Tuesday


Interior view showing the control room at Los Angeles Department of Water and Power Receiving Station B.

Questioning the Marxian Thesis

In the final section of Technological Civilization: Addendum to Part III, I made the following tripartite distinction among civilizations, such that there are:

1. Civilizations that exemplify the Marxian Thesis (technical civilizations)

2. Civilizations that exemplify the Burckhardtian Thesis (spiritual civilizations)

3. Civilizations primarily determined by their central projects (paradigmatic civilizations)

To recap these theses, the Marxian Thesis is that the intellectual superstructure is largely determined by the economic infrastructure, while the Burckhardtian Thesis is that the economic infrastructure is largely determined by the intellectual superstructure. In a paradigmatic civilization, infrastructrure and superstructure are equally determined (to some degree) by the central project. Alternatively, in the language of Robert Redfield, the Marxian Thesis is that the moral order is determined by the technical order, and the Burckhardtian Thesis is that the technical order is determined by the moral order. We can give these theses weaker or stronger formulations depending upon whether we hold the determination of one institutional structure of civilization by other to be marginal or total (or something in between).

The Marxian Thesis is the most familiar and the most influential, having been promoted and argued by Marxists for more than a hundred years. I had to formulate the Burckhardtian thesis myself because no one (to my knowledge) has attempted an explicit exposition or defense of the idea. Since the Marxian Thesis still has considerable influence in some quarters, I want to explicitly confront it with a counter-example. This does not mean that I reject the Marxian Thesis or affirm the Burckhardtian Thesis. My larger point is that different civilizations in different stages of historical development might embody the one or the other by turns. I take on the Marxian Thesis now primarily due to its popularity.

If the Marxian Thesis were true, one would expect that the intellectual superstructure would track the development of the economic infrastructure of civilization, so that as the economy developed, and as sciences and technologies appeared and entered into the economic infrastructure, they would be reflected in the intellectual superstructure precisely for their contribution to the economic infrastructure. One can point out instances that seem to confirm this expectation, but there are also instances that seem to defy the expectation. In order to set aside individual instances that may or may not be representative of a general trend, I would like to paint with a broad brush (as indeed Marx was painting with a broad brush). I have been entertaining a thought experiment for several years that I only recently realized speaks to this assumption of the Marxian Thesis, so I will use this in an attempt to make my point.

The Thought Experiment: Euclid and Darwin

Suppose, across a gulf of nearly two thousand years, we swapped Euclid with Darwin. Suppose that an ancient Greek Darwin had lived in the first few centuries AD, while a Victorian Euclid had lived in the 19th century. Obviously (I hope obviously), I am here using Euclid and Darwin as symbols to evoke developments in science associated with the two figures. Euclid represents the growth of mathematical science in classical antiquity, culminating in a figure like Euclid who would rationalize and systematize prior centuries of mathematical research into a great synthesis. Darwin represents the emergence of a scientific biology in the wake of 19th century achievements in scientific geology. Hutton and Lyell had opened the deep past to geologists, and Darwin opened the deep past to biologists. Euclid and Darwin are not perfectly symmetrical figures. Euclid was a systematizer and and synthesizer, like Thomas Aquinas or Hegel. Darwin stood at the head of a new scientific tradition, that would later be systematized and synthesized by others (significantly, the early twentieth century joining of evolution and genetics is called the “neo-Darwinian synthesis”).

Though Euclid and Darwin were not perfectly symmetrical figures in intellectual history, both men were the authors of books that defined a discipline: Euclid’s Elements defined ancient mathematics, while Darwin’s Origin of Species defined evolutionary biology. Thus by invoking Euclid and Darwin as symbols, what I am suggesting is not merely swapping the historical order of Euclid and Darwin, but more-so transposing their respective sciences in history, so that biology, instead of becoming scientific in the 19th century, instead became scientific in classical antiquity. And that geometry, and, by extension, all of higher mathematics, mostly lay dormant during classical antiquity and the Middle Ages, and only fully came into its own in the 19th century. Prior to this time there would have been a rudimentary mathematics, as there was a rudimentary biology in antiquity, but nothing like the sophistication of the Conics of Apollonius of Perga.

Natural selection, despite being counter-intuitive (the human mind is deeply teleological), is a simple idea. Certainly, natural selection is sufficiently simple that, had the idea been formulated in antiquity, and had it become the focus of research in the way that mathematical (and astronomical) ideas had been the focus of multi-generational scientific research programs in antiquity, most of the ideas of Darwin’s Origin of Species could have been formulated in terms understandable in classical antiquity. Moreover, the kind of experiments that Gregor Mendel later performed, which were the foundations of genetics, could also have been performed in classical antiquity. However, there is some ambiguity here in saying that the experiments, “could have been performed.” The experimental programs of Darwin and Mendel required no high technology, and thus could have been performed in classical antiquity (i.e., the lack of experimental apparatus would not have prevented these experiments from being performed), but the idea of experimental research in science did not yet exist in classical antiquity. There are many intimations of experimentation in antiquity, but nothing as methodical and systematic as Mendel’s pea plant experiments.

Let us suppose, then, as part of our thought experiment to transpose modern biological thought into antiquity in exchange for transposing ancient mathematical thought into the modern world, that Euclid’s axiomatization did not exist prior to being formulated in the 19th century, so that it did not appear as a method in antiquity, while experimental scientific method (at least in biology) instead appeared in antiquity. In a sense, this is not so far from what did happen, in terms of mathematical development. Axiomatics appeared in antiquity, but was little developed as a discipline, and was essentially static until the revolution in rigor in the late 19th century which brought a new urgency to axiomatics, which then developed rapidly thereafter, especially in the 20th century.

An Interpretation: Relevant and Irrelevant Scientific Developments

A fully developed evolutionary biology available in classical antiquity would have had significant ramifications. I don’t think it would be too much to say that this would have radically altered the course of the development of subsequent civilization. For example, to take a truly radical scenario, it might have taken human beings and our civilization in the direction of greater eusociality as a species; the understanding of natural selection would have provided the conceptual framework to go about selective breeding in a way that human beings did not undertake. With the knowledge of how species evolve, but without the biotechnology made available by technological civilization, the knowledge would have been there to manage selective breeding to accomplish what could not have been accomplished by biotechnology, and human beings might have bred themselves into multiple castes, phenotypically distinct, and serving functions as distinct as the classes in Plato’s Republic.

This scenario highlights an easily overlooked aspect of modern history: one of the consequences of the world wars of the 20th was a social and political regime of containing and limiting technologies. Global treaty regimes based on moral concerns to limit certain technological developments (paradigmatically, nuclear proliferation, but also chemical and biological warfare, etc.) were the result of a long historical development, and this development had not yet occurred in classical antiquity. (I do not say that this development was good or bad, or that it helped or hindered the development of civilization, I only say that it is.) If ancient civilization had had the power to shape species implied by a knowledge of natural selection, but had not possessed the subsequent history to appreciate the dangers inherent in scientific knowledge and technological power, civilization might have developed in a way that could not be undone, and that would have put humanity of a different course than that which we did in fact take.

One could modify the thought experiment in any number of ways, so, for example, we might have had an ancient Darwin but not an ancient Mendel, which would have meant that the idea of natural selection was available, but the technological application of genetics was not, which would have greatly limited the application of ancient biotechnology. This would be something like the stagnation of axiomatics after Euclid’s use of it. Natural selection as an idea might have lain stagnant for two thousand years before being revived at a later stage of history, and very little would have been changed in subsequent history, especially compared to the radical scenario above.

However, even a level of practical biological knowledge such as represented, for example, by the British Agricultural Revolution, would have made a great difference in the subsequent development of civilization. One of the things (inter alia) that made western European civilization so stagnant during the Middle Ages was the conservatism of agriculture. A better agriculture would have meant a much richer society, with much less likelihood of starvation, hence a lower likelihood of disease, better infant nutrition, and higher IQs as a result. Over hundreds of years, this would have had a significant impact on social development.

To mention the British Agricultural Revolution suggests something about the limitations of thought experiments such as this. It is arguable that Darwin’s work would not have happened without the backdrop of the British Agricultural Revolution; Jethro Tull may have been as important an influence on Darwin as Charles Lyell (whether or not Darwin knew it). After all, Darwin’s Origin of Species begins with a long chapter on selective breeding. It is an act of historical violence to disentangle the history of science from its actual course and to transpose it into another period of time, in which it is not native, and therefore considerable changes must be made in order to naturalize this science in another era.

Back to the Marxian Thesis: a Refutation?

The point of this thought experiment was to examine the Marxian Thesis critically. What I want to suggest with this thought experiment, then, was that classical antiquity did not develop a biological science that would have had a large and significant influence on a biocentric civilization that primarily derived its energy flows from the ambient environment through agriculture. A more sophisticated biology, even a practical biology as represented by the British Agricultural Revolution, would have been immediately applicable to civilization on a large scale, and would have altered the fates of civilizations that used a more sophisticated biology to its ends.

Instead, classical antiquity developed mathematics to a high degree of sophistication and precision. The achievement of Greek mathematics, later to be supplemented by the Hindu number system and Arab algebra, was so far beyond applicability in its time that many of the discoveries of ancient mathematics would not find application until after the scientific revolution, and some not until after the industrial revolution. While the biological thought that could have transformed civilization in antiquity did not develop, a body of mathematical thought virtually without application did develop (a mathematical body of knowledge that would have been highly useful to a technocentric civilization). In this sense, not only did the intellectual superstructure of scientific knowledge fail to track the development of the economic infrastructure, it arguably achieved the antithesis of tracking the economic infrastructure, neglecting knowledge that would have been applicable while developing knowledge that was largely inapplicable.

Taking the Marxian Thesis in the abstract, one might have expected that an agricultural civilization would have resulted in a sophisticated agricultural science, while a technological civilization would have resulted in a sophisticated industrial science. In the former case, this does not seem to have occurred, and, in the latter case, it occurred assisted by the mathematics of an earlier civilization which developed mathematics as an end in itself, and not out of any practical concern for application. While we could try to explain away the absence of a sophisticated agricultural science in pre-modern agricultural civilizations, and appeal to the prominent role of agriculture and pastoralism in ancient mythology and religion (which are other expressions of the intellectual superstructure), this should at least give the advocate of the Marxian Thesis pause.

Part of this disconnect between the knowledge of the intellectual superstructure and the practices of the economic infrastructure may be put to the overall progress of human social and technological development. Any science, such as Darwin’s biology, that was formulated after the scientific revolution was able to be developed much more rapidly, and with greater practical effect, than any science formulated prior to the scientific revolution, which might lie fallow for centuries or even millennia without practical application. The scientific method itself is a triumph of the human intellect, and its formulation, while several hundred years old, is far from complete. We have a lot yet to learn about how to do science. Because modern science is historically recent, one might argue, no science of evolutionary biology could have existed in classical antiquity. There is some validity in this argument, but I do not think that this fully accounts for the disconnect between the infrastructure and superstructure of classical antiquity, which could simply be put to suboptimality.

Arguably, mathematics was developed in antiquity because this was a science that could be developed on a purely intellectual basis with a minimal level of technology, and a minimal, perhaps absent, sense that scientific knowledge would have any application at all, especially to economics. Education in classical antiquity was about preparing an élite class to give persuasive speeches in a public assembly or a law court, and not about advancing knowledge. Moreover, there were any number of simple mathematical ideas that did not appear in classical antiquity. Obviously, the Greeks did not formulate the numbers we use today, which seem to have originated in India, and which are perhaps the most effective and intuitive formalism ever invented by human beings. I noted above that natural selection is essentially a simple idea; for that matter, set theory is also based on very simple ideas that ancient mathematicians could have have grasped, but the idea did not appear until the late 19th century, after Darwin. It would make another interesting thought experiment to ask how history might have been different if set theory had been introduced in classical antiquity. Maybe it would have made no difference at all; maybe not.

Another Take Away: Human Technophilia

However flawed this thought experiment, another take away from it is the extent to which human beings might be called a technologically adept species. We are interested in and express ourselves through technology in a way that suggests that the peculiarities of the human intellect have a particular affinity for technology. We have had many opportunities in our history to go in a more “biological” direction, but we have almost always taken the technologically intensive path. This has been recognized in the past, when human beings have been called homo faber in addition to homo sapiens: man the builder, the doer, the maker, the innovator, and eventually man the engineer of machines. Now that we possess the technological capability to do so, we build entirely artificial environments in which we live, which is why I have argued that Wilson’s biophilia needs to be supplemented with an understanding of technophilia.

Technological civilization, in all its contemporary scope and scale and sophistication, may be a consequence of the peculiarly technological bent of the human mind. And this may be sufficiently peculiar that it happens infrequently in the history of the universe. That is to say, it may be common for biology to evolve into more complex forms, and common even for intelligence to emerge from biology, but uncommon for that intelligence to take the form of a technological interest. It was the human use of technology — spear points, canoes, the bone needle, form-fitting clothing, the use of fire, and so on — which made it possible for our Paleolithic ancestors to settle the planet entire even before we developed civilization. Another way to think about this is that our technological impulses are stronger, and were expressed earlier, than our eusocial impulses. This in itself is an important observation, and may suggest why human eusociality attained the level that it did, but it did not go further, as it has with bees and termites and ants.

Even if my thought experiment does not show what I hoped it would show in regard to casting doubt on the Marxian Thesis (by which I mean, casting doubt on the Marxian Thesis as describing the only or predominant permutation of civilization), it may have some value on shining a light on the peculiarly technological character of the human intellect. Philosopher of technology Don Ihde has identified a technological texture to contemporary life; he is right to make this observation, but we might ask whether this technological texture of life is a result of our lives being unexpectedly transformed by technology since the industrial revolution, or whether human life has always had a technological texture, expressed with the materials on hand, and is due not to some accident of history like the industrial revolution, but is an inevitable projection of the human mind, which is a technological mind. In the latter case, it is the technological character of the human mind that is the accident of history, and, given a mind of this cast, the industrial revolution was an inevitable expression of a mind of this kind.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

. . . . .

Advertisements

Saturday


Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior social intelligence.

Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior ‘social intelligence.’

In a couple of blog posts, Is encephalization the great filter? and Of Filters, Great and Small, I argued that encephalization is the great filter — clearly implying that this is a single filter that is more significant than another filters, and that encephalization is the great filter. The “great filter” is an idea due to Robin Hanson, according to whom, “The Great Silence implies that one or more of these steps [to visible colonization] are very improbable; there is a ‘Great Filter’ along the path between simple dead stuff and explosive life. The vast vast majority of stuff that starts along this path never makes it. In fact, so far nothing among the billion trillion stars in our whole past universe has made it all the way along this path.”

In the second of the two blog posts noted above, Of Filters, Great and Small, I considered the different possible structures that filters might take, and this is a more nuanced view of the great filter that departs from the idea that a single element of the great filter is uniquely responsible for the great silence and the Fermi paradox. The journey to higher forms of emergent complexity seems to be robust, and therefore likely to have been repeated elsewhere, but it is also a long journey of later emergent complexities multiply supervening upon earlier emergent complexities. This structure of emergent complexities over time is itself a structure more complex than any one of the emergent complexities taken in isolation. In so far as we understand the great filter in this content, we understand a more nuanced view than the idea of one step among many steps along this journey being the unique hurdle to the aggressive expansion of life in the universe, and therefore its visible traces discoverable through cosmology.

Even given this more nuanced view of the great filter, later forms of emergent complexity will be less common than earlier forms, and within the structure of the great filter we can identify particular emergent complexities where the iterated structure falters. If we place this stalling point at exponential encephalization, we might find a universe filled with complex life, but with few or no other intelligent species capable of building a civilization. This is the sense in which I wish my claim that encephalization is the great filter to be understood.

Recently I have had reason to revisit the idea that encephalization is the great filter, and this is primarily due to having read The Social Conquest of Earth by E. O. Wilson, which emphasizes the role of eusociality in the construction of complex societies. I think that Wilson is right about this. Wilson notes that eusociality has emerged on Earth only a handful of times, making it a rare form of emergent complexity: “Eusociality arose in ants once, three times independently in wasps, and at least four times — probably more, but it is hard to tell — in bees.” (p. 136) We can compare this rarity of eusociality as an adaptation to the rarity of intelligence as an adaptation.

The insects that have achieved robust eusociality — perhaps I should say arthropods — are very different from mammals. We must go back more than 500 million years to the split between protostomes and dueterostomes to find the last common ancestor of the two. With the arthropods we share being bilaterally symmetrical, but the split between us — hence the split between our brains and central nervous systems (CNS) — is about as old as the split between mammals and molluscs: chordata, mollusca, and arthropoda are distinct phyla. On the one hand, we know from a recent fossil find something about the CNS of the earliest chordates, which we thus have in common with most other terrestrial animalia (cf. How early a mind?); on the other hand, we also know that neural structures have evolved independently on Earth (cf. The ctenophore genome and the evolutionary origins of neural systems), so that we might speak of neurodiversity among terrestrial animalia. Different brains, when sufficiently complex, are substrates for different forms of emergent consciousness, i.e., different forms of mind.

It is not only dramatically different kinds of minds that might give rise to dramatically different forms of encephalization, and thus intelligence and civilization. Part of the differentness of eusocial insects is their reproductive specialization, which goes along with a genetic structure of a colony in which the superorganism of the colony benefits overall from a majority of individuals not reproducing. This is also dramatically different from human societies. It has been objected to Wilson’s thesis of the eusociality of human beings that human beings are not eusocial, but rather prosocial, and that human cooperative societies cannot be compared to insect cooperative societies because there is no parallel to reproductive specialization among human beings. This, I think, is an unnecessarily narrow conception of eusociality. All we have to do is to recognize that eusociality can take multiple forms (as minds and intelligence can take multiple forms, supervening upon multiple distinct neural structures), some of which involve reproductive specialization and some of which do not, in order for us to recognize human cooperative societies as eusocial.

The most developed brain of the molluscs is that of the octopus, a solitary hunter. Octopi have been hunting in the depths of the sea for hundreds of millions of years, and, apparently, they have never experienced competition on the basis of intelligence, and, perhaps because of this, have never experienced an encephalization event. (Recently in How early a mind? I quoted E. O. Wilson to the effect that, “A Homo sapiens level of intelligence can arise only on land, whether here on Earth or on any other conceivable planet.” ) So octopi have a respectable level of intelligence, but are far from being eusocial. The eusocial insects have a much less powerful brain than octopi or mammals, but they did make the breakthrough to eusociality. Only human beings made the breakthrough to both eusociality and high individual intelligence.

Since reading Wilson on the eusociality of human societies, I can come to think that human civilization is what happens when eusociality coincides with intelligence. Termite mounds and bee hives are what happens when eusociality coincides with insect-level intelligence. And this observation of the interaction of eusociality and intelligence immediately suggests two possible counterfactuals to human civilzation, which I will sketch below. Understand that, in this context, when I use the term “human civilization” I am using this is in its most generic signification, covering all the many different human civilizations that have existed, i.e., the class of all human civilizations (which is the class of all known civilizations constructed by a biological being both eusocial and intelligent).

I noted above that we can employ a conception of eusociality less narrow than that restricted to eusocial insects with reproductive specialization. Similarly, the other element in civilization — intelligence — ought also to be construed broadly. Many different kinds of intelligence interacting with many different kinds of eusociality suggest many different possibilities for civilization distinct from the class of human civilizations. At the present time I am not going to consider kinds of eusociality and intelligence as much as degrees of eusociality and intelligence, and I will assume that the insect transition to reproductive specialization represents eusociality taken to a higher degree than eusociality has progressed in human beings. Similarly, I will assume that human intelligence represents a higher degree of intelligence than now-extinct branches of the genus homo, i.e., our ancestors with lower degrees of encephalization and lower intelligence.

From these assumptions about degrees of eusociality and intelligence, two counterfactual classes of civilization are suggested:

High Eusociality/Low Intelligence

A species might be less intelligent than human beings (i.e., possess a lower degree of encephalization) but more eusocial than human beings, and be able to build a civilization.

Low Eusociality/High Intelligence

A species might be more intelligent than human beings (i.e., possessing a higher degree of encephalization, or a thicker neocortex) but less eusocial than human beings, and be able to build a civilization.

This formulation has the virtue of existing human civilization embodying the principle of mediocrity: our eusociality and intelligence are balanced; we are not as eusocial or as individualistic as we might have been, and we are not as intelligence or as unintelligent as we might have been. We are in the “Goldilocks zone” of coinciding eusociality and intelligence, and this human “sweet spot” for civilization may account for the fact that civilization emerged independently in widely separated geographical regions, not as a result of idea diffusion, but rather as a consequence of independent invention.

In the High Eusociality/Low Intelligence class of civilizations, we would see somewhat individually intelligent beings capable of a high degree of cooperation through eusociality forming socieites (superorganisms) quite early in their history. We can see the degree to which bees and ants and termites can develop societies based on eusociality and an almost negligible individual intelligence; with a degree of eusociality approaching this, but in a species endowed with more cognitive capacity, cities might be built that look like something between a human city and a termite mound, and this might happen spontaneously. If this had happened with an earlier human ancestor — a counterfactual ancestor with greater eusociality than any actual human ancestor — it could have preempted the emergence of human civilization by occurring millions of years earlier.

In the Low Eusociality/High Intelligence class of civilizations, civilization may have come about at the level of scattered bands of hunter-gatherers, or, at least, human beings in small groups may have been able to develop science and technology without large social institutions such as governments, universities, and corporations, which discipline unruly human beings and make it possible for them to work cooperatively together. One can imagine that a more intelligent (counterfactual) species of the genus homo might have been sufficiently intelligent to pursue science at a much earlier period of its history, and one can imagine members of such a species coming together for scientific purposes much as our ancestors came together at Göbekli Tepe (which I first wrote about in The Birth of Agriculture from the Spirit of Religion) possibly for religious rituals, even before they gathered in settlements for agriculture.

Both counterfactual scenarios I have described above could have resulted in civilization on Earth emerging tens of thousands or hundreds of thousands of years earlier than it did in fact emerge. I suppose it would be equally possible to formulate counterfactuals in which different classes of civilization emerged much later.

Each of the three classes of civilizations considered here — moderate eusociality/moderate intelligence, high eusociality/low intelligence, and low eusociality/high intelligence — have distinct advantages and disadvantages, in terms of the viability of the civilization that results. However, cognitive capability begins to play a much greater role in civilization after industrialization when civilization becomes technological and scientific. If a given civilization can survive to make the breakthrough to science-driven technology, all other things being equal, the species with the greatest intelligence will have the greatest advantage in deploying science to further the ends of that species. I suspect that a high eusociality/low intelligence civilization would be stagnant, and possibly so stagnant that the breakthrough to industrialization never occurs. I also suspect that human beings were just smart enough to make that breakthrough, as indicated by the single point of origin of the industrial revolution. Short of that threshold, any civilization remains cosmologically invisible, exclusively bound to its homeworld, and incapable of long-term existential risk mitigation. This scenario is consistent with the great silence, and may constitute another approach to the Fermi paradox.

The research questions that follow from these considerations include: Are there intrinsic limits to eusociality among beings whose biology is not consistent with reproductive specialization? Are there intrinsic limits to intelligence for biological beings of known biochemistry? How do eusociality and intelligence interact biologically and ecologically? Does either constitute a check upon the other?

. . . . .

Cooperation among human beings has its limits -- as illustrated by the story of the Tower of Babel -- and one limit to cooperation is our level of eusociality.  With a higher or lower level of eusociality, civilization would have had a different structure.

Cooperation among human beings has its limits — as illustrated by the story of the Tower of Babel — and one limit to cooperation is our level of eusociality. With a higher or lower level of eusociality, civilization would have had a different structure.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


creation-of-birds

Biocentrism in an extended sense

In my recent post The Technocentric Thesis I formulated the latter idea such that all technocentric civilizations begin as biocentric civilizations and are transformed into technocentric civilizations through the replacement of biological constituents with technological constituents. This technocentric thesis implicitly refers to the anterior biocentric thesis, such that all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces (in its strong form) or all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces (in its weak form).

The technocentric thesis may be considered a generalization from the biocentric thesis (or, at least, an extension of the biocentric thesis), in so far as I previously argued in Astrobiology is island biogeography writ large that “spaceflight is to astrobiology as flight is to biogeography” which entails, in regard to the continuity of civilization and natural history, that “technology is the pursuit of biology by other means.” Thus technocentric civilizations continue imperatives of biocentric civilization, but by means other than biocentric means, i.e., by technological rather than biological means. Throughout the process of the replacement of the biological constituents of civilization by technological constituents of civilization, the imperatives of civilization remain intact and continuous.

We can make other generalizations from (and extensions of) the biocentric thesis. I wrote about a generalization of biophilia to non-terrestrial life in The Scope of Biophilia: “[E.O.] Wilson has already anticipated the extrapolation of biophilia beyond terrestrial life. Though Wilson’s term biophilia has rapidly gained currency and has been widely discussed, his original vision embracing a biophilia not limited to Earth has not enjoyed the same level of interest.” Here is the passage in question of E. O. Wilson’s Biophilia:

“From infancy we concentrate happily on ourselves and other organisms. We learn to distinguish life from the inanimate and move toward it like moths to a porch light. Novelty and diversity are particularly esteemed; the mere mention of the word extraterrestrial evokes reveries about still unexplored life, displacing the old and once potent exotic that drew earlier generations to remote islands and jungled interiors.”

Human Biophilia in its initial sense is the affinity that human beings have for the terrestrial biosphere, and the obvious extension of human biophilia (suggested in the passage quoted above from Wilson) would be the affinity that human beings may have for any life whatsoever in the cosmos, terrestrial or extraterrestrial. Might this hold generally for all biological beings, such that we can posit the affinity that some non-terrestrial biological being might have for the life of its homeworld, and the affinity that some non-terrestrial biological being might have for all life, including life on Earth (the mirror image of human biophilia in an extended sense)? These are the exobiological senses of biophilia (exobiophilia, if you like, or xenobiophilia).

These mirror image formulations of human biophilia and biophilia on the part of other intelligent (biological) agents suggests a more comprehensive formulation yet, that of the affinity of any biological being for any biology to be found anywhere in the universe. The presumed affinity that each biological organism will have for the biota of its homeworld involves the existential necessity of an organism’s attachment to the biota of its homeworld on the one hand, while on the other hand there is biophilia as a moral phenomenon, i.e., a constituent in the moral psychology of any biological being, the cognitive expression (or cognitive bias) of biocentrism. Biophilia in this formal sense would be the affinity that any biological being would have for the biota of its homeworld, while this formal biophilia in a generalized sense would be the affinity that any biological being would have for any life whatsoever in the cosmos.

How comprehensive is the scope of biophilia, or how comprehensive can it be, or ought it to be? Can we meaningfully extrapolate the concept of biophilia to such comprehensive scope as to include life on other worlds? I have formulated several thought experiments — Terrestrial Bias, Astrobiology Thought Experiment, and The Book of Earth — to investigate our intuitions in regard to other life, both on Earth and elsewhere. It would be an interesting project to follow up on these thought experiments more systematically as a research program in experimental philosophy. For the moment, however, I remain confined to thought experiments.

There are at least two forces counterbalancing the possibility of an expansive biophilia, with a scope exceeding that of terrestrial biology:

1) biophobia, and…

2) in-group bias

Parallel to biophilia there is biophobia, which is as instinctual as the former. Just as human beings have an affinity for certain life forms, we also have an instinctive fear of certain life forms. Indeed, the biosphere could be divided up into forms of life for which we possess biophilia, forms of life for which we possess biophobia, and forms of life to which we are indifferent. Biophobia, like biophilia, can be extrapolated as above to extraterrestrial forms of life. If and when we do find life elsewhere in the universe, no doubt some of this life will inspire us with awe and wonder, while some of its will inspire us with fear, perhaps even with palpable terror. So the scope of biophilia is modified by the parallel scope of biophobia. Given that terrestrial life is going to be more like us, while alien life will be less like us, I would guess that any future alien life will, on balance, inspire greater biophobia, while terrestrial life will, on balance, inspire greater biophilia. If this turns out to be true, the extension of biophilia beyond life of the terrestrial biosphere will be severely limited.

There is a pervasive in-group bias that marks eusociality in complex life, i.e., life sufficiently complex to have evolved consciousness, and perhaps also among eusocial insects, which are not likely to possess the kind of consciousness possessed by large brained mammals. I am using “eusocial” here in E. O. Wilson’s sense, as I have been reading E. O. Wilson’s The Social Conquest of Earth, in which Wilson contrasts the eusociality of insects and of human beings and a few other mammals. Wilson finds eusociality to be a relatively rare adaptive strategy, but also a very powerful one once it takes hold. Wilson credits human eusociality with the human dominance of the terrestrial biosphere today.

Wilson’s conception of eusociality among primates has been sharply rejected by many eminent biologists, among then Richard Dawkins and Stephen Pinker. The debate over eusociality in primates has focused on group selection (long a controversial topic in evolutionary biology) and the absence of reproductive division of labor in human beings. But the fact that one communication in criticism of Wilson and co-authors to the eminent scientific journal Nature (“Inclusive fitness theory and eusociality” Nature, 2011 March 24; 471, 7339: E1-4; author reply E9-10. doi: 10.1038/nature09831) had 134 signatures indicates that something more than the dispassionate pursuit of knowledge is involved in this debate. I am not going to attempt to summarize this debate here, but I will say only that I find value in Wilson’s conception of eusociality among human beings, and that the criticism of Wilson’s position has involved almost no attempt to understand Wilson’s point sympathetically.

Wilson had, of course, previously made himself controversial with his book on sociobiology, which discipline has subsequently been absorbed into and transformed into evolutionary psychology (one could say that sociobiology is evolutionary psychology in a nascent and inchoate stage of development), which continues to be controversial today, primarily because it says unflattering things about human nature. Wilson has continued to say unflattering things about human nature, and his treatment of human eusociality in The Social Conquest of Nature entails inherent human tribalism, which in turn entails warfare. This is not a popular claim to make, but it is a claim that resonates with my own ideas, as I have many times argued that civilization and war are coevolutionary; Wilson pushes this coevolutionary spiral of (in-group) sociality and (out-group) violence into the prehistoric, evolutionary past of humanity. With this I completely concur.

In-group bias and out-group hostility parallel each other in a way very much like biophilia and biophobia, and we could once again produce parallel formulations for extrapolating these human responses to worlds beyond our own — and perhaps also to other intelligent agents, so that these responses are not peculiarly human. How large can the scope of in-group bias become? It is a staple of many science fiction stories that human beings, divided against each other, unify to fight a common extraterrestrial enemy. I suspect that this would be true, and that in-group bias could be expanded even farther into the universe, but it would never be without the shadow of an out-group, however that out-group came to be defined, whether as other human beings who had abandoned Earth, or another species sufficiently different from us so as to arouse our suspicion and distrust.

There is a little known essay by Freeman Dyson that touches of themes of intrinsic human tribalism that are very much in the vein of Wilson’s argument, though Dyson’s article is many decades old, from the same year that human beings landed on the moon: “Human Consequences of the Exploration of Space” (Bulletin of the Atomic Scientists, Sept. 1969, Vol. XXV, No. 7; I was unable to find this article available on the internet, so I obtained a copy through interlibrary loan… many thanks to the Multnomah County Library System). In this article Dyson considers the problem of people in small groups, and in particular he describes how intrinsic human tribalism (i.e., in-group bias) might be exapted for a better future:

“…the real future of man in space lies far away from planets, in isolated city-states floating in the void, perhaps attached to an inconspicuous asteroid of perhaps to a comet… most important of all for man’s future, there will be groups of people setting out to find a place where they can be safe from prying eyes, free to experiment undisturbed with the creation of radically new types of human beings, surpassing us in mental capacities as we surpass the apes… So I foresee that the ultimate benefit of space travel to man will be to make it possible for him once again to live as he lived throughout prehistoric time, in isolated small units. Once again his human qualities of clannish loyalty and exclusiveness will serve a constructive role…”

Once again, I completely concur, though this is not the whole story. One of the greatest demographic trends of our time is urbanization, and we have seen millions upon millions move from rural areas and small towns into the always growing cities, both for their opportunities and their intrinsic interest. So human beings possess these tribal instincts that Dyson would harness for the good, but also eusocial instincts that flower in the world’s megacities, which are centers of both economic and intellectual innovation. Thus I find much of value in Dyson’s vision, but I would supplement it with the occasional conurbation, and I would assume that, over the course of an individual’s life, that there would be times that they would prefer the isolated community, times when they would prefer urban life, and times when they would want to leave all human society behind and immerse themselves in wilderness and wildness — perhaps even in the wilderness of an alien biosphere.

All of the things I have been describing here are essentially biological visions of the human future, which suggest that biocentric civilization still has many ways that it can grow and evolve, even if it does not converge on a form implied by the technocentric thesis, in which biology is displaced by technology. Technology can replace biology, and, when it does, the ends of biocentric civilization come to served by technological means, but that technology can replace biology does not mean that technology will replace biology.

Perhaps one of the sources of our technophilia is that we tend to think in technological terms because technology attains its ends over human scales of time, even over the scale of time of the individual human life and the individual human consciousness. But what technology can do quickly, biology can also do, more slowly, over biological and geological scales of time. If human civilization should be wiped away by any number of catastrophes that await us, the technological path of development will be foreclosed, but the biological path to development will still continue to be open as long as life exists, though it will operate over a scale of time that human beings do not perceive and mostly do not comprehend.

. . . . .

Paul Klee, Bird Garden, 1924

Paul Klee, Bird Garden, 1924

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: