How to Live on a Planet

27 September 2017

Wednesday


Humanity is learning, slowly, how to live on a planet. What does it mean to live on a planet? Why is this significant? How has our way of living on a planet changed over time? How exactly does an intelligent species capable of niche-construction on a planetary scale go about revising its approach to niche construction to make this process consistent with the natural history and biospheric evolution of its homeworld?

Once upon a time the Earth was unlimited and inexhaustible for human beings for all practical purposes. Obviously, Earth was was not actually unlimited and inexhaustible, but for a few tens of thousands or hundreds of thousands of hunter-gatherers distributed across the planet in small bands, this was an ecosystem that they could not have exhausted even if they had sought to do so. Human influence over the planet at this time was imperceptible; our ancestors were simply one species among many species in the terrestrial biosphere. Even before civilization this began to change, as our ancestors have been implicated in the extinction of ice age megafauna. The evidence for this is still debated, but human populations had become sufficiently large and sufficiently organized by the upper Paleolithic that their hunting could plausibly have driven anthropogenic extinctions.

In this earliest (and longest) period of human history, we did not know that we lived on a planet. We did not know what a planet was, the relation of a planet to a star, and the place of stars in the galaxy. The Earth for us at this time was not a planet, but a world, and the world was effectively endless. Only with the advent of civilization and written language were we able to accumulate knowledge trans-generationally, slowly working out that we lived on a planet orbiting a star. This process required several thousand years, and for most of these thousands of years the size of our homeworld was so great that human efforts seemed to not even make a dent in the biosphere. It seemed the the forests could not be exhausted of trees or the oceans exhausted of fish. But all that has changed.

In the past few hundred years, the scope and scale of human activity, together with the size of the human population, has grown until we have found ourselves at the limits of Earth’s resources. We actively manage and limit the use of resources, because if we did not, the seven billion and growing human population would strip the planet clean and leave nothing. This process had already started in the Middle Ages, when many economies were forced to manage strategic resources like timber for shipbuilding, but the process has come to maturity in our time, as we are able to describe and explain scientifically the impact of the human population on our homeworld. We have, today, the conceptual framework necessary to understand that we live on a planet, so that we understand the limitations on our use of resources theoretically as well as practically. When earlier human activities resulted in localized extinctions and shortages, we could not put this in the context of the big picture; now we can.

Today we know what a planet is; we know what we are; we know the limitations dictated by a planet for the organisms constituting its ecosystems. This knowledge changes our relationship to our homeworld. Many definitions have been given for the Anthropocene. One way in which we could define the anthropocene in this context is that it is that period in terrestrial history when human beings learn to live on Earth as a planet. Generalized beyond this anthropocentric formulation, this becomes the period in the history of a life-bearing planet in which the dominant intelligent species (if there is one) learns to live on its planet as a planet.

In several posts I have written about the transition of the terrestrial energy grid from fossil fuels to renewable resources (cf. The Human Future in Space, The Conversion of the Terrestrial Power Grid, and Planetary Constraints 9). This process has already started, and it can be expected to play out over a period of time at least equal to the period of time we have been exploiting fossil fuels.

I recently happened upon the article How to Run the Economy on the Weather by Kris De Decker, which discusses in detail how economies and technologies prior to the industrial revolution were adapted to the intermittency of wind and water, and the adaptability of such habits to contemporary technologies. And I recall some years ago when I was in Greece, specially the island of Rhodes, every house had solar water heaters on the roof (and, of course, sunshine is plentiful in Greece), and everyone seemed to accept as a matter of course that you must shower while the sun is out. A combination of very basic behavioral changes supplemented by contemporary technology could facilitate the transition of the terrestrial power grid with little or no decline in standards of living. This is part of what it means to learn to live on a planet.

As we come to better understand biology, astrobiology, ecology, geology, and cosmology, and we thus come to better understand our homeworld and ourselves, we will learn more about how to live on a planet. But the expansion of our knowledge of exoplanets and astrobiology will be predicated upon our ability to travel to other worlds in order to study them, and if we are fortunate enough to endure for such a time and to achieve such things, then we will have to learn how to live in a universe.

The visible universe is finite. Though the visible universe may be part of an infinitistic cosmology (or even an infinitistic multiverse), the expansion of the universe has created a cosmological horizon beyond which we cannot see. I have previously quoted a passage from Leonard Susskind to this effect:

“In every direction that we look, galaxies are passing the point at which they are moving away from us faster than light can travel. Each of us is surrounded by a cosmic horizon — a sphere where things are receding with the speed of light — and no signal can reach us from beyond that horizon. When a star passes the point of no return, it is gone forever. Far out, at about fifteen billion light years, our cosmic horizon is swallowing galaxies, stars, and probably even life. It is as if we all live in our own private inside-out black hole.”

Leonard Susskind, The Black Hole War: My Battle with Stephen Hawking to make the World Safe for Quantum Mechanics, New York, Boston, and London: Little, Brown and Company, 2008, pp. 437-438

We know, then, scientifically, that the universe is effectively finite as our homeworld is finite, but the universe is so large in comparison to the scale of human activity, indeed, so large even in comparison to the aspirational scale of human activity, that the universe is endless for all practical purposes. Though we are already learning how to live on a planet, in relation to the universe at large we are like our hunter-gather ancestors dwarfed by a world that was, for them, effectively endless.

Only at the greatest reach of the scale of supercivilizations will we — if we last that long and achieve that scale of development — run into the limits of our home galaxy, and then into the limits of the universe, at which time we will have to learn how to live in a universe. I implied as much in an illustration that I created for my Centauri Dreams post, Stagnant Supercivilizations and Interstellar Travel (reproduced below), in which I showed a schematic representation of the carrying capacity of the universe. At this scale of activity we would be engaging in cosmological niche construction in order to make a home for ourselves in the universe, as we are now engaging in planetary-scale niche construction as we learn how to live on a planet.

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Monday


Ecological niche construction in the natural world.

Ecological niche construction in the natural world.

Recently in The Biological Conception of Civilization I defined civilization as a tightly coupled cohort of coevolving species. In proposing this definition, I openly acknowledged its limitations. This biological conception of civilization defines a biocentric civilization, and if civilization continues in its technological development, it may eventually pass from being a biocentric civilization, dependent upon intelligent organic species originating on planetary surfaces, to being a technocentric civilization, no longer dependent in this sense.

Even given these limitations of the biological conception of civilization, we need not abandon a biological framework entirely to converge upon a yet more comprehensive conception of civilization, beyond the biocentric, but still roughly characterized by conditions that we have learned from our tenure on Earth. Being ourselves an intelligent organic species existing on the surface of a planet, biological modes of thought can be made especially effective for minds such as ours, and it is in our cognitive interest to cultivate a mode of thought for which we are specially adapted.

Let us, then, go a little beyond a strictly biological conception of civilization and formulate an ecological conception of civilization. To make this conception immediately explicit, here is a first formulation…

The Ecological Conception of Civilization:

Civilization is niche construction by an intelligent species.

This formulation of the ecological conception of civilization could be amended to read, “by an intelligent species or by several intelligent species,” in order to anticipate the possibility of intelligence-rich biospheres that give rise to civilizations constituted by multiple intelligent species.

What is niche construction? Here is a sketch of the idea from a book on niche construction:

“…organisms… interact with environments, take energy and resources from environments, make micro- and macrohabitat choices with respect to environments, construct artifacts, emit detritus and die in environments, and by doing all these things, modify at least some of the natural selection pressures present in their own, and in each other’s, local environments.”

Niche Construction: The Neglected Process in Evolution, F. John Odling-Smee, Kevin N. Laland, and Marcus W. Feldman, Monographs in Population Biology 37, Princeton University Press, 2003, p. 1

The authors go on to say:

“All living creatures, through their metabolism, their activities, and their choices, partly create and partly destroy their own niches, on scales ranging from the extremely local to the global.”

Ibid.

Human interaction with the terrestrial environment is an obvious example of taking energy and resources from the environment on a global scale, altering the selection pressures on our own evolution as a species by both creating and destroying a niche for ourselves. We are not the first terrestrial organisms to act upon the planet globally; when stromatolites (microbial mats composed of cyanobacteria) were the dominant life form on Earth, their photosynthetic processes ultimately produced the Great Oxygenation Event and catastrophically changed the biosphere. Had it not been for that global catastrophic change of the biosphere, oxygen-breathing organisms such as ourselves could not have evolved.

'The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen in Earth's atmosphere.'  from Wikipedia (https://en.wikipedia.org/wiki/Great_Oxygenation_Event)

‘The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen in Earth’s atmosphere.’ from Wikipedia (https://en.wikipedia.org/wiki/Great_Oxygenation_Event)

Though we are not the first terrestrial organism to shape the biosphere entire, we are the first intelligent terrestrial agents to shape the biosphere, and it has been the application of human intelligence to the problem of human survival that has resulted in human beings adapting their activity to every terrestrial biome and so eventually constructing civilization. At the stage of the initial emergence of civilization, the biological and ecological conceptions of civilizations coincide, as niche construction takes the form of engineering a coevolving cohort of species beneficial to the intelligent agent intervening in the biosphere. In later stages in the development of civilization, the ecological conception is shown to be more comprehensive than the biological conception of civilization, and subsumes the biological conception of civilization.

Not any cohort of coevolving species constitutes a civilization. Pollinating insects (bees) and flowers are involved in what might be called a tightly-coupled cohort of coevolving species, but we could not call bees and flowers together a civilization. Perhaps on other worlds the distinction between what we call civilization and coevolution in the natural world would not be so evident, and we could not as confidently make the distinction. For us, however, this distinction seems obvious. Why? At least one difference between civilization and naturally occurring coevolution is that the tightly-coupled cohort of coevolving species that we call civilization has been purposefully engineered for the benefit of the intelligent species that has demonstrated its agency through this engineering of a niche for itself. Moreover, the engineered niche is entirely dependent upon ongoing intervention to maintain this engineered niche. In the absence of civilization, the tightly-coupled cohort(s) of coveolving species would unravel, while naturally occurring instances of coevolution would continue unchanged, i.e., they would continue to coevolve. (I leave it as an exercise to the reader to compare this observation to Schrödinger’s definition of life in thermodynamic terms.)

The necessary role of an intelligent agent in maintaining a coevolutionary cohort of species points beyond the biological conception of civilization to the ecological conception of civilization, which in term points beyond civilizations constructed by biological agents to the possibility of niches constructed by any intelligent agent whatsoever. This makes the ecological conception of civilization more comprehensive than the biological conception of civilization, as the intelligent agents involved in niche construction need not be biological beings. However, biological beings are likely to be the intelligent agents with which civilization begins.

In the kind of universe we inhabit, during the Stelliferous Era biology represents the first possible emergence of intelligent agency, hence the first possibility of intelligent niche construction. (I could hedge a bit on this and instead assert that biological agents are the first likely emergence of intelligent agents, as Abraham Loeb has posited the possibility of life in the very early universe — cf. “The Habitable Epoch of the Early Universe” — but I consider this scenario to be unlikely, and the possibility of such life yielding civilization even less likely.) This biocentric possibility of intelligent niche construction can later be supplemented or replaced by later forms of emergent complexity consistent with intelligent agency and capable of niche construction (which latter could involve either building on existing forms of intelligent niche construction or innovating new forms of intelligent niche construction transcending what we today understand as civilization).

The biological conception of civilization — an engineered coevolving cohort of species — constitutes one possible form of niche construction. That is to say, in managing an ecosystem so that it produces a disproportionate number of the plants and animals consumed as food or other products for the use of the directing intelligent agent (human beings in our case), human beings have attained the first possible stage of intelligent niche construction, which is essentially a delineation of biocentric civilization, but the ecological conception of civilization can be adapted to the understanding of non-biocentric civilizations, as, for example, in the case the technocentric civilizations. The various kinds of civilization that we have seen on Earth — including but not limited to agrarian-ecclesiastical civilization and industrial-technological civilization — represent distinct forms of intelligent niche construction, and therefore all fall within the ecological conception of civilization. Civilizations constructed by post-biological agents in the form of technological beings may build upon these constructed niches or construct niches more distinctly adapted to post-biological agents (which may be technological agents).

The ecological conception of civilization lends itself to technocentric extrapolation in so far as the ecological recognition of the biology of planetary endemism being dependent on solar flux is readily adapted to conceptions of civilization that have emerged from the work of Dyson and Kardashev. Dyson famously imagined stars so surrounded by the productions of a technological civilization that only the waste heat of these civilizations would be visible to us in the infrared spectrum, and Kardashev equally famously translated this idea into a formalism representing civilization types in terms of total energy resources commanded by a civilization. Even these distant extrapolations of the possibility of our technological civilization are still recognizably dependent upon stellar flux, no less than the biomass of our terrestrial environment is dependent upon solar flux, as stellar flux represents the primary source of readily available energy during the Stelliferous Era. In this way, even technocentric civilizations constructed by post-biological intelligent agents are continuous with the civilizations of planetary endemism emerging from the biology of planetary surfaces, and both are describable in ecological terms.

ecological relationships

It could be said that the ecological conception of civilization presupposes the biological conception, because ecological systems supervene on biological systems (or, at least, ecological systems have supervened upon biological systems to date, but this is not a necessary relationship and may be superseded in the fullness of time), and an ecological perspective provides a conceptual framework placing civilization in the context of the natural world from which it emerged and upon which it depends, as well as placing any given civilization in the context of other civilizations. This latter function — providing a systematic framework for the interaction of civilizations — ultimately may be the most valuable aspect of the ecological conception of civilization, but one that can only be suggested at present. The ecological relationships familiar to us from the study of living organisms — mutualism (or symbiosis), commensalism, predation, and parasitism — may hold for civilizations also, but this kind of parallelism cannot be assumed. The ecological relationships among civilizations — i.e., among intelligent species that have engaged in niche construction — may well be more complex than the ecological relationships among organisms, but this is a matter for further study that I will not attempt to elaborate at present.

. . . . .

Niche construction by intelligent agents.

Niche construction by intelligent agents.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: