The Preemption Hypothesis

20 October 2012

Saturday


Three Little Words: “Where are they?”

In The Visibility Presumption I examined some issues in relation to the response to the Fermi paradox by those who claim that a technological singularity would likely overtake any technologically advanced civilization. I don’t see how the technological singularity visited upon an alien species makes them any less visible (in the sense of “visible” relevant to SETI) nor any less likely to be interested in exploration, adventure, or the quest for scientific knowledge — and finding us would constitute a major scientific discovery for some xenobiological species that had matured into a peer industrial-technological civilization.

The more I think about the Fermi paradox — and I have been thinking a lot about it lately — and the more I contextualize the Fermi paradox in my own emerging theory of civilization — which is a theory I am attempting to formulate in the purest tradition of Russellian generality so that it is equally applicable to human civilization and to any non-human civilization — the more I have come to think that our civilization is relatively isolated in the cosmos, being perhaps one of the few civilizations, or the only civilization, in the Milky Way, and one among only a handful of civilizations in the local cluster of galaxies or our supercluster.

Having an opinion on the Fermi paradox, and even making an attempt to argue for a particular position, does not however relieve one of the intellectual responsibility of exploring all aspects of the paradox. I have also come to think, while reflecting on the Fermi paradox, that the paradox itself has been fruitful in pushing those who care to think about it toward better formulations of the nature and consequences of industrial-technological civilization and of interstellar civilization — whether that of a supposed xenocivilization, or that of ourselves now and in the future.

The human experience of economic and technological growth in the wake of the industrial revolution has made us aware that if there are other peer species in the universe, and if these peer species undergo a process of the development of civilization anything like our own, then these peer species may also have experienced or will experience the escalating exponential growth of economic organization and technological complexity that we have experienced. Looking at our own civilization, again, it seems that the natural telos of continued economic and technological development — for we see no natural or obvious impediment to such continued development — is for human civilization to extend itself beyond the confines of the Earth and the establish itself throughout the solar system and eventually throughout the galaxy and beyond. This natural teleology has been called “The Expansion Hypothesis” by John M. Smart. Smart credits the expansion hypothesis to Kardashev, and while it is implicit in Kardashev, Kardashev himself does not formulate the idea explicitly and does not use the term “expansion hypothesis.”

Aristotle as depicted by Raphael in the Vatican stanze.

Aristotle as depicted by Raphael in the Vatican stanze.

The natural teleology of civilization

I have taken the term “natural teleology” from contemporary philosophical expositions of Aristotle’s distinction between final causes and efficient causes. We can get something of a flavor of Aristotle’s idea of natural teleology (without going too deep into the controversy over final causes) from this paragraph from the second book of Aristotle’s Physics:

We also speak of a thing’s nature as being exhibited in the process of growth by which its nature is attained. The ‘nature’ in this sense is not like ‘doctoring’, which leads not to the art of doctoring but to health. Doctoring must start from the art, not lead to it. But it is not in this way that nature (in the one sense) is related to nature (in the other). What grows qua growing grows from something into something. Into what then does it grow? Not into that from which it arose but into that to which it tends. The shape then is nature.

Aristotle is a systematic philosopher, in which any one doctrine is related to many other doctrines, so that an excerpt really doesn’t do him justice; if the reader cares to, he or she can can look into this more deeply by reading Aristotle and his commentators. But I must say this much in elaboration: the idea of natural teleology is problematic because it suggests a teleological conception of the whole of nature and all of its parts, and ever since Darwin we have understood that many claims to natural teleology are simply the expression of anthropic bias.

Still, kittens grow into cats and puppies grow into dogs (if they live to maturity), and it is pointless to deny this. What is important here is to tightly circumscribe the idea of natural teleology so that we don’t throw out the baby with the bathwater. The difficulty comes in distinguishing the baby from the bathwater in which the baby is immersed. Unless we want to end up with the idea of a natural teleology for human beings and the lives they live — this was the “human nature” that Sartre emphatically denied — we must deny final causes to agents, or find some other principle of distinction.

Are civilizations a natural kind for which we can posit a natural teleology, i.e., a form or a nature toward which they naturally tend as they grow and develop? My answer to this is ambiguous, but it is a principled ambiguity: yes and no. Yes, because some aspects of civilization are clearly developmental, when an institution is growing toward its fulfillment, while other aspects of civilization are clearly non-developmental and discontinuous. But civilization is so complex a whole that there is no simple way to separate the developmental and the non-developmental aspects of any one given civilization.

When we examine high points of civilization like Athens under Pericles or Florence during the Renaissance, we can recognize after the fact the slow build up to these cultural heights, which cannot clearly be distinguished from economic, civil, urban, and military development. The natural teleology of a civilization is the attainment of excellence in its particular mode of being, just as Aristotle said that the great-souled man aims at excellence in his life, but the path to that excellence is as varied as the different lives of individuals and the difference histories of civilizations (Sam Harris might call them distinct peaks on the moral landscape).

Now, I don’t regard this brief exposition of the natural teleology of civilization as anything like a definitive formulation, but a definitive formulation of something so complex and subtle would require years of work. I will save this for another time, rather, counting on the reader’s charity (if not indulgence) to grant me the idea that at least in some respects civilizations tend toward fulfilling an apparent telos implicit in its developmental history.

Early industrialization often had an incongruous if not surreal character, as in this painting of traditional houses silhouetted again the Madeley Wood Furnaces at Coalbrookdale; the incongruity and surrealism is a function of historical preemption.

The Preemption Hypothesis

What I am going to suggest here as another response to the Fermi paradox will sound to some like just another version of the technological singularity response, but I want to try to show that what I am suggesting is a more general conception than that — a potential structural failure of civilization, as it were — and as a more comprehensive concept the technological singularity response to the Fermi paradox can be subsumed under it as a particular instance of civilizational preemption.

The more general conception of a response to the silentium universi I call the preemption hypothesis. According to the preemption hypothesis, the ordinary course of development of industrial-technological civilization — which, if extrapolated, would seem to point to a nearly inevitable expansion of that civilization beyond its home planet and eventually across interstellar space as its natural teleology — is preempted by the emergence of a completely different kind of civilization, a radically different kind of civilization, or by post-civilization, so that the expected natural teleology of the preempted civilization is interrupted and never comes to fruition.

Thus “the lights go out” for a given alien civilization not because that civilization destroys itself (the Doomsday argument, Solution no. 27 in Webb’s book) and not because it collapses into permanent stagnation or even catastrophic civilizational failure (existential risks outlined by Nick Bostrum), and not because it completes a natural cycle of growth, maturity, decay, and death, but rather because it moves on to the next stage of social institution that lies beyond civilization. In simplest terms, the preemption hypothesis is that industrial-technological civilization, for which the expansion hypothesis holds, is preempted by post-civilization, for which the expansion hypothesis no longer holds. Post-civilization is a social institution derived from civilization but no longer recognizably civilization.

The idea of a technological singularity is one kind of potential preemption of industrial-technological civilization, but certainly not the only possible kind of preemption. There are many possible forms of civilizational preemption, and any attempted list of possible preemptions is limited only by our imagination and our parochial conception of civilization, the latter being informed exclusively by human civilization. It is entirely possible, as another example of preemption, that once a civilization attains a certain degree of technological development, everyone recognizes the pointlessness of the the whole endeavor, all the machines are shut down, and the entire population turns to philosophical contemplation as the only worthy undertaking in life.

Acceleration and Preemption

I have previously argued that civilizations come to maturity in an Axial Age. The Axial Age is a conception due to Karl Jaspers, but I have suggested a generalization that holds for any society that achieves a sufficient degree of development and maturity. What Jaspers postulated for agricultural civilizations, and understood to be a turning point for the world entire, I believe holds for most civilizations, and that each stage in the overall development of civilization may have such a turning point.

Also, the history of human civilization reveals an acceleration. Nomadic hunter-gatherer society required hundreds of thousands of years before it matured into a condition capable of producing the great cave paintings of the upper Paleolithic (which I call the Axialization of the Nomadic Paradigm). The agricultural civilizations that superseded Paleolithic societies with the Neolithic Agricultural Revolution required thousands of years to mature to the point of producing what Jaspers called an Axial Age (The Axial Age for Jaspers).

Industrial civilization has not yet produced an industrialized axialization (though we may look back someday and understand one to have been achieved in retrospect), but the early modern civilization that seemed to be producing a decisively different way of life than the medieval period that preceded it experienced a catastrophic preemption: it did not come to fulfillment on its own terms. In Modernism without Industrialism I argued that modern civilization was effectively overtaken by the sudden and catastrophic emergence of industrialization, which set civilization on an entirely new course.

At each stage of the development of human society the maturation of that society, measured by the ability of that society to give a coherent account of itself in a comprehensive cosmological context (also known as mythology), has come sooner than the last, with the abortive civilization of modernism, Enlightenment, and the scientific revolution derailed and suddenly superseded by a novel and unprecedented development from within civilization. Modernism was preempted by accelerating events, and, specifically, by accelerating technology. It is possible that there are other forms of accelerating development that could derail or preempt that course of development that at present appears to be the natural teleology of industrial-technological civilization.

The Dystopian Hypothesis

Because the most obvious forms of the preemption hypothesis, in terms of the prospects for civilization most widely discussed today, would include the technological singularity, transhumanism, and The Transcension Hypothesis, and also because of the human ability (probably reinforced by the survival value of optimism) to look on the bright side of things, we may lose sight of equally obvious sub-optimal forms of preemption. Suboptimal forms of civilizational preemption, in which civilization does not pass on to developments of greater complexity more technically difficult achievement, could be separately identified as the dystopian hypothesis.

In Miserable and Unhappy Civilizations I suggested that the distinction Freud made between neurotic misery and ordinary human unhappiness can be extended to encompass a distinction between a civilization in the grip of neurotic misery as distinct from a civilization experiencing ordinary civilizational unhappiness. I cited the example of the religious wars of early modern Europe as an example of civilization experiencing neurotic misery (and later went on to suggest that contemporary Islam is a civilization in the grip of neurotic misery). It is possible that neurotic misery at the civilizational level could be perpetuated across time and space so that neurotic misery became the enduring condition of civilization. (This might be considered an instance of what Nick Bostrum called “flawed realization” in his analysis of existential risk.)

It would likely be the case that neurotically miserable civilization — which we might also call dystopian civilization, or a suboptimal civilization — would be incapable of anything beyond perpetuating its miserable existence from one day to the next. The dystopian hypothesis could be assimilated to solution no. 23 in Webb’s book, “They have no desire to communicate,” but there many be many reasons that a civilization lacks a desire to communicate over interstellar distances with other civilizations, so I think that the dystopian lack of motivation deserves its own category as a response to the Fermi paradox.

Whether or not chronic and severe dystopianism could be considered a post-civilization institution and therefore a preemption of industrial-technological civilization is open to question. I will think about this.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Monday


Closest neighboring stars to our sun.

Seth Shostak, one of the most eminent SETI researchers, has suggested (in his lectures for The Teaching Company) that the Principle of Mediocrity can be extended beyond the idea that there are no privileged perspectives and therefore nothing unusual or exceptional about our solar system, our planet, or even life on earth, to embrace the idea that there is nothing unusual or exceptional about intelligent life, civilization, and the emergence of the industrial technology that makes SETI possible. I should also note in this context that this extension of the Principle of Mediocrity is thoroughly consonant with the argument that I made in The Continuity of Civilization and Natural History.

In several recent posts I have written about Paul Davies’ book The Eerie Silence: Renewing Our Search for Alien Intelligence (e.g., Silent Worlds, Empty Worlds). Paul Davies’ perspective represents what Davies calls “new SETI” in contradistinction to “old SETI,” which is represented by Shostak. We can recast the distinction between old and new SETI a bit by characterizing the traditional SETI undertaking of listening for alien radio broadcasts or sending our own radio signals out into space as a narrowly conceived search for peer civilizations to our own.

Under this interpretation, the traditional SETI undertaking can be seen as a process of elimination, and this process of elimination extends back into history before radio technology. Before our technology gave us the level of knowledge that we have of Mars today, it was widely speculated that there might be a technological civilization on Mars. There have been several proposals for what has generally been called extraterrestrial signaling before radio technology. Karl Friedrich Gauss, the great mathematician, suggested laying out a diagram of the Pythagorean Theorem in the wilderness of Siberia, with appropriately contrasting colors of vegetation. Joseph Johann Littrow suggested flaming trenches carved into the Sahara desert as a way to signal the inhabitants of Mars. Neither scheme was pursued.

Subsequent technological advances have made it possible for us to eliminate the possibility of a peer technological civilization within our solar system. While we cannot yet rule out the possibility of life deep within the aquifers of Mars or in the ocean postulated to exist under the ice of Europa, any life that would exist under these conditions would not have given rise to industrial-technological development.

Traditional SETI searches for alien radio signals have, by this time, similarly extended the process of elimination of peer civilizations from nearby stars. That is to say, however disappointing it is for folks like me, we can say with a high degree of confidence that there are no peer industrial-technological civilizations associated with the nearest stars pictured in the diagram above. Had there been a radio-capable peer civilization on a planet orbiting Barnard’s Star, for instance, it would only take six years for a radio signal to reach us, and another six years for that civilization to receive our answer. While that rate of communication is slow compared to our familiar modes of communication, since we’ve been broadcasting our signals for more than a hundred years there has been plenty of time to send and receive several messages. Similar considerations hold for all the stars within a radius of the reach of our radio signals, which radius is now a little larger than a hundred light years.

Of course, we could receive a signal from Barnard’s Star tomorrow, of an only-just-recently radio-capable civilization, but we have other reasons now (lack of extra-solar planets, for instance, and being a red dwarf star) for eliminating other local stars as homes for peer civilizations. This does not eliminate the possibility of non-peer civilizations, which could include either non-radio capable civilizations (like the quasi-neolithic alien societies in the film Avatar) or civilizations so different from our own that we could not recognize them as peers to our particular species of technological civilization.

As our technology improves, it extends the traditional SETI task of the process of elimination farther and farther into the cosmos. It has been this gradually increasing range of technology and the implicit process of elimination that has gotten SETI researchers to thinking and coming up with the ideas that are part of what Davies calls new SETI. Similar considerations hold for the discovery of peer life, even if not intelligent or civilized life. By “peer life” I mean life more or less biologically similar to what we know on earth. The arrival of the Viking landers on Mars largely discounted the possibility of peer life on Mars, although, as I wrote above, there remains the possibility of luxuriant caves buried deep beneath the Martian surface, heated by the residual heat of the molten core. The imagination quickly jumps to visions like those of Journey to the Center of the Earth in contemplating such a scenario. But even this scenario will eventually be either confirmed or disconfirmed by science.

Exobiology and astrobiology are sciences uniquely dependent upon technology. Technological advances brought these sciences into being, and only further technological advances will be able to settle the questions posed by nascent exobiology and astrobiology. For example, when we become able to take spectra from the atmosphere of earth-like planets orbiting other stars — a technological possibility within the next few decades — we would be able to determine the presence of certain kinds of life on other planets, even if that life has not produced a technological civilization that could communicate after the fashion of traditional SETI assumptions.

As far as technological innovation, as well as scientific ingenuity, has pushed the SETI process of elimination outward, the bubble of the extent of our knowledge is still quite small in the galaxy. The map of our spiral arm within the Milky Way galaxy, showing cepheid variable stars as “light houses” in the cosmos, includes a scale that shows a thousand light years in the lower right hand corner. By this scale you can judge by eye a sphere of a hundred light years radius which is our “radio bubble” in the cosmos. As you can see, there remains plenty of space even in our nearest cosmic “neighborhood” for peer civilizations from which we have not heard, and which would not have had an opportunity to hear from us. And this is just the Milky Way. There are galaxies in the cosmos like stars in the Milky Way: almost too many to comprehend. Most of these will remain beyond our scientific knowledge except in the most abstract and schematic form of knowledge. Radical developments and departures in science would be necessary for human technological civilization, however far extended in space, to make an adequate survey of the universe and extend even the traditional SETI process of elimination to a statistically significant percentage of the universe.

However, although our scientific sample of the universe is very small in comparison to the whole, if the Principle of Mediocrity holds good, it is a valid sample. That is something to think about. If we could produce a rigorous and comprehensive statement of the principle of mediocrity, we would have a better idea of what exactly is eliminated by the SETI process of elimination.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: