conducted a simple yet ingenious ecological experiment in island biogeography that he recounted in The Origin of Species:

“I have before mentioned that earth occasionally, though rarely, adheres in some quantity to the feet and beaks of birds. Wading birds, which frequent the muddy edges of ponds, if suddenly flushed, would be the most likely to have muddy feet. Birds of this order I can show are the greatest wanderers, and are occasionally found on the most remote and barren islands in the open ocean; they would not be likely to alight on the surface of the sea, so that the dirt would not be washed off their feet; when making land, they would be sure to fly to their natural fresh-water haunts. I do not believe that botanists are aware how charged the mud of ponds is with seeds: I have tried several little experiments, but will here give only the most striking case: I took in February three table-spoonfuls of mud from three different points, beneath water, on the edge of a little pond; this mud when dry weighed only 6¾ ounces; I kept it covered up in my study for six months, pulling up and counting each plant as it grew; the plants were of many kinds, and were altogether 537 in number; and yet the viscid mud was all contained in a breakfast cup! Considering these facts, I think it would be an inexplicable circumstance if water-birds did not transport the seeds of fresh-water plants to vast distances, and if consequently the range of these plants was not very great. The same agency may have come into play with the eggs of some of the smaller fresh-water animals.”

Charles Darwin, On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, London: John Murray, 1st edition, 1859, GEOGRAPHICAL DISTRIBUTION. CHAP. XII., pp. 386-387

Such is the power of flight to widely disperse species over the surface of Earth. Flight has a value beyond the differential survival and reproduction advantage that it confers upon those species so endowed; it also plays a co-evolutionary role at the largest scale of planetary ecology. That flight should develop within a biosphere is perhaps not inevitable, but we could say instead that a biosphere in which flight emerges is likely to achieve much higher levels of biodiversity, and hence prove a more robust ecosystem. A robust ecosystem, in turn, is more likely to survive existential threats (such as the mass extinctions that have repeatedly punctuated the evolution of life on Earth), so that planetary biospheres of a given longevity are more likely to have flight than not.

convergent flight

Natural selection found several different solutions to the problem of flight. Some small plant seeds, and some very small animals (e.g., spiders), are light enough to be carried by the wind. Some animals fly by gliding (flying squirrels), and some animals employ wings for flight. Wings have emerged separately among insects, dinosaurs, birds, and mammals. Flying fish might also be said to have wings. Given a biosphere not disrupted by the anthropocene, flying fish might eventually transition to a fully flying way of life; this may yet happen in the distant future.

Flight?

Flight?

The problem of flight at the level that concerns astrobiology is potentially as diverse as the solutions to the problem of flight in a planetary biosphere. We are only just beginning to understand the complexity of the universe in which we live, and we are continually discovering capacities of nature and of life that previously would have strained our credulity. Just last week on the second episode of The Unseen Podcast, host Paul Carr noted that, with all the exchange of material between the inner planets of the solar system, we would not be surprised to find that all this life comes to the same root, while we probably would be surprised, if found like the oceans of the moons of Jupiter and Saturn, if it came from the same root. That far out in the solar system, we would expect a second genesis if there is any life at all.

If there is life in the subsurface ocean of Europa, we expect that life to be the result of a second genesis.

If there is life in the subsurface ocean of Europa, we expect that life to be the result of a second genesis.

That perspective on the likelihood the relations of life within the confines of a single solar system may change as we learn more about astrobiology. But so far this discussion is primarily a matter of naturally occurring dispersal vectors for species. We must consider astrobiology both before and after technologically-driven dispersal vectors, as well as in regard to terrestrial and to extraterrestrial dispersal vectors. Just as technological dispersal vectors have began to play a major role in our planetary biosphere, especially in relation to the distribution and introduction of invasive species, we would expect a mixture of both natural and technical dispersal vectors in astrobiology.

Soyuz_TMA-19_spacecraft_departs_the_ISS

Spaceflight is to astrobiology as flight is to biogeography.

Given the continuity of natural history and civilization, that spaceflight is to astrobiology as flight is to biogeography follows naturally in the strict sense of “naturally.” In other words, there is a continuity from flight as the result of biology and flight as the result of technology; there is idea diffusion (or idea flow) from nature to civilization: we observe the existence proof of powered, heavier-than-air flight in nature, and we seek to reverse engineer this development and to reproduce it with technology. Thus, in a sense, technology is the pursuit of biology by other means. Thus spaceflight, as the technological equivalent of biological flight, will play a co-evolutionary role at the largest scale of galactic ecology.

flight 2

It may be worth noting in this context that the cluster of developments dependent upon human activity — intelligence, technology, language, and civilization among them — could be said to represent a solution to the problem of survival, but it is a “solution” that we find no where else in nature except in ourselves. Now, in referring to “nature” in the previous sentence I here mean “in the terrestrial biosphere.” This is significant, because a viable solution to the problem of survival (as we can see from the example of flight, or I might also use the example of vision) tends to be repeatedly emergent in nature, so that we find multiple instances of homology and convergent evolution. We do not find this in regard to the human solution to the problem of survival.

If this is a solution to the problem of survival as posed by the terrestrial environment, why did no other species exploit this strategy?

If this is a solution to the problem of survival as posed by the terrestrial environment, why did no other species exploit this strategy?

On a larger scale, a scale at which “nature” does not mean the terrestrial biosphere but rather means the whole of the universe, we may well yet see the cohort of complexities associated with human beings repeated elsewhere, though we have to scale up our perspective, just as with scaling up island biography until it coincides with astrobiology. Metrics appropriate to human activity in a terrestrial context will not be sufficient for human (or, more generally, intelligent) activity in an extraterrestrial context. Another way to understand this is that, confined to the surface of Earth, distinctions that would be significant to civilization are conflated by contingent circumstances; raised off the surface of the Earth, and given energy and resources almost without limit, previously conflated properties of civilization manifest themselves in an extraterrestrial context and eventually become obvious as spacefaring civilizations undergo rapid adaptive radiation and come to exemplify different civilizational properties.

Terrestrial civilizations from an extraterrestrial perspective appear homogenous, but this may be a function of their being subject in common to specific terrestrial selection pressures.

Terrestrial civilizations from an extraterrestrial perspective appear homogenous, but this may be a function of their being subject in common to specific terrestrial selection pressures.

But to return to the idea that technology is the pursuit of biology by other means, as I observed in my Centauri Dreams post, How We Get There Matters, existential ends are not indifferent to technological means. In the particular case of the pursuit of biological ends by technological means, this provides a context for thinking about astrobiology in an age of spacefaring civilizations.

starship classes

Many metrics have been proposed for spacefaring civilization. I mentioned some of these in my last post, Thinking about Civilization, including metrics that I have myself attempted to work out. In that post I did not mention the metric that I proposed in my Centuari Dreams post How We Get There Matters (and which I followed with SETI Under Conditions of Constraint for Spacefaring Civilization), which concerned classes of starships. This is a metric immediately relevant to the question of spaceflight understood as the development of a continuum that begins with the first wind-blown distribution of seeds and spores, and which might some day mean the greening of the galaxy.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


One of the most famous thought experiments of twentieth century philosophy of mind is presented in Thomas Nagel’s paper “What is is like to be a bat?” Nagel’s point was that consciousness involves a point of view, and that means that there is something that it is like to be in being some conscious organism. Here is the opening paragraph of Nagel’s paper:

Conscious experience is a widespread phenomenon. It occurs at many levels of animal life, though we cannot be sure of its presence in the simpler organisms, and it is very difficult to say in general what provides evidence of it. (Some extremists have been prepared to deny it even of mammals other than man.) No doubt it occurs in countless forms totally unimaginable to us, on other planets in other solar systems throughout the universe. But no matter how the form may vary, the fact that an organism has conscious experience at all means, basically, that there is something it is like to be that organism. There may be further implications about the form of the experience; there may even (though I doubt it) be implications about the behavior of the organism. But fundamentally an organism has conscious mental states if and only if there is something that it is to be that organism—something it is like for the organism.

Thomas Nagel, “What is it like to be a bat?”, Mortal Questions, Cambridge University Press, 1979

The choice of a bat for this thought experiment is interesting. As a mammal, the bat shares much with us in its relation to the world, but its fundamental mechanism of finding its way around — echolocation — is sharply distinct from our primate experience of the world, dominated as it is by vision. Thus while what it is like to be a bat overlaps considerably with what it is like to be a hominid, there are also substantial divergences between being a bat and being a hominid. A bat has a different sensory apparatus than a hominid, and the bat’s distinctive sonar sensory apparatus presumably shapes its cognitive architecture in distinctive ways.

bat echolocation

As a philosopher I have a great fascination with the sensory organs of other species, which seem to me both to pose epistemological problems as well as to suggest really interesting thought experiments. In my post on Kantian Critters I argued that if human beings must have recourse to the transcendental aesthetic in order to sort out the barrage of sense perception that the brain and central nervous system receive, then other terrestrial species, constituted as they are much like ourselves, must also have recourse to some transcendental aesthetic of their own (or, if you prefer Husserl to Kant, and phenomenology to idealism, other species must employ their own passive synthesis). This interpretation of Kant obviously presupposes a naturalistic point of view, which Kant did not have, but if we grant this scientific realism, the Kantian insight regarding the transcendental aesthetic remains valid and may moreover be extrapolated beyond human beings.

Can the Kantian transcendental aesthetic be reinterpreted in the light of contemporary natural history?

Can the Kantian transcendental aesthetic be reinterpreted in the light of contemporary natural history?

Distinctive transcendental aesthetics of distinct species would follow from distinct sensory apparatus and the distinctive cognitive architecture required to take advantage of this sensory apparatus. This implies that distinct species “see” the world differently, with “see” here understood in a comprehensive sense and not in a purely visual sense. Although bats rely on sonar, they “see” the world in his comprehensive sense, even if their eyes are not as good as our hominid eyes, and not nearly as good as the eyes of an eagle. A couple of ethologists, Dorothy L. Cheney and Robert M. Seyfarth, have written several books on the Weltanschauung of other species, How Monkeys See the World: Inside the Mind of Another Species and Baboon Metaphysics: The Evolution of a Social Mind.

how monkeys see the world

Does a primate have more in common, Weltanschauung-wise (if you know what I mean), with a flying mammal such as a bat (since any two mammals have much life experience in common) or with a terrestrial reptile such as a serpent? Primates don’t know what it is like to fly with their own wings, but they also don’t know what it is like to move along the ground by slithering. Does a primate have more in common, again, Weltanschauung-wise, with a reptile that has given up its legs or with an octopus that never had any legs? We might be able to refine these questions a bit more by a more careful consideration of particular sensory organs and the particular cognitive architecture that both is driven by the development of the organ and makes the fullest exploitation of that organ for survival and reproductive advantage possible.

Pit Viper 2

Among the most intriguing sense organs possessed by other species but not by homo sapiens is the pit of the pit viper, which is a rudimentary sensing organ for heat. Since pit vipers are predators who typically eat small, furry animals with a high metabolism and presumably also a high body temperature, being able to sense the body heat of one’s prey would be a substantial selective advantage.

pit viper pit

Because the pit of the pit viper represents such a great selective advantage, one would expect that the pit will evolve, driven by this selective pressure. To paraphrase what Richard Dawkins said of wings, one percent of a infrared sensing organ represents a one percent selective advantage, and so on. Thus a one percent improvement of an existing pit would represent another one percent selective advantage. While it would be difficult to observe such subtle advantage in the lives of individual organisms, when in comes to species whose members number in the millions, that one percent will eventually make a significant difference in differential survival and reproduction. A statistical study would reveal what a study of individuals would likely obscure.

pit viper triangulation

There is a sense in which the pit of the pit viper is like an eye for perceiving infrared radiation. The infrared radiation spectrum lies just beyond the visible spectrum at the red end, so having a pit like a pit viper in addition to color vision would be like being able to see additional colors beyond red. Having a slightly different visible spectrum is not uncommon among other species. Many insects see a little way into the ultraviolet spectrum (at the opposite end of our visible spectrum from red) and flowers are said to present colorful displays to insects in the ultraviolet spectrum that we cannot see (except for the case I heard about some years ago about a man whose eye was injured and as a result of the injury was able to see a little way into the ultraviolet beyond the visible spectrum).

em spectrum

The eye itself, whatever portion of the electromagnetic spectrum it accesses, is a wonderful example of the power of an adaptation. The eye is so useful that it has emerged independently several times in the course of evolution of life on earth. I don’t know much about the details, but insect eyes, mollusc eyes, and vertebrate eyes (as well as several other instances) are each the result of separate and independent emergence of the eye. The mollusc eye and the vertebrate eye represent an astonishing example of convergent evolution, since the structure of the two instances of eyes is so similar. The eye is of course a provocative evolutionary example because of a famous passage from Darwin himself, who wrote about “organs of extreme perfection”:

“To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree. Yet reason tells me, that if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist; if further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real. How a nerve comes to be sensitive to light, hardly concerns us more than how life itself first originated; but I may remark that several facts make me suspect that any sensitive nerve may be rendered sensitive to light, and likewise to those coarser vibrations of the air which produce sound.”

Of this quote Richard Dawkins wrote in The God Delusion:

“Darwin’s fulsomely free confession turned out to be a rhetorical device. He was drawing his opponents towards him so that his punch, when it came, struck the harder. The punch, of course, was Darwin’s effortless explanation of exactly how the eye evolved by gradual degrees. Darwin may not have used the phrase ‘irreducible complexity’, or ‘the smooth gradient up Mount Improbable’, but he clearly understood the principle of both.”

Partly due to this Darwin quote, the evolution of the eye has been the topic of some very interesting research that has helped the clarify the development of the eye. There is a wonderful documentary on evolution, the first episode of which was titled Darwin’s Dangerous Idea (presumably intended to echo Daniel Dennett’s well known book of the same title), which an excellent segment on the evolution of the eye which you can watch on Youtube. In this documentary the work of Dan-Eric Nilsson of the University of Lund is shown, and he demonstrates in a particularly clear and concrete way the step-by-step process of improving vision through the increasing complexity of the eye. When I was watching this documentary recently I was thinking about how the pit of the pit viper resembles the early stages of the evolution of the eye.

eye evolution

The pit of the pit viper is a depressed, folded area lined with infrared sensitive nerve endings that allows limited directional sensitivity. In the long term future of the pit of the pit viper, which at present seems to correspond to the earliest stages of the evolution of the vertebrate eye, sometimes called a “cup eye,” there would seem to be much room for improvement. Of course, the details of infrared (IR) perception are different than the details of human visible spectrum perception, but not so different that we cannot imagine a similar series of stepwise improvements to the infrared pit that might, in many millions of years, yield sharp, clear, and directional infrared vision. If this infrared vision became sufficiently effective, it is possible that brain and body resources might be redirected to focus on the pits, and the eyes could eventually degrade into a vestigial organ, as in bats and moles. After all, snakes gave up their legs, so there’s no reason they shouldn’t also give up their eyes if they have something better to fall back on.

eye_evolution

There is another possibility, and that is the evolutionary advantage that might be obtained through adding a pair of fully functional IR “eyes” to a pair of fully functional visible spectrum eyes. Such a development would be biologically costly, and it would be much more likely that a pit viper would chose one evolutionary path or the other and not both. Yet there are some rare instances of biologically costly organs (or clusters of organs) that have been successful despite the cost. The brain is a good example — or, rather, large complex brains that evolve under particular selection pressures but which later are exapted for intelligence.

Encephalization Quotient

Encephalization Quotient

Natural selection is a great economist, and often reduces organisms to the simplest structure compatible with their function. This is one of the reasons we find the shapes of plants and the bodies of animals both elegant and beautiful. The economy of nature was resulted in the fact that a large brain, and the intelligence that large brains make possible, are rare. Despite their rarity, and their biological expense, large complex brains do emerge (though not often), and, like the eye (which has emerged repeatedly in evolutionary history), large brains have emerged more than once. Interestingly enough, complex eyes and large complex brains are found together not only in primates but also in molluscs.

The octopus (among other molluscs) is bequeathed a large, complex brain because the octopus went down the evolutionary path of camouflage, and the camouflage of some molluscs became so elaborate that almost every cell on the surface of the organism’s skin is individually controlled, which means a nerve connected to every spot of color on (or under) the skin, and a nervous system that is capable of handling this. It requires a lot of processing power to put on the kind of displays seen on the skin of octopi and cuttlefish, and an evolutionary spiral that favored the benefits of camouflage also then drove the development of a large, complex brain that could optimize the use of camouflage.

The octopus also has remarkably sophisticated eyes — eyes that are, in some respects, very similar to yet more elegant in structure than primate eyes. Our eyes are “wired” from the front, which gives us a blind spot where the optic nerve passes through the retina; mollusc eyes are “wired” from the back and consequently suffer from no blind spot. (“Wired” is in scare quotes here because it is a metaphor to refer to eyes being wired to the nervous system; while electrical signals travel down nerves, the connection between distinct nerve cells is primarily biochemical and not electrical.)

cephalopod eye

How an octopus sees the world is as fascinating an inquiry as what it is like to be a bat — or a serpent, for that matter. Both the octopus and an arboreal primate live in a three dimensional habitat, and this may have something to do with their common development of sharp eyesight and large brains, although there are vastly greater number of organisms in the sea and in trees with far smaller brains and far less cognitive processing power. (A recent study reported in The New York Times suggests a link between spatial ability and intellectual innovation, and while the study was primarily concerned with the ontogenesis of creativity, it is possible that the apparatus of spatial perception and the cognitive architecture that facilitates this perception is phylogenetically linked to intellectual creativity.) This simply shows us that intelligence is one strategy among many for survival, and not the most common strategy.

Life in an arboreal niche would make spatial ability a significant selection pressure.

Life in an arboreal niche would make spatial ability a significant selection pressure.

A large, complex brain is very costly in a biological sense. In a typical human being, the brain represents less than three percent of total body weight, yet it consumes about twenty percent of the body’s resources — that’s a very big chunk of metabolism that could be directed toward running faster or jumping higher or reaching farther. Nothing as unlikely as the brain’s disproportionate consumption of resources would come about unless this expenditure of resources bequeathed some survival or reproductive advantage to the organism possessing such a high cost of ownership. The brain isn’t a luxury that produces poetry and art; it is a survival machine, optimized (in hominids) by more than five million years of development to make human beings effective hunters and foragers. The brain was so successful, in fact, that it made is possible for human beings to take over the planet entire and convert it to serving human needs. Thus the relatively rare and costly strategy of developing a large, complex brain paid off in this particular case. (One may think of it as a high risk/high reward strategy.)

brainEvolution

If the evolution of the brain and the exaptation of intelligence to produce civilization did not result in the disproportionate evolutionary success of a single species, it seems likely that we would see intelligence emerge repeatedly in evolutionary history, much as eyes have evolved repeatedly. On other worlds with other natural histories, under conditions where intelligence does not allow a single species to dominate (possibly due to some selection pressure that does not operate on Earth), it is possible that evolution results in the repeated emergence of intelligence just as on Earth evolution has resulted in the repeated emergence of eyes. On Earth, intelligence preempted another developments, and means that not only human history but also natural history were irremediably changed.

Mass extinctions have repeatedly preempted developments in terrestrial life, and now it seems that an anthropogenic mass extinction event is again preempting the development of life on Earth.

Mass extinctions have repeatedly preempted developments in terrestrial life, and now it seems that an anthropogenic mass extinction event is again preempting the development of life on Earth — further demonstrating human dominance of the planet.

In The Preemption Hypothesis I argued that industrialization preempted other developments in the history of civilization (for more on this also see my post Human Agency and the Exaptation of Selection). This current line of thought makes me realize that purely biological preemption is also a force shaping history. Consciousness, and then intelligence arising from biochemically based consciousness, is one such preemption of our evolutionary history. Another preemption of natural history that has operated repeatedly is that of mass extinction. But whereas historical preemptions such as the development of large, complex brains or industrialization represent a preemption of greater complexity, mass extinctions represent a preemption of decreased complexity.

Some weedy plant species...

Some weedy plant species…

It seems that “weedy” species that are especially hearty and resilient tend to survive the rigorous of mass extinctions; the more delicate and refined productions of natural selection, which are dependent upon mature ecosystems and their many specialized niches, do not fare as well when these mature ecosystems are subject to pressure and possible catastrophic failure. One could think of mass extinctions, and indeed of all historical preemptions that favor simplicity over complexity, as a catastrophic “reset” of the evolutionary process. Events such as mass extinctions can favor rudimentary organisms that are sufficiently hardy to survive catastrophic changes, but, as we have seen, there is also the possibility of historical preemptions that favor greater complexity. The Cambrian Explosion, for example, might be considered another instance of an historical preemption.

The Cambrian explosion, or Cambrian radiation, was a preemption of historical continuity.

The Cambrian explosion, or Cambrian radiation, was a preemption of historical continuity.

There is a tension in the structure of history between continuity and preemption. In the particular case of the earth, the continuity of natural history has been interrupted by the preemption of intelligence and then industrialization. These preemptions of greater complexity — in contradistinction to preemptions of lesser complexity, as in the case of mass extinctions — may provide for the possibility of the continuity of earth-originating life beyond the terrestrial biosphere. In the case of an otherwise sterile universe, the intelligence/industrialization preemption would be a basis of a new explosion or radiation of earth-originating life in the Milky Way. In the case of a universe already living, it may be only intelligence and industrial-technological civilization that is a novelty in the natural history of the universe.

Milky Way

Whatever happens on the largest scale of life, as long as life continues to evolve on the earth, its development is likely to be marked by both continuity and preemptive developments. In thinking about the pit viper, I suggested above that the pit viper might eventually, over many millions of years, develop a fully functional pair of IR eyes in addition to its visible spectrum eyes. This suggestion points to an interesting possibility. In so far as complex life is allowed to develop in continuity, with a minimum of preemptions, specialization and refinement of existing mechanisms of survival may give rise of species of greater complexity than what we know today. While mass extinctions have repeatedly cleared the ground and given a more or less blank slate for the radiation of resilient weedy species, this may not always be the case.

An event of this magnitude becomes less likely as the solar system ages and settles down into a routine.

An event of this magnitude becomes less likely as the solar system ages and settles down into a routine.

As our earth and the solar system of which it is a part becomes older, catastrophic events may become less common. For example, stray bodies in the solar system that might collide with the earth, while once common in the early solar system, eventually end up colliding with something or getting swept out of the path of the earth’s orbit by the gravity of Jupiter. If, moreover, civilization expands extraterrestrially and seeks to protect the earth as an existential risk mitigation measure, life on earth may become even more secure and even less subject to disruption and preemption than in the past. New species might eventually come into being with a delicate complexity of sensory organs and accompanying cognitive architecture that facilitates these senses. Imagine species with a whole range of sensory organs that complement each other, without former mainstay sensory organs being reduced to vestigial status, and this might possibly be the future of life on Earth.

pit viper striking

Eventually the most interesting question may not be, “What is it like to be a serpent?” but, “What will it be like to be a serpent?”

. . . . .

The reader can compare my earlier post, The Future of the Pit Viper, which was the origin and inspiration of this post.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Darwin’s Cosmology

12 February 2012

Sunday


Today is Darwin’s birthday, and therefore an appropriate time to celebrate Darwin by a mediation upon his work. No one has influenced me more than Darwin, and I always find the study of his works to be intellectually rewarding. I also read (and listen to) quite a number of books about Darwin. Recently I listened to Darwin, Darwinism, and the Modern World, 14 lectures by Dr. Chandak Sengoopta. While I enjoyed the lectures, I sharply differed from many of Dr. Sengoopta’s interpretations of Darwin’s thought. One theme that Dr. Sengoopta returned to several times was a denial that Darwin had anything to say about the ultimate origins of life. Each time that Dr. Sengoopta made this point I found myself grow more and more irritated.

To say that Darwin had nothing to say about the ultimate origins of life may be technically correct in a narrow sense, but I do not think that it is an accurate expression of Darwin’s vision of life, which was sweeping and comprehensive. While it may be a little much to say that Darwin ever entertained ideas that could accurately be called “Darwin’s cosmology,” it is obvious in reading Darwin’s notebooks, in which he recorded thoughts that never made it into his published books, his mind ranged far and wide. It is almost as though, once Darwin made the conceptual breakthrough of natural selection he had discovered a new world.

In characterizing Darwin’s thought in this way I am immediately reminded of a famous letter that Janos Bolyai wrote to his father after having independently arrived at the idea of non-Euclidean geometry:

“…I have discovered such wonderful things that I was amazed, and it would be an everlasting piece of bad fortune if they were lost. When you, my dear Father, see them, you will understand; at present I can say nothing except this: that out of nothing I have created a strange new universe. All that I have sent you previously is like a house of cards in comparison with a tower. I am no less convinced that these discoveries will bring me honor than I would be if they were complete.”

Darwin, too, discovered wonderful things and created the strange new universe of evolutionary biology, though it came on him rather slowly — not in a youthful moment that could be recorded to a letter in his father, and not in a fit of fever, as the idea of natural selection came to Wallace — as the result of many years of ruminating on his observations. But the slowness with which Darwin’s mind worked was repaid with thoroughness. Even though Darwin was the first evolutionist in the modern sense of the term, he must also be accounted among the most complete of all evolutionary thinkers, having spent decades thinking through his idea with a Platonic will to follow the argument wherever it leads.

Given that Darwin himself thought that making the idea of natural selection public was like “confessing to a murder,” the fragments of Darwin’s cosmology must be sought in his latter and notebooks as much as in his published works. As for the origins of life, narrowly considered, apart from the cosmological implications of life, Darwin openly speculated on a purely naturalistic origin of life in a letter to Joseph Hooker:

“It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh what a big if) we could conceive in some warm little pond with all sorts of ammonia and phosphoric salts, — light, heat, electricity &c. present, that a protein compound was chemically formed, ready to undergo still more complex changes, at the present day such matter would be instantly devoured, or absorbed, which would not have been the case before living creatures were formed.”

Darwin’s 1871 letter to Joseph Hooker

What has widely come to be known as “Darwin’s warm little pond” sounds like nothing so much as the famous Stanley L. Miller electrical discharge experiment.

Darwin revealed his consistent naturalism in his rejection of teleology in a letter to Julia Wedgwood, where he indirectly refers to his slow, steady, cumulative mode of thinking (quite the opposite of revelation):

“The mind refuses to look at this universe, being what it is, without having been designed; yet, where would one most expect design, viz. in the structure of a sentient being, the more I think on the subject, the less I can see proof of design.”

Darwin’s letter of 11 July 1861 to Miss Julia Wedgwood

This same refusal continues to a sticking point to the present day, since, like so much that we learn from contemporary science, appearances are deceiving, and the reality behind the appearance can be so alien to the natural constitution of thue human mind that it is rejected as incomprehensible or unthinkable. That Darwin was able to think the unthinkable, and to so with a unparalleled completeness at a time when no one else was doing so, is testimony to the cosmological scope of his thought.

One of the most memorable passages in all of Darwin’s writings is the last page or so of the Origin of Species, which touches not a little on cosmological themes. Take, for instance, the “tangled bank” passage:

“It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent on each other in so complex a manner, have all been produced by laws acting around us.”

Besides anticipating the evolutionary study of ecology and complex adaptive systems long before these disciplines became explicit and constituted their own sciences, Darwin here subtly invokes a law-like naturalism that both suggests Lyell’s uniformitarianism while going beyond it.

Darwin places this law-governed naturalism in cosmological context in the last two sentences of the book, here also implicitly invoking Malthus, whose influence was central to his making the breakthrough to the idea of natural selection:

“Thus, from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.”

This famous passage from Darwin reminds me of a perhaps equally famous passage from Immanuel Kant, who concluded The Critique of Practical Reason with this thought:

“Two things fill the mind with ever new and increasing admiration and awe, the more often and steadily we reflect upon them: the starry heavens above me and the moral law within me. I do not seek or conjecture either of them as if they were veiled obscurities or extravagances beyond the horizon of my vision; I see them before me and connect them immediately with the consciousness of my existence. The first starts at the place that I occupy in the external world of the senses, and extends the connection in which I stand into the limitless magnitude of worlds upon worlds, systems upon systems, as well as into the boundless times of their periodic motion, their beginning and continuation. The second begins with my invisible self, my personality, and displays to me a world that has true infinity, but which can only be detected through the understanding, and with which . . . I know myself to be in not, as in the first case, merely contingent, but universal and necessary connection. The first perspective of a countless multitude of worlds as it were annihilates my importance as an animal creature, which must give the matter out of which it has grown back to the planet (a mere speck in the cosmos) after it has been (one knows not how) furnished with life-force for a short time.”

Both Darwin and Kant invoke both the laws of the natural world (and both, again, do so by appealing to grandeur of the heavens) and a humanistic ideal. For Kant, the humanistic ideal is morality; for Darwin, the humanistic ideal is beauty, but what Kant said of morality and the moral law is equally applicable, mutatis mutandis, to beauty. Darwin might equally well have said of “the fixed law of gravity” and of “endless forms most beautiful and most wonderful” that he saw them before himself and connected them immediately with the consciousness of his existence. Kant might equally well have said that there is “grandeur in this view of life” that embraces both the starry heavens above and the moral law within.

Darwin did not express himself (and would not have expressed himself) in these philosophical terms; he was a naturalist and a biologist, not a philosopher. But Darwin’s naturalism and biology were so comprehensive to have spanned the universe and to have converged on an entire cosmology — a cosmology, for the most part, not even suspected before Darwin had done his work.

There is a sense in which Darwin fulfilled Marx’s famous pronouncement, from this Theses on Feuerbach, such that: “Philosophers have only interpreted the world in various ways; the point is to change it.” Darwin, however, did not change the world by fomenting a revolution; Darwin changed the world by thinking, like a philosopher. In this sense, at least, Darwin must be counted among the greatest philosophers.

I would be a rewarding project to devote an entire book to the idea of Darwin’s Cosmology. I know that I have not even scratched the surface here, and have not come near to doing justice to the idea. It would be a rewarding project to think through this idea as carefully as Darwin thought through his ideas.

. . . . .

Happy Birthday Charles Darwin!

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .


darwin_profile

“Certainly, no fact in the long history of the world is so startling as the wide and repeated exterminations of its inhabitants.” Darwin, The Voyage of the Beagle, Chapter VIII

darwin_species

Today is the 200th anniversary of the birth of Charles Darwin, a milestone of sorts, though not perhaps so much of a milestone as when 2059 rolls around marking the 200th anniversary of the Origin of Species. I probably won’t be around for that anniversary, however (unless the dawning technological singularity comes along to extend my life), so I might as well celebrate the achievements of Darwin today.

This is the copy of The Voyage of the Beagle that I brought with me to the Galapagos.

This is the copy of The Voyage of the Beagle that I brought with me to the Galapagos.

No one has influenced me more the Darwin. I’ve been through the Origin of Species twice and the Voyage of the Beagle twice. Darwin’s works are not only great science, but they are great literature: the descriptions of his observations and his experiments are a model of simplicity and clarity. My thinking is through and through permeated with the Darwinian approach.

While in Ecuador I flew on the local carrier Tame.

While in Ecuador I flew on the local carrier Tame.

Once I grasped the essence of natural selection, and at the same time grasped that a generalization of natural selection applies to cosmological evolution, I began to purposefully and systematically shift my thinking. I try to catch myself thinking in teleological terms, and when I do I ask myself to invert my thought, and shift from an emphasis on ends to means. I consciously think my way through things in terms of selection instead of intuitive thinking in terms of ends and goals. This has proved to be a wonderful intellectual exercise for me, and has afforded me with many insights I would not have come to any other way.

galapagos_airport

Seeing the Amazon and Galapagos Islands changed my conception of species diversity — what I saw was interesting, but it also was not what I expected. The variety that biologists speak of is not necessarily a great variety to the untrained eye. Here the more dramatic differences between genera, family, etc., make a greater impression. We may see more dramatic difference between two individuals of the same species, and more especially between individuals of different geographical races (breeds, subspecies) of the same species, than between individuals of distinct yet closely related species. Darwin’s finches on the Galapagos resemble each other more than different breeds of dogs.

galapagos_birds

Observable characteristics, as in cladistic analysis of the phenotypic, can be deceptive. Also, observation includes (or may include) behavior, which in turn includes reproduction, i.e., we can observe descent in a limited way. The slight differences that constitute the specialist bird species of the Galapagos remind me of the trees of the Amazon, where the variety distinguished by the expert is often not apparent to the untrained eye. On a superficial level, subspecies may be more readily distinguishable than distinct species. But we should not be surprised by this, as there is no definition of species that commands universal assent among biologists.

these two groups of birds engaged in a ritual stand-off, hopping forward and back on the sand. It is one of the most remarkable things I have ever seen.

A living lesson in ethology: these two groups of birds engaged in a ritual stand-off, hopping forward and back on the sand. It is one of the most remarkable things I have ever seen.

In a recent review of Moby Dick, Doug Brown wrote, “I’m embarking on a ‘classics year,’ where I’m going to try to read a lot of those books that I know I should have read a long time ago. You know the ones — those books that we can all quote from and make references to, even though we’ve never actually cracked open a copy. I started last year by finally reading Darwin’s main books (Voyage of the Beagle is very readable and enjoyable — I regret I cannot say the same about Origin of Species, which is an encyclopedic litany of natural selection test cases).” I couldn’t disagree more. While The Voyage of the Beagle is a pleasant read, it contains none of the intellectual excitement of The Origin of Species. In an oft-quoted passage Darwin remarked that The Origin of Species is “one long argument” and I believe that one really must go to the source for the unabridged version to experience the full power of Darwin’s thought. It is inspirational to visit the Galapagos and to see what, in part, inspired Darwin, but it is far more important and far more inspirational to explore Darwin’s thought itself.

. . . . .

It is also the birthday, and also the 200th anniversary, for a great American — Abraham Lincoln… so Happy Birthday Abraham Lincoln!

lincoln

While the coincidence of their birth dates is an historical accident, the role each played in history is far from accidental, and their very different lives have at least this in common: both Darwin and Lincoln left the world a more honest place than each found it, and that is a remarkable achievement.

. . . . .

signature

. . . . .

%d bloggers like this: