Searching the Sky

21 November 2013

Thursday


seti-radio-telescope-a-parabolic-antenna

When Frank Drake first formulated the eponymously-named Drake equation the number of planetary systems in the universe (the second term in the Drake equation, fp) was an unknown among other unknowns. Now we are rapidly approaching a scientifically-based quantification of this once unknown number. We now know that planetary systems are common, and moreover that planetary systems with smallish, rocky planets in the habitable zones of stars are relatively common. (Cf., e.g., Earth-Like Worlds “Very Common”)

Frank Drake

As soon as we reached a level of technological and scientific expertise that made the search for exoplanets practical, we began to find them. The most recent exoplanet discoveries, and the recent announcement that planets and planetary system are common, are primarily due to the NASA Kepler mission. According to the NASA website, the Kepler mission was…

“…specifically designed to survey a portion of our region of the Milky Way galaxy to discover dozens of Earth-size planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets.”

In this, the Kepler mission has been wildly successful. But in order to get to the point at which our civilization could conceive, design, build, and operate the Kepler mission we had to pass through thousands of years of development, and before our civilization developed to its current state of technological prowess, it took terrestrial biology billions of years of development to arrive at organisms capable of creating a civilization that could develop to this level.

Kepler neighborhood

Contrast the experience of Kepler’s exoplanet search with the experience of SETI, the search for extraterrestrial intelligence. What did not happen as soon as we began searching for SETI signals? We did not immediately begin hearing a whole range of intelligent extraterrestrial signals, which would have been a result parallel to the immediate successes of the exoplanet search (immediate, that is, in the technological zone of proximal development). Both Kepler and SETI are searches of the sky. The Kepler mission gave nearly immediate results; Frank Drake conducted the first SETI study in 1960. Drake found only an eerie silence, and ever since we have only heard an eerie silence. Once the technological threshold of exoplanet search was reached, the search immediately discovered its object, but once the technological threshold of SETI was reached, the search revealed nothing.

Mosaïque_d'Ulysse_et_les_sirènes

Please understand that, in making this observation, I am in no sense criticizing SETI efforts; I am not saying that SETI is a waste of effort, or a waste of money; I am not saying that SETI is wrongheaded or that it is not a science. On the contrary, I think SETI is interesting and important, and that includes the fact that SETI has found only an eerie silence — this is in itself important and interesting. We have discovered radio silence, except for natural sources. This tells us something about the universe. If there were a truly predatory peer civilization in our region of the Milky Way, it would be expected that they would go to the trouble to broadcast their presence to the universe, in hope of luring unsuspecting peer civilizations. Like Odysseus having himself strapped to the mast of his ship so that he could hear the song of the Sirens while his crew rowed on oblivious, their ears stopped with wax, we would have to listen to such signals restraining ourselves from rushing toward that fatal lure.

Don't expect to find anything like this close to home.

Don’t expect to find anything like this close to home.

What we now know, as a result of SETI’s discovery of the eerie silence, is that METI (messaging extraterrestrial intelligence) beacons are not common. If METI beacons were common in the Milky Way, we would have heard them by now. There may yet be METI beacons, but they are not the first thing that you hear when you begin a SETI program (unlike looking for exoplanets and finding them as soon as you have the capability of looking). If METI beacons exist, they are rare and difficult to find. I think we can go further than this, and assert with some degree of confidence that there is no alien “super-civilization” in our galactic neighborhood constructing vast mega-engineering projects and pumping out high-power EM spectrum emissions that would be easily detectable by any technological civilization that suddenly had the idea to begin listening for such signals.

James Benford has argued that METI beacons entail prohibitive expense, and has argued against unregulated terrestrial METI efforts.

James Benford has argued that METI beacons entail prohibitive expense, and has argued against unregulated terrestrial METI efforts.

I wrote above that SETI and exoplanet searches are sensitive to a technological threshold. We passed the SETI threshold in the 1960s, and we have passed the exoplanet search threshold in the first decade of the twenty-first century. There is a further technological threshold, which is also an economic threshold — the ability to detect the unintentional EM spectrum radiation “leakage” from technological civilizations that have not had the interest or the resources to establish a METI beacon, but which, like us, are radiating EM spectrum signals as an epiphenomenal expression of our industrial-technological civilization. I say that this is also an economic threshold, as James Benford and colleagues have taken pains to point out the expense associated with establishing a METI beacon. (This is something I discussed in my Centauri Dreams post SETI, METI, and Existential Risk; James Benford responded on Centauri Dreams with James Benford: Comments on METI; my post on Centauri Dreams, along with responses from Benford and from David Brin, received quite a few comments, so if the reader is interested, it is worthwhile to follow the links and read the ensuing discussion.)

electromagnetic_leak

If METI is “shouting to the galaxy” (as James Benford put it), then the unintentional leakage of EM spectrum radiation of industrial-technological civilization is not shouting to the galaxy but rather whispering to the cosmos, and in order to be able to hear a whisper we must listen intently — holding our breath and putting a hand to our ear. Whether or not we choose to listen intently for whispers from the cosmos, we have not yet reached the developmental stage of civilization in which this is practical, though we seem to be moving in that direction. If we should continue the trajectory of our technological development — which, as I see it, entails both increasing automation and routine travel between Earth and space — such an effort will be within our grasp within the coming century.

Listen-very-carefully

Advanced industrial-technological civilizations will, by definition, know much more than we know. Their science will be commensurate with their technology and their engineering, since their civilization, if it is an industrial-technological peer civilization (and in so far as industrial-technological civilization is defined by the STEM cycle, which I believe to be the case), will experience the advance of science joined inseparably to the advance of technology and engineering. What would they do with this epistemic advantage? Such an epistemic advantage presents the possibility of SETI and METI asymmetry. We have an asymmetrical advantage over civilizations at an earlier stage of development, as older industrial-technological civilizations would have an asymmetrical advantage over us, with the ability to find us while concealing themselves.

A Pythagorean geoglyph based on Gauss' idea for signaling to ETI.

A Pythagorean geoglyph based on Gauss’ idea for signaling to ETI.

The developmental direction of industrial-technological civilization as defined by the STEM cycle means that any advanced industrial-technological civilization will be “backward compatible” with earlier forms of technological communication. We might not (yet) be able to build a quantum entanglement transmitter in order to communicate instantaneously over cosmic distances (even though we can conceive the possibility), but an advanced peer civilization will be able to listen for our EM spectrum radiation leakage, in the same way that we today could continue to look for signs of ETI compatible with earlier stages of industrial-technological civilization. Karl Friedrich Gauss suggested geometrical shapes laid out in wheat in the wastes of Siberia to get the attention of extraterrestrials, while Joseph von Littrow suggested trenches filled with burning oil in the Sahara. Interesting in this context, although our civilization had the technology to pursue these methods, no one undertook them on a large scale.

civilizational ZPD

When, in the future, we have the ability to image the surface of exoplanets with large extraterrestrial telescopes, we could look for such attempted signals within the capability of less developed civilizations to produce, such as those suggested by Gauss and Littrow. But when it comes to advanced peer civilizations, we don’t have the knowledge to know what to look for. The more advanced the civilization, the farther it lies beyond our civilizational zone of proximal development (ZPD), but the more advanced a civilization the earlier it would have to have its origins in the history of the universe, and at some point in the development of the universe (going backward in time to the origins of the universe) it would not be possible for an industrial-technological civilization to emerge because if we go far enough back in time, the elements necessary to an industrial-technological civilization do not yet exist. So there seems to be a window of development in the history of the universe for the emergence of industrial-technological civilizations. This strikes me as a non-anthropocentric way of expressing one formulation of the anthropic cosmological principle (and an idea worth developing further, since I have been searching for a formulation of the anthropic cosmological principle worthy of the name).

In an optimistic assessment of our place in the universe, we could hope that any substantially more advanced civilization could serve as the “more knowledgeable other” (MKO) that would facilitate our progress through the civilizational zone of proximal development.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Tuesday


There’s a lot of room in our solar system. The intrastellar or intersolar neighborhood is vastly beyond the scope of the ambition of most mortals. (The Thomas Digges chart of a Copernican solar system from 1576.)

The Advent of Intersolar Civilization

Before human civilization has achieved a robust interstellar presence, and has conquered, or begun to conquer, those nearly insuperable problems associated with the vast distances between the stars — which are as much temporal distances as spatial distances, because of the limiting velocity of the speed of light — it is likely the there will be a robust human presence within our native solar system. That is to say, it is likely that we will have an extraterrestrial civilization within out solar system before we have an interstellar civilization.

As I said, there’s a lot of room in our solar system. More importantly, there are more resources and more energy available than even a greatly expanded human civilization could consume in the foreseeable future.

Elsewhere I have identified this stage of industrial technological civilization as a Stage II civilization, but since no one is familiar with my terminology, it would be more straightforward to refer to interplanetary civilization. However, “interplanetary civilization” implies human spacesteading on naturally occurring celestial bodies, which is an arbitrary limitation. It is to be expected that spacesteading will involve as much or more settlement in artificial environments orbiting celestial bodies or in low- or micro-gravity environments of the asteroid belt. I will use the more comprehensive term “intersolar” to refer to all possible forms of human habitation and travel in the vicinity of our native sun and within our native solar system, but exclusive of other stars and their solar systems. (This could just as well be called “intrasteller” as “intersolar” but I suspect that the former term might be confusing, so I will prefer the latter.)

There’s really no need to hoist up one’s resources from the bottom of a gravity well like the surface of the Earth. The moons of our solar system have plenty of resources and much lower gravity.

One of the distinctive features of human extraterrestrial civilization within our native solar system (i.e., intersolar civilization, as defined above) is that it will not be a one way trip. There will be an expectation that those who go into space will be able to return to the Earth if they so desire, and to do so on a timetable of days, weeks, or months, and only at the outside would travel times be reckoned in years.

Even better than the low gravity environments of the solar system’s moons are the micro-gravity environments of the asteroid belt.

This contrasts dramatically to interstellar voyages that we might contemplate in the next hundred years or so, which, given our contemporary understanding of science and our expectations for technology based upon that science, would be one-way journeys, or, if return was contemplated, the round trip would require years or decades, and optimally would involve some sort of induced hibernation or other biological stasis technology.

Even if early spacesteaders choose not to return to the Earth, they would want to maintain their connections and communications with the Earth and its inhabitants, unless they had purposefully chosen to isolate themselves for ideological or ethical reasons. While we cannot rule out the possibility of self-imposed isolation from Earth, this is likely to be the exception rather than the rule.

Given these assumptions, how would the members of an intersolar civilization communicate with each other? How would the Earth communicate with spacesteads, and how would spacesteads communicate with each other and with the earth?

An Internet for Intersolar Civilization

The internet is becoming the de facto planetary brain of human civilization, the central clearing house for all information, and therefore also, in a sense, the blueprint for the construction and maintenance of industrial-technological civilization. It is also a universal communications network that can not only carry familiar forms of communications traffic such as email, but is increasingly used for voice and visual communications. It is to be expected that these developments will continue and that internet-enabled communications devices will be the norm and the standard for future communication.

Moreover, the internet is not a closed and finished system, but is growing and changing every day. This means that the blueprint for industrial-technological civilization is growing and changing every day, and if any community wishes to be a part of this tradition, it must have access to the internet in real time.

Real time” is the rub. The limiting velocity of the speed of light is not only a physical limit but also a social limit, because the speed of light marks the limits of the possibility of communication. Within the sphere of intersolar civilization, this limit would be felt, but it would not be felt so keenly as to abandon communication as pointless.

While interstellar distances would involve delays of years or centuries in communication between humanity’s home planet and any representatives of our species having found their way to other stars and their solar systems, interplanetary distances involve delays of seconds, minutes, hours or days. This is a problem, but it is possibly a problem that we can deal with in creative ways, and perhaps with some unavoidable compromises, and not an insuperable problem.

We will here assume that the limitation of the speed of light is observed. There has been significant discussion of the possibility of communication based on quantum entanglement, and while this possibility cannot be ruled out, it also cannot be counted upon. If this possibility materializes, our communications difficulties will be addressed on the basis of instantaneous universal communication, and some (but not all) of the problems discussed here will become irrelevant.

One of the features of the internet throughout its development has been that of striving after ever higher speeds, requiring ever higher bandwidth, and enabling technologies that rely upon very high speeds and very large bandwidth, such as watching streaming video, whether of a live conference or of a film. Instantaneous access to ever more data-rich environments and instantaneous communication has become the norm and the expectation.

How can we make this planetary brain of the internet into an interplanetary brain, or an intersolar brain, so that the blueprint of industrial-technological civilization is universally and nearly instantaneously available?

When the Earth and Mars are on opposite sides of the sun it takes much longer to exchange a radio signal than when the planets are at their closest approach to each other.

If an individual is using their internet-enabled device on Mars, between 3 and 22 light minutes from Earth (depending upon the relative positions of the Earth and Mars), and is accessing the most recent scholarship on farming techniques in iron-rich soils, they will not want to wait for 6-44 minutes for the turn-around time between each query and response.

An obvious first step would be to build internet “repeater” stations in Earth orbit, or perhaps on the moon or at the Lagrange points. An internet repeater station could continuously access internet content from the Earth, updating everything much as search engines are continuously seeking new content to index. Such a repeater would be a “mirror” of the entire internet, or as much of the internet as a given facility could store and update.

Individuals at a distance from the Earth would have to restrict their chatting and their webcam sessions to others nearby, where the delay was short enough so that it was not too obvious, but the content of the internet other than streaming live content could be made available to everyone at speeds approximating those of the present, depending upon one’s position in the solar system and the nearest internet mirror station.

Popular social media such as Facebook and Twitter would be delayed by minutes between the farther reaches of intersolar civilization, but this would not seriously impact any but the most dedicated followers of their friend’s status updates. Those for whom such matters loom large may choose to remain on the Earth, although by doing this they would still experience delays in status updates from extraterrestrial friends. Still, lives and careers have been decided on slimmer grounds, and such considerations could have a cumulative selective effect over time.

Ramifications for SETI of an Intersolar Internet

The future of intersolar civilization may involve a network of internet mirrors throughout the solar system, much as we now have a network of satellites surrounding the Earth that give as immediate information on our position on the surface of the Earth (and which in doing so must take account of relativistic effects like frame-dragging).

In so far as this network must be based on some kind of radio technology (as we are excluding advanced communication possibilities such as quantum entanglement communications, as noted above) — since we cannot string wires or fiber optic cables in space; our intersolar network of internet mirrors must be a wifi network — such an interplanetary network would be highly “visible” to any electromagnetic spectrum observation of our solar system. This apparently innocuous fact has interesting ramifications.

One response to the “Eerie silence” of SETI research has been the suggestion that, after a certain stage of technological development, an industrial-technological civilization “goes quiet” by resorting to fiber optic communications or related terrestrial technologies that no longer involve our radiating significant radio signals into space.

We can now see that this way of accounting for the Fermi paradox — if the universe is rich in alien technological civilizations, where are they? — involves an additional assumption: that an alien industrial-technological civilization will remain planet-bound. While we cannot exclude this possibility, we ought rightly to explicitly recognize it, and as soon as we do explicitly recognize it we can immediately see that this is highly unlikely.

Any industrial-technological civilization, located anywhere in the universe, that was capable of and interested in establishing radio communications with other peer civilizations, is extremely likely to be at least an intersolar civilization, if not an interstellar civilization, and they are equally likely to have created a communications and data storage network like the internet, and for their intersolar civilization to be fully viable this network would need to be available over the distances of a solar system, which means that another peer civilization would be radiating radio signals as aggressively as a human intersolar civilization would be radiating radio signals.

An Encyclopedia Solaria for a Growing Civilization

Carl Sagan (in his Cosmos), Timothy Ferris (in his Coming of Age in the Milky Way), and others have speculated on the possibility of an Encyclopedia Galactica that would be the repository of one or several industrial-technological civilizations, and which might survive that brief life of particular civilizations to transmit its content to later civilizations or successor civilizations within the universe. This was touched upon several times at the 100YSS 2011 symposium.

What I have described here constitutes something like an abridged version of an Encyclopedia Galactica, Which might be called an Encyclopedia Solaria, for our coming intersolar civilization. A growing intersolar civilization would entail a growing Encyclopedia Solaria that would encompass and connect our native solar system in one vast interconnected network.

This Encyclopedia Solaria would be an intermediate step between our contemporary terrestrial internet and an Encyclopedia Galactica of interstellar scope and reach. It is to be expected that solving — or, at least, dealing with — the problems of an Encyclopedia Solaria would teach us valuable lessons for a future Encyclopedia Galactica. One could think of the Encyclopedia Solaria as a trial run of an Encyclopedia Galactica, allowing us time to experiment and to work out some of the inevitable bugs that would likely plague earlier iterations.

While an Encyclopedia Solaria would ideally be an open and growing entity, receiving continuous updates to its content from all corners of the solar system, if our coming intersolar civilization should stumble, that same Encyclopedia Solaria could serve another function. An Encyclopedia Solaria would be a first step in mitigating human existential risk, at least in so far as this risk touches upon the preservation and expansion of the cultural legacy of human civilization.

This observation suggests the next step, which would be a conscious and systematic effort to safeguard the cultural legacy of human civilization from existential risk.

Existential Risk Mitigation for a Declining Civilization

I have been influenced in this present suggestion by the presentation of Heath Rezabek at the 100YSS 2012 conference about the possibility of archives to mitigate existential risk to human civilization.

A server farm or internet mirror set up on the moon, for instance, and designed according to principles that guide projects like the clock of the long now, i.e., designed for the long term, powered by solar power and perhaps with a nuclear backup power supply, and with plenty of shielding against the harsh environment of space, might well outlast terrestrial human civilization if that civilization succumbs to the existential risks of extinction, permanent stagnation, or flawed realization.

From the perspective of an active backup and repeater for the internet for a human presence in intersolar space, an orbiting artificial environment would probably be preferable to a moon-based installation, but if we are thinking in terms of existential risk, the moon’s bulk itself could provide a certain security, as well as providing plenty of material for shielding and plenty of space for the facility — space on firm ground, as it were. A facility in space, as opposed to an installation on a naturally-occurring celestial body, would need to be heavily shielded and even with shielding would be vulnerable to collisions. Even if such a facility experienced no major catastrophic collisions, it would be steadily bombarded by small particles and dust, which would take their toll over time.

Since the moon is phase-locked with the Earth, always presenting one side to our planet and a back side — the “dark” side of the moon — to extraterrestrial space beyond the Earth, a moon-based installation would have a certain security from immediate threats issuing form the Earth’s surface.

Other possibilities would present themselves in connection with an installation on the far side of the moon. Radio and optical telescopes based on the far side of the moon could peer much deeper and much farther into the universe that Earth-based telescopes (due to the lack of an atmosphere and the bulk of the moon shielding both light and EM radiation from the Earth), and, being built on the moon, such astronomical assets could be much larger than our current orbital telescopes. A significant scientific installation along with the internet mirror and universal information backup would continuously add new knowledge to our Encyclopedia Solaria, and much of this would be knowledge inaccessible to terrestrial observers, which would add an element of novelty to the science and might therefore mitigate some of the risk of stagnation.

The risk that such an installation would entail would be its visibility to nefarious and hostile alien powers. However, this would not be nearly as visible, and therefore not nearly as risky, as an internet and an Encyclopedia Solaria for a growing intersolar civilization as described above, which would be radiating more powerfully than a mere lunar installation.

Stephen Hawking as recently warned of the existential risk entailed by contacting, or being visible to, hostile aliens. Others have suggested that the risks are minimal or non-existent because the economics of interstellar invasion are insuperable. I do not agree with this latter analysis, but I will not attempt to argue the point here; I will only note that the point has been made.

What I have said here of the moon applies, mutatis mutandis, to Mars. At an even greater distance from the Earth than the moon, Mars would be that much more secure from Earth-based threats (such threats presumably being a consequence of succumbing to the existential risk of flawed realization). Mars, like the moon, is geologically inert, or nearly so. Any installation here could count on geological stability. Since Mars has an atmosphere, it has another layer of protection for its surface. For any residents, Mars would feel more like home, and less artificial, than an installation on the moon. However, the fact of an atmosphere means that the view of the cosmos from Mars would be compromised for any ground-based telescopes, unlike the moon’s clear view into space.

Ideally, existential risk mitigation for the cultural legacy of human civilization would be redundant, involving facilities on the moon, on Mars, and on orbiting platforms.

. . . . .

Note added later the same day: Heath Rezabek, whom I have cited above, and who has commented below, has drawn my attention to two items that are closely related to what I wrote above, Why We Need a Supercomputer on the Moon by Robert McMillan writing in Wired and NASA Mulls Deep-Space Station on Moon’s Far Side by Leonard David, space.com Space Insider Columnist.

I also happened to find that there is an entry on an “Interplanetary Internet” in Space Sciences: Macmillan Science Library. This volume is aimed at a young adult audience, but there is still much of interest here.

Obviously, many people are thinking about the issues I have outlined above. If enough people converge on a similar solution, something might get done. One can at least hope.

None of the other treatments I have found mention the potential science payoff of a big telescope on the far side of the moon linked into a supercomputer and internet node. If we think of how dramatically the Hubble Space Telescope has transformed our understanding of cosmology, this is no small matter. While the technocrats will always focus on particular problems, we who take the larger view know that industrial-technological civilization continues its relentless technological transformation of life only because it is systematically driven by science. New basic science of the kind that would be enabled by a major telescope (preferably both visible spectrum and radio telescopes) — imaging exoplanets and their atmospheres would be just the start — would offer an order-of-magnitude increase in observational cosmology.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Sunday


The Eerie Silence: Renewing Our Search for Alien Intelligence, Paul Davies

Recently in Silent Worlds, Empty Worlds I mentioned that I was listening to Paul Davies’ book The Eerie Silence: Renewing Our Search for Alien Intelligence, and this is the “eerie silence” to which I refer in the title of this post. Since that earlier post, I’ve listened through Davies’ a couple of times and also consulted the print version.

While listening to Davies’ book it occurred to me that a skeptical SETI argument could be formulated on the basis of the methodological naturalism that is the working presupposition of science — and presumably the presupposition of SETI also, if indeed SETI is a science.

The argument would run like this: the remarkable success of science in describing and explaining the world from the scientific revolution of the early modern period to today is predicated upon methodological naturalism. If this methodological naturalism was an invalid presupposition, then science so predicated would never have been the wildly successful enterprise that it has been. But science has been successful, and methodological naturalism has therefore proved itself.

Given the power of the intelligence to completely transform the environment in which it lives, as human beings have transformed the surface of the earth, an advanced extraterrestrial civilization that had managed to survive in the long term and to propagate itself at least within the confines of its solar system (as we have done to a limited extent) or perhaps also across interstellar distances, it would be the case that such an alien civilization would have transformed the environment throughout the region of space in which its influence held sway.

If any alien intelligence were to make a careful scientific study of our solar system, from the point of view of methodological naturalism certain anomalies would arise that could not be explained by purely naturalistic processes. The more detailed the study, the more anomalies would emerge. If the vast and cool and unsympathetic alien scientist got around to studying the surface of the earth, this scientist would eventually have to conclude that intelligence was at work, because natural processes could not plausibly account for cities, radio communications, and the other manifestations of technological civilization.

Similarly, when our scientists study other regions of the galaxy, methodological naturalism has proved to be a sure guide in understanding what we see. If large regions of space had been transformed under the influence of alien technology, anomalies would emerge in naturalistic explanations, and the more we looked, the more anomalies we would find. In fact, we do not find anomalies that can only be explained by recourse to explanations based upon intelligent intervention.

Michio Kaku wrote in his Physics of the Future how Kurzweil told him that he hoped to see the evidence of the technological singularity in the night sky:

“Kurzweil once told me that when he gazes at the distant stars at night, perhaps one should be able to see some cosmic evidence of the singularity happening in some distant galaxy. With the ability to devour or rearrange whole star systems, there should be come footprint left behind by this rapidly expanding singularity.”

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100, Michio Kaku, 2011, Chapter 2, Future of AI: Rise of the Machines, p. 102

I have been rather critical of Kurzweil in other posts, but in this, he is correct: if anything like the technological singularity took place in the form that its expositors have given to it, we should be able to see portions of the cosmos transformed under the aspect of intelligence — sub specie intellectus.

Since this is precisely what we do not see, this constitutes a further example of what I recently called SETI as a Process of Elimination: as the scope and sophistication of our search for extraterrestrial intelligence increases over time, and we continue to fail to find evidence of the same, in true inductive fashion this does not mean that we have proved that extraterrestrial intelligence and civilization does not exist, but we can exclude it from certain areas that have been searched, and the more we search the more regions of the cosmos can be declared free of peer civilizations. However, a single counter-example would be sufficient to falsify an inductive generalization possessing only a degree of confirmation and not deductive certitude.

In the case of the technological singularity, with its ability to reproduce itself and improve itself with each generation, thus issuing in escalating and even exponential growth, the “footprint” of obvious intelligent order wherever a technological singularity has emerged in the universe ought to be prominent and rapidly growing. We can say of intelligent machines as Fermi said of aliens: Where are they?

In the formulations of the some of the expositors of the technological singularity the effects of the singularity sound frighteningly similar to Stalinist gigantism, and if this is the case then the footprint of a technological singularity ought to be as visible as an enormous and vulgar Palace of the Soviets — a beacon to the cosmos of the paradise of the machines. Of course, machines may have better taste than earth-bound tyrannies.

An important note: in the bigger picture, the emergence of intelligence as the result of natural processes (as has happened on the earth) is itself a natural process, and the order the intelligence imposes upon its environment is as “natural” as that intelligence itself. However, we know that naturally occurring forms of order differ strikingly from forms of order imposed by intelligence. We know this intuitively, but it is extraordinarily difficult to give an explicit account of it.

If you travel to an unfamiliar place and look out over the landscape, you will likely know immediately whether or not other human beings make their home there: the presence of human habitation alters the landscape. Also, most of us are familiar with what wilderness looks like, and it does look anything like civilization.

Exactly what the difference is between what we might call organic forms of order on the one hand, and on the other hand mechanistic forms of order, however obvious it may be on an intuitive level, is something that we might reasonably expect from a philosophy of technology.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


A Question of Absence:

The Eerie Silence: Renewing Our Search for Alien Intelligence, Paul Davies

A Meditation on SETI


At present I am listening to The Eerie Silence: Renewing Our Search for Alien Intelligence by Paul Davies. I’m only a little more than half way through the book so far, so while I have much more to say on the book, I’ll reserve more extensive remarks until I’ve gotten through more of it.

For the time being, I will content myself with some brief remarks on the central theme of the book. This theme is emptiness, silence, absence, lack, privation, nothingness…

Are we alone?

The eerie silence is the deafening nothingness that has greeted those SETI scientists listening among the stars for extraterrestrial radio signals. They haven’t heard anything in fifty years. Some in the discipline are having second thoughts, and these second thoughts have largely inspired this book. Davies describes the difference between “old” SETI and “new” SETI, the latter being an attempt to think through, and hopefully go beyond, the presuppositions of the original SETI research program.

Davies’ book is fairly comprehensive, so he takes the reader through much familiar material, such as Fermi’s Paradox — which asks of any extraterrestrial intelligence, “Where are they?” — which leads immediately to the equally familiar refrain, absence of evidence is not evidence of absence.

Let us, for the moment, grant the SETI skeptics the argument, if only hypothetically, and ask what kind of galaxy we live in, if we live in it quite alone.

Suppose we are alone, or nearly alone. What then? Then the cosmos is filled with empty worlds, silent worlds. It is an odd feeling simply to know this. Our bustling planet is a loud place, filled with noises. Arthur Schopenhauer wrote a justly famous short essay, “On Noise” which begins with the following paragraph:

“Kant wrote a treatise on The Vital Powers. I should prefer to write a dirge for them. The superabundant display of vitality, which takes the form of knocking, hammering, and tumbling things about, has proved a daily torment to me all my life long. There are people, it is true — nay, a great many people — who smile at such things, because they are not sensitive to noise; but they are just the very people who are not sensitive to argument, or thought, or poetry, or art, in a word, to any kind of intellectual influence. The reason of it is that the tissue of their brains is of a very rough and coarse quality. On the other hand, noise is a torture to intellectual people. In the biographies of almost all great writers, or wherever else their personal utterances are recorded, I find complaints about it; in the case of Kant, for instance, Goethe, Lichtenberg, Jean Paul; and if it should happen that any writer has omitted to express himself on the matter, it is only for want of opportunity.”

Though Schopenhauer is remembered to philosophical history as a pessimist, he could be a very amusing writer, and this brief essay offers an excellent display of his wit and charm.

If the Milky Way is empty of intelligent life except for us, it is empty of that particular variety of noise that Schopenhauer protested. Schopenhauer specifically mentioned “knocking, hammering, and tumbling things about,” which is more or less synonymous with the activities of early industrial civilization. Schopenhauer quotes Thomas Hood as saying of the Germans, “For a musical nation, they are the most noisy I ever met with.” Schopenhauer attributes this to the obtuseness of mind of his people, but I think this is rather a universal, or nearly universal, condition of civilization, and a condition that is heightened by industrialization.

An empty universe would be a marvelous place for silent meditation and contemplation, interrupted by only the soothing sounds of nature in its various forms. How far would these forms of nature extend in a universe empty of intelligent life? This is perhaps more interesting and promising question than appears at first.

The rare earth hypothesis, upon which the empty universe is predicated, involves a suspension of the principle of mediocrity, which in some formulations is essentially the same thing as the Copernican Principle. If the kind of life, intelligence, and technological civilization that we have here on the earth is a rare event, and perhaps a unique event, then the earth and the civilization that it hosts is in no sense mediocre, but is the exception to many rules.

In several posts I have noted how our expanding knowledge of the universe has only pointed toward confirmation of the Copernican Principle. For example, in More Evidence for the Copernican Principle I argued that the discovery of extrasolar planets in the Helmi Stream extends the Copernican Principle to other galaxies, since the Helmi Stream associated with the Milky Way is the remnant of a captured galaxy once separate from the Milky Way.

Earlier, in Other Worlds, I wrote the following:

“…claims to cosmic uniqueness are being disproved as soon as the technological means are available to disprove them. For example, there is a large and growing body of evidence on extrasolar planets. We now know for a fact that there are planetary systems other than our own. Since we already know that planetary atmospheres are not unique (from the example of Mars, Venus, and several planetary moons), and we know from the moons of Jupiter that volcanic activity is not unique to the earth, it would be foolish to suppose that these extrasolar planets are all without atmospheres, and if they are small, rocky planets, they will be, like Mars, places not unlike the earth. And among these places not unlike the earth, there will be very interesting places, beautiful places, places unique in their own way, and well worth seeing. It is entirely reasonable to want to see such places quite apart from the question of whether there is life or whether such places are inhabited by sentient creatures or civilizations.”

These worlds upon which I speculated would not be silent, but they would not have noise in the Schopenhauerian sense. What sounds would they have? As near to us as Mars, if we could listen through the suits that would be necessary to survive on the surface, we could hear the Martian wind whistling among the dead rocks and stones on the Martian desert. The shifting sands of Mars might also produce the phenomenon of “singing sands” known on earth, though these would be the singing sands of Mars — plaintive, alien sounds of an alien world.

Farther afield than Mars, since we now can prove that there are extrasolar planets, and recent technological improvements have yielded smallish, rocky planets within the habitable zones of stars, there may be alien worlds with water, perhaps even entire oceans. Water in lakes, ponds, streams, waterfalls and oceans would make sounds. A waterfall can be nearly deafening if you are close to it, as can the tide washing upon the shore.

This last example, the sound of the tide, points to the interesting fact that the earth has one large moon. If we had no moon, the oceans would be attracted by the gravity of more distant celestial bodies, but this would not likely be sufficient to create the tides we know. If the earth had several moons, or much smaller moons, again we would not have the familiar tides. The sound of the tides would vary according to the gravitational environment of the ocean in question. It would be a definitely odd experience to stand on the shore of an alien ocean moved by no tides at all. In fact, the effect might be so dramatic that a person might want to travel there simply to experience this uniquely contemplative environment.

If we add into the picture further elements, in line with the principle of mediocrity but not fully violating the rare earth hypothesis that leaves us stranded alone in the Milky Way, there may be worlds — empty worlds, nearly silent worlds — in which the only sound to be heard is the wind in the grasses and the trees. Or, if there is animal life as well, the sounds of wings, and the clicks and chirps of insects. If you have ever been in the Amazon at night, you know that the ambient sound is almost as deafening as a waterfall, a torrent of white noise produced by countless organisms going about the ordinary business of life, but once again this is not Schopenhauerian noise.

If you had the leisure to listen long enough in any of these environments, you would hear periodicities in the ambient sound — diurnal periods, seasonal periods, annual periods, and perhaps also periodicities governed by unique forms of life.

These silent, empty worlds would only be silent and empty in so far as we identify meaningful sounds with human activity, which seems to me to be the antithesis of the spirit of SETI. No natural scientist would suppose for a moment that a world without “noise” would be a world without interest. One of the most surprising claims I found in Davies’ book was this:

“If there is somebody at the destination planet already, then why bother to make the trip? If the purpose of space travel is exploration, well, the aliens can send us the content of their latest DVD. On the other hand, if it is conquest, then the fact that the target planet already has a far more advanced civilization ensconced would constitute a pretty strong deterrent. All in all, it would make more sense for the newcomer civilization to stay put and simply join the Galactic Club.”

Paul Davies, The Eerie Silence: Renewing Our Search for Alien Intelligence, pp. 119-120

In this context, Davies doesn’t even consider the kind of motivations that inspire people to climb mountains, though just a few pages after this quote he considers these motivations in a different context.

Exploration is about much more than knowing what it out there. It is also about experiencing what is out there, and even touching what is out there. While there will always be some people content to know, just as there are always some people content with ignorance, there will also always be people who want to go and see for themselves, and this motivation will not be dampened by the possibility that there are no other technological civilizations in the Milky Way. The Cosmic wilderness awaits us.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: