Herodotus, the Father of History

In Rational Reconstructions of Time I described a series of intellectual developments in historiography in which big history appeared in the penultimate position as a recent historiographical innovation. There is another sense, however, in which there have always been big histories — that is to say, histories that take us from the origins of our world through the present and into the future — and we can identify a big history that represents many of the major stages through which western thought has passed. In what follows I will focus on western history, in so far as any regional focus is relevant, as “history” is a peculiarly western idea, originating in classical antiquity among the Greeks, and with its later innovations all emerging from western thought.

Saint Augustine, author of City of God

Shortly after Christianity emerged, a Christian big history was formulated across many works by many different authors, but I will focus on Saint Augustine’s City of God. Christianity takes up the mythological material of the earlier seriation of western civilization and codifies it in the light of the new faith. Augustine presented an over-arching vision of human history that corresponded to the salvation history of humanity according to Christian thought. Some scholars have argued that western Christianity is distinctive in its insistence upon the historicity of its salvation history. If this is true, then Augustine’s City of God is Exhibit “A” in the development of this idea, tracing the dual histories of the City of God and the City of Man, each of which punctuates the other in actual moments of historical time when the two worlds are inseparable for all their differences. Here, the world behind the world is always vividly present, and in a Platonic way (for Augustine was a Christian Platonist) was more real than the world we take for the real world.

Immanuel Kant, author of Universal Natural History and Theory of the Heavens

The Christian vision of history we find in Saint Augustine passed through many modifications but in its essentials remained largely intact until the Enlightenment, when the combined force of the scientific revolution and political turmoil began to dissolve the institutional structures of agricultural civilization. Here we have the remarkable work of Kant, better known for his three critiques, but who also wrote his Universal Natural History and Theory of the Heavens. The idea of a universal natural history extends the idea of natural history to the whole of the cosmos, and to human endeavor as well, and more or less coincides with the contemporary conception of big history, at least in so far as the scope and character of big history is concerned. Kant deserves a place in intellectual history for this if for nothing else. In other words, despite his idealist philosophy (formulated decades after his Universal Natural History), Kant laid the foundations of a naturalistic historiography for the whole of natural history. Since then, we have only been filling in the blanks.

Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet, author of Sketch for a Historical Picture of the Progress of the Human Spirit

The Marquis de Condorcet took this naturalistic conception of universal history and interpreted it within the philosophical context of the Encyclopédistes and the French Philosophes (being far more empiricist and materialist than Kant), in writing his Esquisse d’un tableau historique des progrès de l’esprit humain (Sketch for a Historical Picture of the Progress of the Human Mind), in ten books, the tenth book of which explicitly concerns itself with the future progress of the human mind. I may be wrong about this, but I believe this to be the first sustained effort at historiographical futurism in western thought. And Condorcet wrote this work while on the run from French revolutionary forces, having been branded a traitor by the revolution he had served. That Condorcet wrote his big history of progress and optimism while hiding from the law is a remarkable testimony to both the man and the idea to which he bore witness.

Johann Gottfried von Herder, author of Reflections on the Philosophy of History of Mankind

After the rationalism of the Enlightenment, European intellectual history took a sharp turn in another direction, and it was romanticism that was the order of the day. Kant’s younger contemporary, Johann Gottfried Herder, wrote his Ideen zur Philosophie der Geschichte der Menschheit (Ideas upon Philosophy and the History of Mankind, or Reflections on the Philosophy of History of Mankind, or any of the other translations of the title), as well as several essays on related themes (cf. the essays, “How Philosophy Can Become More Universal and Useful for the Benefit of the People” and “This Too a Philosophy of History for the Formation of Humanity”), at this time. In some ways, Herder’s romantic big history closely resembles the big histories of today, as he begins with what was known of the universe — the best science of the time, as it were — though he continues on in a way to justify regional nationalistic histories, which is in stark contrast to the big history of our time. We could learn from Herder on this point, if only we could be truly scientific in our objectivity and set aside the ideological conflicts that have arisen from nationalistic conceptions of history, which still today inform perspectives in historiography.

Otto Neurath, author of Foundations of the Social Sciences

In a paragraph that I have previously quoted in Scientific Metaphysics and Big History there is a plan for a positivist big history as conceived by Otto Neurath:

“…we may look at all sciences as dovetailed to such a degree that we may regard them as parts of one science which deals with stars, Milky Ways, earth, plants, animals, human beings, forests, natural regions, tribes, and nations — in short, a comprehensive cosmic history would be the result of such an agglomeration… Cosmic history would, as far as we are using a Universal Jargon throughout all branches of research, contain the same statements as our unified science. The language of our Encyclopedia may, therefore, be regarded as a typical language of history. There is no conflict between physicalism and this program of cosmic history.”

Otto Neurath, Foundations of the Social Sciences, Chicago and London: The University of Chicago Press, 1970 (originally published 1944), p. 9

To my knowledge, no one wrote this positivist big history, but it could have been written, and perhaps it should have been written. I can imagine an ambitious but eccentric scholar completely immersing himself or herself in the intellectual milieu of early twentieth century logical positivism and logical empiricism, and eventually coming to write, ex post facto, the positivist big history imagined by Neurath but not at that time executed. One might think of such an effort as a truly Quixotic quest, or as the fulfillment of a tradition of writing big histories on the basis of current philosophical thought.

From this thought experiment in the ex post facto writing of a history not written in its own time we can make an additional leap. I have noted elsewhere (The Cosmic Archipelago, Part III: Reconstructing the History of the Observable Universe) that scientific historiography has reconstructed the histories of peoples who did not write their own histories. This could be done in a systematic way. An exhaustive scientific research program in historiography could take the form of writing the history of every time and place from the perspective of every other time and place. We would have the functional equivalent of this research program if we had a big history written from the perspective of every time and place for which a distinctive perspective can be identified, because each big history from each identifiable perspective would be a history of the world entire, and thus would subsume under it all regional and parochial histories.

I previously proposed an idea of a similarly exhaustive historiography of the kind that could only be written once the end was known. In my Who will read the Encyclopedia Galactica? I suggested that Freeman Dyson’s eternal intelligences could busy themselves as historiographers through the coming trillions of years when the civilizations of the Stelliferous Era are no more, and there can be no more civilizations of this kind because there are no longer planets being warmed by stellar insolation, hence no more civilizations of planetary endemism.

It is a commonplace of historiographical thought that each generation must write and re-write the past for its own purposes and from its own point of view. Gibbon’s Enlightenment history of the later Roman Empire is distinct in temperament and outlook from George Ostrogorsky’s History of the Byzantine State. While an advanced intelligence in the post-Stelliferous Era would want to bring its own perspective to the histories of the civilizations of the Stelliferous Era, it would also want a complete “internal” account of these civilizations, in the spirit of thought experiments in writing histories that could have or should have been written during particular periods, but which, for one reason or another, never were written. If we imagine eternal intelligences (at least while sufficient energy remains in the universe) capable of running detailed simulations of the past, this could be a source of the immersive scholarship that would make it possible to write the unwritten big histories of ages that produced a distinctive philosophical perspective, but which did not produce a historian (or the idea of a big history) that could execute the idea in historical form.

There is a sense in which these potentially vast unwritten histories, the unactualized rivals to Gibbon’s Decline and Fall of the Roman Empire, are like the great unbuilt buildings, conceived and sketched by architects, but for which there was neither the interest nor the wherewithal to build. I am thinking, above all, of Étienne-Louis Boullée’s Cenotaph for Isaac Newton, but I could just as well cite the unbuilt cities of Antonio Sant’Elia, the skyscraper designed by Antonio Gaudí, or Frank Lloyd Wright’s mile high skyscraper (cf. Planners and their Cities, in which I discuss other great unbuilt projects, such as Le Corbusier’s Voisin Plan for Paris and Wright’s Broadacre City). Just as I have here imagined unwritten histories eventually written, so too I have imagined these great unbuilt buildings someday built. Specifically, I have suggested that a future human civilization might retain its connection to the terrestrial past without duplicating the past by building structures proposed for Earth but never built on Earth.

History is an architecture of the past. We construct a history for ourselves, and then we inhabit it. If we don’t construct our own history, someone else will construct our history for us, and then we live in the intellectual equivalent of The Projects, trying to make a home for ourselves in someone else’s vision of our past. It is not likely that we will feel entirely comfortable within a past conceived by another who does not share our philosophical presuppositions.

From the perspective of big history, and from the perspective of what I call formal historiography, history is also an architecture of the future, which we inhabit with our hopes and fears and expectations and intentions of the future. And indeed we might think of big history as a particular kind of architecture — a bridge that we build between the past and the future. In this way, we can understand why and how most ages have written big histories for themselves out of the need to bridge past and future, between which the present is suspended.

. . . . .

. . . . .

Studies in Grand Historiography

1. The Science of Time

2. Addendum on Big History as the Science of Time

3. The Epistemic Overview Effect

4. 2014 IBHA Conference Day 1

5. 2014 IBHA Conference Day 2

6. 2014 IBHA Conference Day 3

7. Big History and Historiography

8. Big History and Scientific Historiography

9. Philosophy for Industrial-Technological Civilization

10. Is it possible to specialize in the big picture?

11. Rational Reconstructions of Time

12. History in an Extended Sense

13. Scientific Metaphysics and Big History

14. Copernican Historiography

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


Vernacular Declensionism

27 October 2016



When I was an adolescent I was quite taken with what was known at the time as “survivalism.” With the little money that I had a bought a copy of Life After Doomsday by Bruce Clayton, I subscribed to Survive magazine (at the same time I was reading Soldier of Fortune magazine), and my favorite science fiction novels were those that dealt with the end of the world. There is an entire sub-genre of science fiction that dwells on the end of the world — some of it concerns itself with the actual process of societal collapse, some considers the short term consequences of societal collapse, and some considers the far future consequences. The most famous novel in this genre is also perhaps the most famous novel in science fiction — Walter Miller’s A Canticle for Leibowitz — which lingers over a post apocalyptic future at three distinct six hundred year intervals. My interest in the end of the world also led to my studying civil defense and eventually nuclear strategy, which fascinated me. This autodidactic process eventually led me to high culture sources of declension narratives, and hence to an intellectual engagement that ceased to be related to survivalism.

My Cold War childhood provided ample scope for my secular apocalyticism, but in reading about survivalism it was not long before I discovered that, ideologically, the survivalist movement was far to the right, though with some exceptions. There is was a bit of overlap between the counter-culture back-to-the-land movement, which was typically on the political left, and the survivalists, who were typically on the right. Both camps read the Foxfire books and imagined themselves returning to a simpler, and more self-sufficient life — an obvious response to the alienation produced by industrialized society and exponential urban growth. The exponential urban growth that especially blossomed in Europe and North America following the Second World War, and which effectively led to the depopulation of the rural countryside, continues in our time (cf. The Rural-Urban Divide). One of the most significant global demographic trends has been, is, and will continue to be the movement of rural populations into increasingly large megacities. This process means that the communities of the rural countryside are dismantled, while new communities are created in urban contexts, but the transition is by no means smooth, and some weather the change better than others.

Several changes occurred at or around the middle of the twentieth century that severally contributed to the rise of declension narratives: the exponential growth in urbanism mentioned above, atomic weapons and the Cold War, the dissolution of extended families, the Pill, and so on. Before this time, narratives of the future were largely expansionist and optimistic. During the Golden Age of science fiction, uncomplicated heroes traveled from planet to planet in a quixotic quest to right wrongs and to rescue damsels in distress. Now this seems very innocent, if not naïve, and we now prefer anti-heroes to heroes, as we identify more with their tortured struggles than with the uncomplicated heroes and their happily-ever-after.

Thus while our cities are larger than ever before in the history of civilization, and they are growing larger by the day, civilization is more integrated around the planet than ever before, and becoming more tightly integrated all the time (even as politicians today flee from the label of “globalization” because they know it is, at the moment, politically radioactive), and civilization is more robust than ever, with higher levels of redundancy in essential infrastructure and services than ever before, as well as possessing long-term, large-scale disaster planning and preparation, we are more pessimistic than ever before about the prospects of this vigorous civilization. Perhaps this is simply because it is not the civilization we expected to have.

In the social atmosphere of Cold War tension and the omnipresent threat of nuclear annihilation, which could materialize at any moment out of the clear blue sky, those initially disaffected by the emerging character of modern urbanized life sought to opt out, and this process of opting out of the emerging social order was often given intellectual justification in terms of a Weltanschauung of decline, which I call declension historiography. Declensionism varies in scope, from mainstream media columnists bemoaning the declining stature of the US in a multipolar world, to disaster preparedness, to societal collapse, to awareness of global catastrophic risk and existential risk, to a metaphysical doctrine of universal, inevitable, and unavoidable decline (which is today often expressed in scientific terms by reference to the second law of thermodynamics). Doomsday preparedness, then, comes in all varieties, from those hoping to survive “the big one,” where “the big one” is a massive earthquake, hurricane, or even an ephemeral political revolution, to those gearing up for the collapse of civilization and living in a world where there is no more electricity, no hospitals, schools, governments, or indeed any social institutions at all beyond the individual survivalist and his intimate circle.

The prehistory of doomsday preppers also included those preparing for a variety of different environmental, social, and political ills. Hippies founded communes and used their agricultural skills to grow better dope. Several apocalyptic churches have predicted the end of the world, and some explicitly urged members to build fallout shelters in order to survive nuclear war (such as the Church Universal and Triumphant). The communitarians on the right have often chosen to opt out of mainstream society under the umbrella of one of these apocalyptic churches, while the rugged individualists on the right became survivalists and they prepared to meet an apocalyptic future on their own terms, but, again, often justified in terms of a much larger conception of history. This declension narrative has become pervasive in contemporary society. While the end of the Cold War has meant the decline in the risk of nuclear war, the political left now favors scenarios of environmental collapse, while the political right favors scenarios of institutional collapse due to bank failure, currency collapse, the welfare state, or the decline of traditional social institutions (such as the church and the family).

The terms “suvivalist” and “survivalism” are not used as widely today, but the same phenomenon is now known in terms of “preppers,” short for “doomsday preppers,” which indicates those who actively plan and prepare for apocalyptic scenarios. The political division and overlap is still evident. The left, focusing on environmental collapse, continues to look toward the “small is beautiful” ideal of the early environmental movement, inherited from the Club of Rome’s Limits to Growth study; they focus on community and sustainable organic farming and tend not to stress the necessarily violent social transition that would occur if the most shrill predictions of “peak oil” came to pass, and industrialized civilization ground to a halt (this sort of scenario approaches mainstream respectability in some popular books such as $20 Per Gallon: How the Inevitable Rise in the Price of Gasoline Will Change Our Lives for the Better, which I discussed in Are Happy Days Here Again?). These left-of-center declensionists are rarely called “preppers,” but their activities overlap with those usually called preppers.

The right, in contrast, does focus on the presumptively violent transitional period of social collapse, fetishizing armed resistance to marauding hordes, who will stream by the millions from overcrowded cities when the electricity stops and trucks stop bringing in food. While details are usually absent, the generic social collapse scenario has come to be called “SHTF,” which is an acronym for “shit hits the fan,” as in, “when the shit hits the fan, if you aren’t prepared, things are going to go badly for you.” Right-of-center declensionists, like the left, have an overarching vision of the collapse of civilization (as strange as that may sound), but drawing on different ideas and different causes than the left.

What are these declensionist ideas and the presumed causes of declension? Where does vernacular declensionism get its ideas? Why is declensionism so prevalent today? I have touched upon this issue previously, especially in Fear of the Future, where I made an argument specific to the nature of industrialized society and the reaction against it:

“…apocalyptic visions graphically illustrate the overthrow of the industrial city and the order over which it presided… While such images are threatening, they are also liberating. The end of the industrial city and of industrial civilization means the end of wage slavery, the end of the clocks and calendars that control our lives, and the end of lives so radically ordered and densely scheduled that they have ceased to resemble life and appear more like the pathetic delusions of the insane.”

This explains the motivation for entertaining declensionist ideas, but it does not explain the sources of these ideas. But in the same post I also cited a number of science fiction films that have prominently depicted apocalyptic visions. It is difficult to name a science fiction film that is not dystopian and apocalyptic, and these films have had a great impact on popular culture. Even those unsympathetic to the prepper mindset effortlessly recognize the familiar tropes of societal collapse portrayed in film. Presumably the writers of these films derive their declensionist ideas from a mixture of vernacular, social media, mass media, and high culture declensionism, as these ideas have percolated through society.

The mass media rarely recognizes preppers (although I see that there is a television program, Doomsday Preppers), and when it does do, it does so in a spirit of condescension. The greatest friends of civilization today are those who never think about it and take for granted all of the comforts and advantages of civilization. For most of them, the end of civilization is simply unimaginable, and it is this perspective that is operative when the occasional article on preppers appears in the mass media, where it is presented with a mixture of bemused pity and incredulity. The target audience for these stories are precisely the people that preppers believe will not last very long when the shit hits the fan. I could easily write a separate blog post (or an entire book) about the relationship of the mass mainstream media to declension scenarios, but this is a distinct topic from that of vernacular declensionism. There is some overlap between mass media and social media, as every mainstream media outlet also has a social media presence, and the occasional social media post will “go viral” and be picked up by the mainstream media. In this way, some survivalist ideas find a wider audience than the core audience, already familiar with the message, and this can draw in the curious, who may eventually become converts to the message. Other than this, the contribution by mass media to declension historiography is very limited (except for supplying a steady stream of inflammatory news articles that are pointed out as sure signs that the end is near).

Social media is vast and amorphous, but is given shape by each and every one of us as we pick and choose the social media we consume. This filtering effect means that like-minded individuals share a common ideological space in social media, and they overlap very little with those of divergent ideologies. The prepper community is well represented in social media, which has taken over from the small private presses that formerly distributed survivalist literature to the small survivalist community. The social media presence of preppers is all over the map, with an array of diverse social collapse scenarios, but, like survivalists of the 70s and 80s, still primarily on the political right, and often inspired by Biblical visions of apocalypse. In 72 Items That Will Disappear First When The SHTF, preppers are urged to buy boxes of Bibles: “Bibles will be in demand and can be used to barter items. A box of 100 small Bibles cost about $20.” Perhaps the writer of this article has watched The Book of Eli too many times and imagines that the Bible may be hard to come by in post-apocalyptic America. It would be extraordinarily difficult for the Bible to become a rarity — as difficult as it would be for human beings to go extinct. Both are too widely distributed to be eradicated by anything short of terrestrial sterilization. If you want trade goods, you would be much better off stocking up on books that will be rare than books that will be common, but this doesn’t stoke the prepper narrative, so the logic of commerce gives way to the ideology of social cohesion through embattled belief.

High culture declensionism, as to be found, for example, in Oswald Spengler’s classic The Decline of the West (Der Untergang des Abendlandes), is scholarly, if not pedantic, and is essentially an exercise in the philosophy of history. (Interestingly, the most famous representatives of the Beat Generation, who foreshadowed the hippies’ back-to-the-land rejectionism of industrialized society, were avid readers of Spengler; cf. Sharin N. Elkholy, The Philosophy of the Beats, University Press of Kentucky, 2012, p. 208.) Spengler employs the old standby of a cyclical conception of history, and despite the intellectual and cultural distance we can come since cyclical history was the norm, vernacular cyclical history continues to be an influence. Vernacular cyclical history can appeal to intuitions about the life cycle of all things, and it is easy to conceive of civilization as participating in this coming to be and passing away of everything sublunary.

Saint Augustine, the father of the philosophy of history, may be cited as another high culture representative of declensionism, living as he did as the Roman world was unraveling. The sack of Rome by the Visigoths in 410 AD was the occasion of Saint Augustine writing his magnum opus, The City of God (De Civitate Dei). Rome had been a city untouched by any invading army for more than eight hundred years, and had functioned as the capital of the known world, and yet it had been laid low by unsophisticated barbarians. How was this to be explained? This is the task Augustine set himself, and Augustine had an answer. The ruination of the City of Man was, for Augustine, a mere detail of history, of no great importance, as long as the City of God was thriving, as he believed it to be. Indeed, the City of God would go on to thrive for more than a thousand years after Augustine as western Europe attempted to make itself over as the Earthly image of the City of God.

Augustine represents a sharp break with cyclical history. Throughout the City of God Augustine is explicit in his rejection of cyclical history, arguing against it both as a theory of history as well as due to its heterodox consequences. Thus while we can construe Augustine as a representative of declension history, it is a linear declension history. Augustine’s vision of linear declension history was remarkably influential during the European middle ages, when the few educated members of society did not perceive any break in history from classical antiquity to medievalism. For them, they were still Romans, but degraded Romans, very late in the history of Rome. The miserable condition of life of the middle ages was to be put to having come at the tail end of history, waiting for the world to well and truly end.

Vernacular declension, with its intuitive retention of cyclical history, resides awkwardly side-by-side with the Whig historiography and progressivism (ultimately derived from Augustine’s linear conception of history) that is so common in the modern world — the idea that we are modern, and therefore different from the people of the past and their world, is axiomatic and unquestioned. Human periodization of time is as natural as the categories of folk biology — our modernism, then, is, in part, a function of folk historiography (on folk concepts cf. Folk Concepts and Scientific Progress and Folk Concepts of Scientific Civilization). What are the categories of folk historiography, what kind of historical understanding of the world is characteristic of folk historiography? This will have to be an inquiry for another time.

I will conclude only with the observation that vernacular declensionism might paradoxically be employed in the service of civilization, if an interest in responses to existential threats to societal stability could be used as a stepping stone to the study of and preparation for global catastrophic risks and existential risks. That is a big “if.” When I think back to my own frame of mind when I was an enthusiast of survivalism, I thought that civilization had little or nothing of interest to me, and that all the adventure that might be possible in the world would follow from the “struggle for subsistence” that Keynes took to be the “economic problem” of humanity, and which contemporary civilization has largely solved. I still have sympathy for those who find little to value in civilization, as I can remember that stage in my own development quite clearly. In a sense, I only became reconciled to civilization; I never belonged to those who never question civilization, and who can’t imagine its extirpation. Civilization was, for me, always open to question.

. . . . .


. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


grand strategy university

Introduction to the Scientific Study of Time

If I had an educational institution in which I could dictate the curriculum, I would have as requirements for the first year at least these two courses: “How to read a scientific paper” and “Understanding scales of time.” Of the former I will only say that, in our scientific civilization, every citizen needs to be able to read a scientific paper, so as not to rely exclusively on popularizations from journalists (perhaps I will write more on this later). The latter — understanding scales of time — is what concerns me at present. When I survey my own attempts to come to an understanding of the differing scales of time employed by the different sciences, I am struck by the slowness of my progress, but also by the importance of making progress. An organized and systematic attempt to give a unified exposition of the historical sciences and the time scales each entails would, I think, contribute significantly to making the various special sciences mutually intelligible and to encourage rigorous interdisciplinary research.

Just to finish the thought of a curriculum appropriate for the population of a scientific civilization, I might also consider not only a first year course in scientific method — many schools have required courses in statistics, which is a good step in this direction — but also a course in the philosophy of science and scientific methods, in order to give a comprehensive sense of the scientific enterprise and to engage students in thinking critically about the nature and limits of scientific knowledge. A scientific civilization that knows its own limits is less likely to fall victim to its own hubris than one in which these limits are not clearly understood.

Otto Neurath, W. V. O. Quine, Hans Reichenbach, and Imre Lakatos all used the idea of rational reconstruction.

Otto Neurath, W. V. O. Quine, Hans Reichenbach, and Imre Lakatos all used the idea of rational reconstruction.

The Idea of a Rational Reconstruction

The human experience of time originates in what Husserl called inner time consciousness, and human time as immediately experienced never extends beyond the lifetime of a single individual. Time consciousness, then, is severely constrained by human limitations. Human consciousness, however, not only consists in time consciousness, but also is the source of human reason, and human reason has sought to surmount the fleeting experience of time consciousness by extending time beyond the limitations of individual consciousness and the individual lifespan. This I will call the rational reconstruction of time.

Any duration of time beyond that of the human lifespan must be rationally reconstructed because it cannot be experienced directly. Extremely brief durations of time, such as are often involved in particle physics, also cannot be experienced directly, because they occur at a rate (or at such a microscopic scale) that cannot be distinguished by human sensory or cognitive faculties. These extremely brief durations of time also must be rationally reconstructed.

What is rational reconstruction? I won’t try to give a straight-forward definition, but instead I will try to give a sense of how philosophers have employed the idea of rational reconstruction. The idea originally came to prominence in the early twentieth century among logical positivists. Here is a passage from Otto Neurath that has become a point of reference in the origin of the idea of rational reconstruction:

“There is no way of taking conclusively established pure protocol sentences as the starting point of the sciences. No tabula rasa exists. We are like sailors who must rebuild their ship on the open sea, never able to dismantle it in dry-dock and to reconstruct it there out of the best materials. Only the metaphysical elements can be allowed to vanish without trace.”

Otto Neurath, “Protocol sentences,” in Logical Positivism, edited by A.J. Ayer, Free Press, Glencoe, IL, 1959, pp. 199-208, there p. 201.

Neurath further developed his ship analogy in other essays:

“We are like sailors who on the open sea must reconstruct their ship but are never able to start afresh from the bottom. Where a beam is taken away a new one must at once be put there, and for this the rest of the ship is used as support. In this way, by using the old beams and driftwood the ship can be shaped entirely anew, but only by gradual reconstruction.”

Otto Neurath, “Anti-Spengler,” in Empiricism and Sociology, edited by Marie Neurath and Robert S. Cohen, Dordrecht and Boston: D. Reidel Publishing Company, 1973, p. 199

Here the emphasis falls upon the exigency of keeping the ship afloat, which is not the central concern of the rational reconstruction of time, but it would be an interesting exercise to apply this idea to the cognitive framework we all employ, with the necessity being active and effective agency in the world.

Quine adopted the analogy of rebuilding a ship at sea from Neurath. In his Word and Object, Quine quoted Neurath’s ship passage as an epigraph to the book and develops the theme of reconstruction throughout, extending Neurath’s positivist-inspired analogy more generally to philosophy, giving the idea contemporary currency in analytical philosophy.

Hans Reichenbach made the idea of rational reconstruction fully explicit:

“When we call logic analysis of thought the expression should be interpreted so as to leave no doubt that it is not actual thought which we pretend to analyze. It is rather a substitute for thinking processes, their rational reconstruction, which constitutes the basis of logical analysis. Once a result of thinking is obtained, we can reorder our thoughts in a cogent way, constructing a chain of thoughts between point of departure and point of arrival; it is this rational reconstruction of thinking that is controlled by logic, and whose analysis reveals those rules which we call logical laws.”

Hans Reichenbach, Elements of Symbolic Logic, New York: The Macmillan Company, 1948, p. 2

Reichenbach has a footnote to this passage saying that “rational reconstruction” was introduced by Carnap, and indeed Carnap has a typically technical exposition of rational reconstruction in his Pseudoproblems in Philosophy (a bit long to quote here). Carnap’s interest in rational reconstruction seems to be due to the great influence that Russell’s philosophy had on Carnap, and it would be an interesting investigation to compare Russell’s conception of logical construction (in the parsimonious sense that Russell uses this term) and Carnap’s conception of rational reconstruction.

Imre Lakatos made extensive use of the idea of rational reconstruction in a more comprehensive context than the more narrowly logical exposition of Reichenbach. Lakatos applied rational reconstruction to the history of science, which is essentially what I am suggesting here:

“The history of science is always richer than its rational reconstruction. But rational reconstruction or internal history is primary, external history only secondary, since the most important problems of external history are defined by internal history. External history either provides non-rational explanation of the speed, locality, selectiveness, etc. of historic events as interpreted in terms of internal history; or, when history differs from its rational reconstruction, it provides an empirical explanation of why it differs. But the rational aspect of scientific growth is fully accounted for by one’s logic of scientific discovery.”

Imre Lakatos, The Methodology of Scientific Research Programmes: Philosophical Papers Volume I, Cambridge, 1989, “History of science and its rational reconstructions,” p. 118

A generalization of the point Lakatos makes in this passage would not be limited to the history of science: we can say that history simpliciter is always richer than its rational reconstruction, but the important problems for external history are set by the rational reconstruction of history. And, I think, we will find this to be the case; rational reconstructions of time point us to the most important problems for the historical sciences.

Cronus and Rhea, figures in one the central cosmogonic myths of classical antiquity.

Cronus and Rhea, figures in one the central cosmogonic myths of classical antiquity.

Mythology: the First Rational Reconstruction of Time

Mythology is the first “big history.” By placing human lives and human actions in a mythological context, human beings are immediately and personally related to a cosmos of enormous scope, far beyond anything to be encountered in the lives of most individuals. In order to achieve this scope, experiences had to be pooled, and a composite, richer experience draw from an inventory wider and deeper than the experiences of any one individual. This is the essence of the rational reconstruction of time, which was later taken to much greater lengths in subsequent human development.

In retrospect, mythological cosmologies are ethnocentric and parochial, usually bound to the biome of a given biocentric civilization, but in their time they constituted the uttermost and outermost reach of human reason, projecting human concerns into the heavens and beneath the Earth. Mythological cosmologies were as comprehensive as they could be at the time, given the limitations of human knowledge under which mythologies took shape.

While mythology is a rational reconstruction of the human condition, we can also can see the rational reconstruction of mythology itself when philosophically-minded later readers of mythology attempted to further bring the mythological cosmos into line with the increasingly rational order of human civilization. Plato famously wanted to ban all poets from his ideal republic, because the stories that poets tell about the gods are not always edifying, and Plato’s republic aspired to exercising absolute control over mythic narrative, to the point of inculcating a “noble lie” intended to reconcile each segment of the population with its social position. That is to say, mythology was to be employed as a tool of social control, which has always been a danger for historical thought.

Herodotus of Halicarnassus, the Father of History

Herodotus of Halicarnassus, the Father of History

Classical History: the Second Rational Reconstruction of Time

The distinctive Greek gift for and contribution to rationality was expressed not only in philosophy and the earliest science, but also in works of art — the Parthenon is a monument to rationality, among other things — and literature. The Greeks invented the literary genre of history, and, once they invented history, disagreed on whether it was an art or a science. This was a perennial problem of classical historiography, but is no longer a burning question today, as the advent of scientific historiography has changed the terms of the debate in historiography.

It is at least arguable, however, that scientific historiography was always implicitly present from the origins of history in Herodotus and Thucydides, but no science existed in the time of the ancient Greeks that could realize this potential. The original Greek term used for the title of Herodotus’ The Historiesἱστορία — means inquiries, i.e., Herodotus conceived his work as an inquiry in the past, and so was part and parcel of the Greek imperative of rationality. Indeed, rationalism applied to the apparent sequence of historical accidents that is the past might well be considered the non plus ultra of rationalism. However, the method of Herodotus’ inquiries was not scientific (in the Greek sense) or logical, but rather narrative.

The extent to which history in this classical sense (one might say, in the Herodotean sense) truly is a rational reconstruction, and not a mere recounting of facts, i.e., a chronicle, is revealed by Arthur Danto’s study of the logic of narrative sentences in his Narration and Knowledge (and which logic of narrative I previously mentioned in Our Intimacy with the Past). Even the most complete account of events as they happen cannot express how the meanings of earlier events are changed by later events, which provide the context and perspective for interpreting earlier events. While Danto did not say so, the mirror image of this insight applies to the future, so that the present is given meaning in relation to its expected outcome, and expected outcomes are valued on the basis of present experience (and unexpected outcomes are also judged in terms of their divergence from expectation). This would be a theme that Big History would begin to explore, although not in these terms.

What we traditionally call history (i.e., Herodotean history) is simply that fragment of the whole of the temporal continuum narratively reconstructed from human records. We can understand this by a sensory analogy: we know from study of the electromagnetic spectrum that human eyes are able to see only a small portion of the EM spectrum. Beyond the abilities of human eyes, pit vipers can sense the infrared beyond the red end of the visible EM spectrum, and insects can sense ultraviolet beyond the violet end of the visible EM spectrum. Beyond the capacity of naturally evolved eyes to sense EM radiation, we can employ technology to detect radio waves, x-rays, and the rest of the EM spectrum. What human beings have called history is like the small “visible” portion of the EM spectrum: it is the small portion of the temporal continuum “visible” to human beings. The narrative method of traditional historiography allows us to reconstruct just so much history in human terms and to make it understandable to us.

The study of ice cores is an important source of data for scientific historiography.

The study of ice cores is an important source of data for scientific historiography.

Scientific Historiography: the Third Rational Reconstruction of Time

Already in classical antiquity we can see the scientific spirit at work in Ptolemy’s Almagest. Ptolemy wrote as a scientist, and not, like Herodotus, as an historian. As his science is now archaic, it is read only for its historical interest today, but in Ptolemy we can glimpse, in embryo, as it were, the scientific method in its characteristic attempt to transcend human limitations and the constraints of the human condition. In the Almagest Ptolemy compares his observations with the best observations of earlier writers, especially Hipparchus, even noting the margin of error inherent in observations due to the construction and position of instruments (cf. especially Book Seven on the fixed stars). In his chapter on determining the length of the year (Book Three, I), Ptolemy is always trying to get the oldest observations to compare with his observations, noting that nearly 300 years had elapsed between Hipparchus’ observations and this own, and reaches further back into Egyptian sources for data 600 years prior.

There is a difference in degree, but not a difference in kind, between these observations of Ptolemy and Freeman Dyson’s discussion whether the laws of nature change over time in “Time without end: Physics and Biology in an Open Universe” (1979). Dyson discusses what has since come to be called the “Oklo Bound,” based on the radioactive byproducts of the naturally-occurring Oklo fission reactor in Gabon. Dyson wrote:

“The fact that the two binding energies remained in balance to an accuracy of two parts in 1011 over 2.109 yr indicates that the strength of nuclear and Coulomb forces cannot have varied by more than a few parts in 1018 per year. This is by far the most sensitive test that we have yet found of the constancy of the laws of physics. The fact that no evidence of change was found does not, of course, prove that the laws are strictly constant. In particular, it does not exclude the possibility of a variation in strength of gravitational forces with a time scale much shorter than 1018 yr. For the sake of simplicity, I assume that the laws are strictly constant. Any other assumption would be more complicated and would introduce additional arbitrary hypotheses.”

Dyson, like Ptolemy, was employing the best scientific measurements and observations of his time in the attempt to transcend his time, though while Ptolemy’s rudimentary methods spanned a few hundred years, science can now comprehend a few billion years. The transcendence of immediately experienced human time by scientific scales of time is the rational reconstruction of time made possible by the historical sciences, and, by extension, for scientific historiography.

While the spirit of science is as old as classical antiquity, and it emerged from the same Greek world that gave us Herodotus and the Greek historians following Herodotus, scientific historiography did not begin to come into its own until the nineteenth century. Besides Ptolemy there were a few other notable intimations of scientific historiography to come, as in Nicholas Steno’s laws of superposition in geology. The historical sciences began to realize their potential in the geology and biology of the nineteenth century in the geology of Lyell and the biology of Darwin. Within a few years’ of the appearance of Darwin’s Origin of Species, Lyell Published Geological Evidences of the Antiquity of Man, which reconceptualized humanity in the context of geological time. Later in the nineteenth century, scientific dating techniques such as varve chronology (varves are annual deposits left by melting glaciers) and dedrochronology (tracing overlapping tree rings backward in time) began to give exact dates for historical events long before human records. Scientific archaeology (as opposed to mere treasure hunting) began about the same time.

Scientific historiography reconstructs time employing the resources of the scientific method, which made the reconstruction of time systematic. As long as science continues to develop, and is not allowed to drift into stagnancy, scientific historiography can continue to add depth and detail to this historical record. Scientific historiography extended the narrative tradition of history beyond texts written by human beings to the text of nature itself; the whole of the world became the subject of historical inquiry in the form of the historical sciences, which reconstructed a narrative of Earth entire, and eventually also of the universe entire, which latter became the remit of Big History.

big history montage

Big History: the Fourth Rational Reconstruction of Time

Big history takes a step beyond the initial scope of scientific historiography, not merely narrating human history on the basis of what science can tell us where texts are silent, but in going beyond human history to a history of the universe entire, in which human history is contextualized. As I write this the 3rd IBHA conference is about to take place next weekend in Amsterdam, and I am a bit disappointed that I won’t be going, as I enjoyed the 2nd IBHA conference I attended a couple of years ago (cf. Day 1, Day 2, and Day 3).

The approach of big history did not come out of nowhere, but was building since the discovery of “deep time” in Steno’s laws of superposition, but especially the geology of James Hutton, then Charles Lyell, and later yet geological time scales brought to the study of life by Darwin. Science that dealt in millions of years and then billions of years slowly acclimated informed human minds of the possibilities for science completely freed of anthropocentric constraints. A hundred years ago, in the early twentieth century, we began to glimpse the size and the age of the universe entire, extending scientific scales of time beyond the Earth and the inherent geocentric constraints of human thought.

How can a human being, starting from the human experience of time, ever come to understand the life and evolution of stars, galaxies, and the largest and oldest structures of the cosmos? This grandest of historical reconstructions is possible because the universe is large and old and diverse. We cannot witness the formation of our own sun or our own planet, but we can look out into the universe and see stars in the process or formation and planetary systems in the process of formation (i.e., protoplanetary disks). If we are sufficiently diligent in surveying the cosmos, we can put together an entire sequence of the evolution of stars and planetary systems, drawn from different individual instances all today at different stages of development. While processes of stellar formation and planetary system development take place on a scale of time that human beings can never directly perceive, our reconstruction of these processes can be made comprehensible to us in this way. And when we are able to travel among the stars and to study life on many different worlds, we will be able engage in the astrobiological equivalent to this cosmological seriation, and similarly so with civilization and other forms of emergent complexity.

Big history provides a comprehensive context in which all of these scientific seriations of time scales beyond human perception can be concatenated in a single grand reconstruction of the whole of time as it is accessible to contemporary science. And, on the basis of contemporary science, Big History represents the culmination and non plus ultra of scientific historiography. Beyond the limits of empirical evidence methods other than science must be employed.

equations 0

Formal Historiography: the Fifth Rational Reconstruction of Time

The fifth rational reconstruction of time is a rational reconstruction that has not yet been constructed, but we can see, on the horizon, that this is the natural teleology of the development described above. As inductive empirical science matures and grows in sophistication, there is an increasing tendency both to rigor and to integration with other physical theories. Sometimes the imperative to greater rigor is not historically obvious, as an empirical science may remain static in terms of its formal development for a long time — sometimes for centuries. But the need for formal rigor is eventually felt, and some clever soul somewhere has an “A ha!” moment that shows the way to a formal surrogate for a previously intuitive approach. This will be true for historiography as well.

There is a contemporary school of thought — cliodynamics — attempting to transform history into an empirical, testable science, employing numerical methods and quantification. In the bigger picture, scientific historiography more generally speaking adopts the formal methods of the other empirical sciences, and this increases the rigor of historical thought over time, but these efforts remain within the paradigm of inductive empirical science. When history is eventually formalized, it will follow the trajectory of earlier empirical sciences. First the work of scientific historiography must come to maturity, and then we will be in a position to engage in a formal scrutiny of the assumptions made in scientific historiography. Some of these assumptions will be common to other empirical sciences (in the traditional Euclidean language, these will be common notions, or axioms, that are not specific to some particular subject matter) while other assumptions will be unique to scientific historiography and will thus constitute the differentia of historical thought (postulates in Euclid’s terminology).

Most working scientists in daily practice do not employ fully formalized reasoning because it is cumbersome and slow, and, in fact, inductive empirical science can continue in its traditional methodology almost untouched by formalization. There are axiomatizations of general relativity, for example (cf., e.g., “An Axiomatization of General Relativity,” Richard A. Mould, Proceedings of the American Philosophical Society, Vol. 103, No. 3, Jun. 15, 1959, pp. 485-529), but this is not the way that most physics is done today. One might think of formalization as the highest level of emergent complexity yet attained within cognitive astrobiology, with mythology, narrative history, scientific historiography, and Big History all as earlier emergents in a sequence of emergents with the later supervening upon the earlier. All of these forms of human thought about time will continue to develop — they will not be replaced or superseded by formal historiography — but it will be formal historiography that moves the discipline of history forward into the terra incognita of time.

With the existence of hard limits to the historical sciences as represented by prediction walls and retrodiction walls, on what material will formal historical proceed? Let me attempt to give a sense of the kind of formal reasoning that can extend formal historiography beyond the constraints of observation and empiricism.

It has become commonplace for physicists to assert that, since time began with the big bang, that it is nonsensical to ask what preceded the big bang. This is, we must honestly admit, a rather tortured piece of reasoning (not to mention circular). While it is true that the big bang constitutes a retrodiction wall beyond which contemporary science cannot pass, and so is a boundary to empirical science, it is not an absolute boundary to human reason. To assert that there is nothing beyond or before the big bang is a perfect demonstration of the fact that human reason does not stop at empirical prediction walls. While it is a perfectly intellectually respectable claim to assert that there was nothing before the big bang, it is not a scientific claim, it is a philosophical claim. And, by the same token, it is a perfectly respectable claim to assert that there is something beyond the observable universe, including something before the big bang, but that this is inaccessible to contemporary science. Again, this is not a scientific claim, but a philosophical claim. In this sense, both of these claims are on the level, as it were.

There is no conceivable form of scientific research that could verify the existence of nothingness prior to the big bang. Philosophically, I would assert that producing evidence of nothingness is ipso facto impossible, and hence ruled out a priori, hence ruling out any scientific claim of nothing preceding the big bang. (Either that, or “nothingness” means something very different for the physicist as compared to the philosopher. And this is most likely the case: the two are talking — if indeed they ever talk — at cross-purposes.) The recognition of a nothingness outside or before the retrodiction wall presented by the big bang can be further illuminated by thought experiments proposed by Sydney Shoemaker and W. H. Newton-Smith that demonstrate the possibility of empty time (I will not attempt to give a summary of these thought experiments here; the reader is urged to consult these authors directly; cf. Newton-Smith’s The Structure of Time, II, 4, pp. 19-24).

These are the materials with which a formal historiography will grapple, along with the concerns of what I have called infinitistic historiography and infinitistic cosmology. In this way, formal historiography will transcend even the grand reconstruction of the whole of time accessible to contemporary science that I mentioned above in connection with Big History.

While the accidents of history might seem to be the last place that anyone would look for fertile ground for the formalization of knowledge, history, I think, will surprise us in this respect. And the surprising applicability of formal methods to history will constitute yet another rational reconstruction of time.

. . . . .

Euclid as imagined by Jusepe de Ribera -- Euclid was instrumental in the origins of formal thought, which began with geometry, and has since been applied to many disciplines but has not yet transformed historiography.

Euclid as imagined by Jusepe de Ribera — Euclid was instrumental in the origins of formal thought, which began with geometry, and has since been applied to many disciplines but has not yet transformed historiography.

. . . . .

Three Addenda

Addendum on Rational Reconstructions of Time

Placeholders for Null-Valued Time

An Alternative Formulation of Rational Reconstructions of Time

. . . . .

rational reconstructions of time

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .




Twentieth century American analytical philosopher W. V. O. Quine said that, “Philosophy of science is philosophy enough.” (The Ways of Paradox, “Mr. Strawson on Logical Theory”) In so saying Quine was making explicit the de facto practice on which Anglo-American analytical philosophy was converging: if philosophy was going to be tolerated at all (even among professional philosophers!) it must delimit its horizons to science, as only in the conceptual clarification of science had philosophy any remaining role to play in the modern world. Philosophy of science was a preoccupation of philosophers throughout the twentieth century, from early positivist formulations in the early part of the century, through post-positivist formulations, to profoundly ambiguous reflections upon the rationality of science in Thomas Kuhn’s The Structure of Scientific Revolutions.

I have previously addressed the condition of contemporary philosophy in Philosophy Institutionalized, in which I noted that among the philosophical schools of our time, “there is a common thread, and that common thread is not at all difficult to discern: it is the relationship of thought to the relentless expansion of industrial-technological civilization.” I would like to take this idea a step further, and consider how philosophy might be both embedded in contemporary civilization and how it might look beyond the particular human condition of the present moment of history and also embrace something larger.

The position of philosophy in agrarian-ecclesiastical civilization was preeminent, and second only to theology. India had a uniquely philosophical civilization in which schools of thought wildly proliferated and were elaborated over the course of hundreds of years. In those agrarian-ecclesiastical civilizations in which religion simpliciter was the organizing principle, initially crude religious ideas were eventually given sophisticated and subtle formulations in an advanced technical vocabulary largely derived from philosophy. Where the explicitly religious impulse was less prominent than the philosophical impulse, a philosophical civilization came into being, as in the Balkans and the eastern Mediterranean, starting with ancient Greece and its successor civilizations.

With the end of agrarian-ecclesiastical civilization, as it was preempted by industrial-technological civilization, this tradition of philosophical preeminence in intellectual inquiry was lost, and philosophy, no longer being central to the motivating imperatives of civilization, became progressively more and more marginalized, until today, when it is largely an intellectual whipping boy that scientists point out as an object lesson of how not to engage in intellectual activity.

I have elsewhere described industrial-technological civilization as being defined by the STEM cycle, which I later further elaborated in One Hundred Years of Fusion as follows:

“…science drives technology, technology drives industrial engineering, and industrial engineering creates new resources that allow science to be pursued at a larger scope and scale. In some cases the STEM cycle functions as a loosely-coupled structure of our world. The resources of advanced mathematics are necessary to the expression of physics in mathematicized form, but there may be no direct coupling of physics and mathematics, and the mathematics used in physics may have been available for generations. Pure science may suggest a number of technologies, many of which lie fallow, with no particular interest in them. One technology may eventually come into mass manufacture, but it may not be seen to have any initial impact on scientific research. All of these episodes seem de-coupled, and can only be understood as a loosely-coupled cycle when seen in the big picture over the long term. In the case of nuclear fusion, the STEM cycle is more tightly coupled: fusion science must be consciously developed with an eye to its application in various fusion technologies. The many specific technologies developed on the basis of fusion science are tested with an eye to which can be practically scaled up by industrial engineering to build a workable fusion power generation facility.”

Given the role of the STEM cycle in defining industrial-technological civilization, a robust philosophical engagement with the civilization of our time would mean a philosophy of science, a philosophy of technology, and a philosophy of engineering, as well as an overall philosophy of civilization that knit these together in a way that reflects the STEM cycle that unifies the three in industrial-technological civilization. Thus the twentieth century preoccupation with the philosophy of science can be understood as the first attempt to come to grips with the new form of civilization that had replaced the civilization of our rural, agricultural past.

This fits in well with the fact that the philosophy of technology has been booming in recent decades (partially driven by our technophilia), with philosophers of many different backgrounds and orientations — analytical philosophers, phenomenologists, existentialists, Marxists, and many others — equally interested in providing a philosophical commentary on this central feature of our contemporary world. I have myself written about the emergence of what I call techno-philosophy. The philosophy of engineering is a bit behind philosophy of science and philosophy of technology, but it is rapidly catching up, as philosophers realize that they have had little to say about this essential dimension of our contemporary world. The academic publisher Springer now has a series of books on the philosophy of engineering, Philosophy of Engineering and Technology. I would purchase more of these volumes if they weren’t prohibitively expensive.

Beyond the specialized disciplines of philosophy of science, philosophy of technology, and philosophy of engineering, there also needs to be a “big picture” engagement with the three loosely coupled together in the STEM cycle, and beyond this there needs to be a philosophical engagement with how our industrial-technological civilization is embedded in a larger historical context that includes different forms of civilization with profoundly different civilizational motifs and imperatives.

To address the latter need for a truly big picture philosophy, that is not some backward-looking disinterment of Hegelian philosophy of history, but which engages with the world as it know it today, in the light of scientific rationality, we need a philosophy of history that understands history in terms of scientific historiography, which is how a scientific civilization grasps history and arrives at a self-understanding of its place in history.

Philosophical reflection upon existential risk partially serves as a reminder of the philosophical dimension of history and civilization, in a way not unlike meditations on eternity during the period of agrarian-ecclesiastical civilization served as a reminder that life is more than the daily struggle to stay alive. In my post, What is an existential philosophy?, I wrote, “…coming to terms with existence from an existential perspective means coming to terms with Big History, which provides the ultimate (natural historical) context for ordinary experience and its object.”

What we need, then, for a vital and vigorous philosophy for industrial-technological civilization, is a philosophy of big history. I intend to do something about this — in fact, I am working on it now — though it is unlikely that anyone will take notice.

. . . . .

big history with thinker small

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .




In several posts I have discussed Francis Fukuyama’s influential essay (now considered a bit dated) on the “end of history” — Marx and Fukuyama, History Degree Zero, and The Zero Hour Thesis — which for Fukuyama means the end of titanic ideological struggles between existential enemies. Here is a definitive passage from Fukuyama’s essay:

“In order to refute my hypothesis, then, it is not sufficient to suggest that the future holds in store large and momentous events. One would have to show that these events were driven by a systematic idea of political and social justice that claimed to supersede liberalism. A nuclear war between India and Pakistan — horrible as that would be for those countries — does not qualify, unless it somehow forced us to reconsider the basic principles underlying our social order.”

Do we see, anywhere in the world’s current events, any sign of a systematic idea of political and social justice that claims to supersede political liberalism (or has pretenses to supersede liberalism)? Given Fukuyama’s intellectual debt to Hegel, we might begin such an inquiry by looking at some of the conflicts in the world today to see if they betray any signs of any nascent ideological conflicts that may come to define the titanic struggles of the future. Let us consider some of the world’s trouble spots at this moment: Egypt, Syria, and Ukraine.

After the hopes raised by the Arab Spring it is deeply disappointing to see the developments in Egypt, and even more deeply disappointing to see the supine reaction of the western liberal democracies (presumably those nation-states that carry aloft the torch of the liberal democracy that Fukuyama still sees as the unchanged political idea and ideal of our time), which have accepted without protest a de facto military dictatorship that has sentenced hundreds of members of the Muslim Brotherhood to death and declared that the only truly representative institution in the country would exist no more. Nothing good is likely to come of this, but the world looks on, once again preferring the elusive promise of short-term stability over the messy but sustainable democratic process. Thus the political context of the developments in Egypt since the Arab Spring represent the same old, same old in geopolitics. Egypt is not yet even close to liberal democracy, so it is in no position to move beyond this to an innovative new ideology.

Syria is looking more and more like the Lebanese civil war, with multiple factions fighting over control of a nation-state while simultaneously fighting each other. Syrians are suffering, and the stagnation of the conflict suggests that the people of Syria will continue to suffer. No major power is willing to involve itself to bring about a decisive end to the conflict — Russia is not about to intervene on behalf of Assad, and the western powers are not about to intervene on behalf of the rebels — so the bloodletting will continue until some contingent and unpredictable event ends it, or until those doing the fighting get so sick of killing that they stop (as more or less happened in Lebanon). Syria seems mired in tribalism, so that, like Egypt, it is in no position to represent some novel ideological conflict.

In Egypt and Syria it is autocracy that is asserting itself, re-asserting itself, or attempting to re-assert itself. The Islamists make headlines through a mastery of the hyperreal event, but they have been markedly unsuccessful in bringing about any change. Even the recent displacement of governments by the Arab Spring has not resulted in any clear political victories for Islamists. We see instability, and the consequent attempt to impose stability and restore order; what we do not see is the emergence of an unambiguously Islamist regime, much less the restoration of the Caliphate, which is one of the key symbolic political events to which Islamists look forward. Indeed, Egypt represents the defeat even of moderate Islamists. There is no question that radical Islamic militancy views itself as a systematic idea of political and social justice that supersedes liberalism, but I think that even the advocates of radical Islam recognize that this is not a universal doctrine, and that if it is fit for any people, it is for those peoples who already fall under Islamic civilization.

What some are called the “resurgence of Russia” following the annexation of the Crimea and agitation in southern and Eastern Ukraine for closer ties with Russia could easily be assimilated to a narrative to the “return of history” (which I previously discussed in The Historical Resonance of Ideas, Doctrinaire and Inorganic Democracy, and Anniversary of a Massacre — too easily, as I see it. There is nothing particularly compelling about this narrative, and the “return of history” offers no systematic idea of political and social justice. Its only attraction is its facile familiarity and the ease with which the pundits evoke it.

Russia, which remains the overwhelming military power in Eurasia, is again re-negotiating its borders and its sphere of influence after a contraction of these following the end of the Cold War. This is nothing of great historical importance, however deleteriously it affects the lives of Ukrainians today. All of this is predictable, and should surprise no one. Even less than the situations in Egypt and Syria does the situation in Ukraine represent anything new from the geopolitical perspective. We could just as well assimilate these developments to the rise of autocracy in Russia, and this would be a little more accurate than talk of the “return of history,” except that Russia has rarely deviated from autocracy, so it would be deceptive to imply that Russian autocracy had lapsed and then been reborn under Putin. This patently is not the case.

None of these conflicts cause us to question or to reformulate the basic principles underlying our social order, yet there are developments of interest today for what they portend about the future. In my last post, The Finlandization of Germany, I mentioned what I called the contemporary parameters of geopolitical force projection, as based on the devolution of warfare. During the Cold War, the devolution of warfare emerged as a strategy to avoid the possibility of wars crossing the nuclear threshold and triggering a massive nuclear exchange and mutually assured destruction. In the post-Cold War period the devolution of warfare has shifted to keep military depredations below the threshold of atrocity, thereby avoiding intervention by the international community.

I also mentioned the growth in efficacy of guerrilla forces. Both of these developments — devolution of state power below the threshold of atrocity and escalation upward to the threshold of atrocity by guerrilla groups — play a role in the three conflicts discussed above. That powerful states have sought to keep their depredations below the threshold of atrocity, while the most ambitious non-state actors have sought to precipitate hyperreal atrocities and therefore to claim the mantle previously reserved to nation-states, means that state power and asymmetrical warfare converge on a new symmetry defined by atrocity. Asymmetrical warfare converges on symmetry. Some have called this “symmetrizing,” although this term has meant the efforts by nation-states to copy the asymmetrical tactics of non-state actors, the better to counter their efficacy.

While much of this is of purely military significance — the attempt by disparate forces to engage each other on terms that each chooses, even while the other tries to force the other to engage on its terms — and so we can consider this merely the attempt to arrive at a balance of power between nation-state and non-state actors, it is of historical significance that the nearly all-powerful nation-state finds itself challenged by non-state actors, and challenged to the point that it is forced to respond.

Implicit in Fukuyama’s position that liberal democracy is the only systematic idea of political and social justice that survives following the collapse of communism is that that nation-state is the locus of liberal democracy. Beyond this implicit condition that liberal democracy be realized by nation-states, there is the historical fact that nation-states exist in a condition of anarchy vis-à-vis each other, i.e., the anarchical state system. Liberal democracy, then, is contingent upon nation-states embedded in an anarchical international system.

The challenge that asymmetrical non-state actors present to the nation-state they also present to both the liberal democracy realized by the nation-state and to the anarchical international system that is the condition the the contemporary nation-state that realizes liberal democracy. There is a sense, then, in which the ability of non-state actors acting asymmetrically and successfully challenging the nation-state that is a radical challenge to the locus of liberal democracy. However, this challenge does not rise to the level of constituting a systematic idea of political and social justice. At present, it is merely a threat. However, should we see this process continue, and the nation-state loses ground against non-state actors, those who sense the shift may endow this shift with meaning and value that it does not possess at present. At that time, a systematic idea of political and social justice may emerge, but it has not as of yet.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .


Computational Omniscience

18 December 2013



What does it mean for a body of knowledge to be founded in fact? This is a central question in the philosophy of science: do the facts suggest hypotheses, or are hypotheses used to give meanings to facts? These questions are also posed in history and the philosophy of history. Is history a body of knowledge founded on facts? What else could it be? But do the facts of history suggest historical hypotheses, or do our historical hypotheses give meaning and value to historical facts, without which the bare facts would add up to nothing?

Is history a science? Can we analyze the body of historical knowledge in terms of facts and hypotheses? Is history subject to the same constraints and possibilities as science? An hypothesis is an opportunity — an opportunity to transform facts in the image of meaning; facts are limitations that constrain hypotheses. An hypothesis is an epistemic opportunity — an opportunity to make sense of the world — and therefore an hypothesis is also at the same time an epistemic risk — a risk of getting interpreting the world incorrectly and misunderstanding events.

The ancient question of whether history is an art or a science would seem to have been settled by the emergence of scientific historiography, which clearly is a science, but this does not answer the question of what history was before scientific historiography. One might reasonably maintain that scientific historiography was the implicit telos of all previous historiographical study, but this fails to acknowledge the role of historical narratives in shaping our multiple human identities — personal, cultural, ethnic, political, mythological.

If Big History should become the basis of some future axialization of industrial-technological civilization, then scientific historiography too will play a constitutive role in human identity, and while other and older identity narratives presently coexist and furnish different individuals with a different sense of their place in the world, we have already seen the beginnings of an identity shaped by science.

There is a sense in which the scientific historian today knows much more about the past than those who lived in the past and experienced that past as an immediate yet fragmentary present. One might infer the possibility of a total knowledge of the past through the cumulative knowledge scientific historiography — a condition denied to those who actually lived in the past — although this “total” knowledge must fall short of the peculiar kind of knowledge derived from immediate personal experience, as contemplated in the thought experiment known as “Mary’s room.”

In the thought experiment known as Mary’s room, also called the knowledge argument, we imagine a condition of total knowledge and compare this with the peculiar kind of knowledge that is derived from experience, in contradistinction to the knowledge of knowledge we come to through science. Here is the source of the Mary’s room thought experiment:

“Mary is a brilliant scientist who is, for whatever reason, forced to investigate the world from a black and white room via a black and white television monitor. She specializes in the neurophysiology of vision and acquires, let us suppose, all the physical information there is to obtain about what goes on when we see ripe tomatoes, or the sky, and use terms like ‘red’, ‘blue’, and so on. She discovers, for example, just which wavelength combinations from the sky stimulate the retina, and exactly how this produces via the central nervous system the contraction of the vocal cords and expulsion of air from the lungs that results in the uttering of the sentence ‘The sky is blue’. […] What will happen when Mary is released from her black and white room or is given a color television monitor? Will she learn anything or not?”

Frank Jackson, “Epiphenomenal Qualia” (1982)

Philosophers disagree on whether Mary learns anything upon leaving Mary’s room. As a thought experiment, it is intended not to give as a definitive answer to a circumstance that is never likely to occur in fact, but to sharpen our intuitions and refine our formulations. We can try to do the same with formulations of an ideal totality of knowledge derived from scientific historiography. There is a sense in which scientific historiography allows us to know much more about the past than those who lived in the past. To echo a question of Thomas Nagel, was there something that it was like to be in the past? Are there, or were there, historical qualia? Is the total knowledge of history afforded by scientific historiography short of capturing historical qualia?

In the Mary’s room thought experiment the agent in question is human and the experience is imposed colorblindness. Many people live with colorblindness within the condition greatly impacting their lives, so in this context it is plausible that Mary learns nothing upon the lifting of her imposed colorblindness, since the gap between these conditions is not as intuitively obvious as the gap between agents of a fundamentally different kind (as, e.g., distinct species) or between experiences of a fundamental different kind in which it is not plausible that the the lifting of an imposed limitation on experience results in no significant impact on one’s life.

We can sharpen the formulation of Mary’s room, and thus potentially sharpen our own intuitions, by taking a more intense experience than that of color vision. We can also alter the sense of this thought experiment by considering the question across distinct species or across the division between minds and machines. For example, if a machine learned everything that there is to know about eating would that machine know what it was like to eat? Would total knowledge after the manner of Mary’s knowledge of color suffice to exhaust knowledge of eating, even in the absence of an actual experience of eating? I doubt that many would be convinced that learning about eating without the experience of eating would be sufficient to exhaust what there is to know about eating. Thomas Nagel’s thought experiment in “What is it like to be a bat?” alluded to above poses the knowledge argument across species.

We can give this same thought experiment yet another twist if we reverse the roles of minds and machines, and asking of machine experience, should machine consciousness emerge, the questions we have asked of human experience (or bat experience). If a human being learned everything there is to know about AI and machine consciousness, would such a human being know what it is like to be a machine? Could knowledge of machines exhaust uniquely machine experience?

The kind of total scientific knowledge of the world implicit in scientific historiography is not unlike what Pierre Simon LaPlace had in mind when he posited the possibility of predicting the entire state of the universe, past or future, on the basis of an exhaustive knowledge of the present. LaPlace’s argument is also a classic determinist position:

“We ought then to regard the present state of the universe as the effect of its anterior state and as the cause of the one which is to follow. Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of the beings who compose it — an intelligence sufficiently vast to submit these data to analysis — it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present to its eyes. The human mind offers, in the perfection which it has been able to give to astronomy, a feeble idea of this intelligence. Its discoveries in mechanics and geometry, added to that of universal gravity, have enabled it to comprehend in the same analytical expressions the past and future states of the system of the world. Applying the same method to some other objects of its knowledge, it has succeeded in referring to general laws observed phenomena and in foreseeing those which given circumstances ought to produce. All these efforts in the search for truth tend to lead it back continually to the vast intelligence which we have just mentioned, but from which it will always remain infinitely removed. This tendency, peculiar to the human race, is that which renders it superior to animals; and their progress in this respect distinguishes nations and ages and constitutes their true glory.”


While such a LaPlacean calculation of the universe would lie beyond the capability of any human being, it might someday lie within the capacity of another kind of intelligence. What LaPlace here calls, “an intelligence sufficiently vast to submit these data to analysis,” suggests the possibility of a sufficiently advanced (i.e., sufficiently large and fast) computer that could make this calculation, thereby achieving a kind of computational omniscience.

Long before we have reached the point of an “intelligence explosion” (the storied “technological singularity”) and machines surpass the intelligence of human beings, and each generation of machine is able to build a yet more intelligent successor (i.e., an “intelligence explosion”), the computational power at our disposal will for all practical purposes exhaust the world and will thus have obtained computational omniscience. We have already begun to converge upon this kind of total knowledge of the cosmos with the Bolshoi Cosmological Simulations and similar efforts with other supercomputers.

It is this kind of reasoning in regard to the future of cosmological simulations that has led to contemporary formulations of the “Simulation Hypothesis” — the hypothesis that we are, ourselves, at this moment, living in a computer simulation. According to the simulation argument, cosmological simulations become so elaborate and are refined to such a fine-grained level of detail that the simulation eventually populates itself with conscious agents, i.e., ourselves. Here, the map really does coincide with the territory, at least for us. The entity or entities conducting such a grand simulation, and presumably standing outside the whole simulation observing, can see the simulation for the simulation that it is. (The connection between cosmology and the simulation argument is nicely explained in the episode “Are We Real?” of the television series “What We Still Don’t Know” hosted by noted cosmologist Martin Rees.)

One way to formulate the idea of omniscience is to define omniscience as knowledge of the absolute infinite. The absolute infinite is an inconsistent multiplicity (in Cantorian terms). There is a certain reasonableness in this, as the logical principle of explosion, also known as ex falso quodlibet (namely, the principle that anything follows from a contradiction), means that an inconsistent multiplicity that incorporates contradictions is far richer than any consistent multiplicity. In so far as omniscience could be defined as knowledge of the absolute infinite, few would, I think, be willing to argue for the possibility of computational omniscience, so we will below pursue this from another angle, but I wanted to mention this idea of defining omniscience as knowledge of the absolute infinite because it strikes me as interesting. But no more of this for now.

The claim of computational omniscience must be qualified, since computational omniscience can exhaust only that portion of the world exhaustible by computational means; computational omniscience is the kind of omniscience that we encountered in the “Mary’s room” thought experiment, which might plausibly be thought to exhaust the world, or which might with equal plausibility be seen as falling far short of all that might be known of some body of knowledge.

Computational omniscience is distinct from omniscience simpliciter; while exhaustive in one respect, it fails to capture certain aspects of the world. Computational omniscience may be defined as the computation of all that is potentially computable, which leaves aside that which is not computable. The non-computable aspects of the world include, but are not limited to, non-computable functions, quantum indeterminacy, that which is non-quantifiable (for whatever reason), the qualitative dimension of conscious experience (i.e., qualia), and that which is inferred but not observable. These are pretty significant exceptions. What is left over? What part of the world is computable? This is a philosophical question that we must ask once we understand that computability has limits and that these limits may be distinct from the limits of human intelligence. Just as conscious biological agents face intrinsic epistemic limits, so also non-biological agents would also face intrinsic epistemic limits — in so far as a non-biological agent can be considered an epistemic agent — but these limitations on biological and non-biological agents are not necessarily the same.

The ultimate inadequacy of computational omniscience points to the possibility of limited omniscience — though one might well assert that omniscience that is limited is not really omniscience at all. The limited omniscience of a computer capable of computing the fate of the known universe may be compared to recent research on what Daniel Kahneman calls the bounded rationality of human minds. Artificial intelligence is likely to be a bounded intelligence that exemplifies bounded rationality, although its boundaries will not necessarily coincide precisely with the boundaries that defined human bounded rationality.

The idea of limited omniscience has been explored in mathematics, particular in regard to constructivism. Constructivist mathematicians have formulated principles of omniscience, and, wary of both unrestricted use of tertium non datur and of its complete interdiction in the manner of intuitionism, the limited principle of omniscience has been proposed as a specific way to skirt around some of the problems implicit in the realism of unrestricted tertium non datur.

When we allow our mathematical thought to coincide with realities and infinities — an approach that we are assured is practical and empirical, and bound to only yield benefits — we find ourselves mired in paradoxes, and in the interest of freeing ourselves from this conceptual mire we are driven to a position like Einstein’s famous aphorism that, “As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.” We separate and compartmentalize factual realities and mathematical infinities because we have difficulty, “to hold two opposing ideas in mind at the same time and still retain the ability to function.”

Indeed, it was Russell’s attempt to bring together Cantorian conceptions of set theory with practical measures of the actual world that begat the definitive paradox of set theory that bear Russell’s name, and the responses to which have in large measure shaped post-Cantorian mathematics. Russell gives the following account of his discovery of his eponymous paradox in his Autobiography:

Cantor had a proof that there is no greatest number, and it seemed to me that the number of all the things in the world ought to be the greatest possible. Accordingly, I examined his proof with some minuteness, and endeavoured to apply it to the class of all the things there are. This led me to consider those classes which are not members of themselves, and to ask whether the class of such classes is or is not a member of itself. I found that either answer implies its contradictory.

Bertrand Russell, The Autobiography of Bertrand Russell, Vol. II, 1872-1914, “Principia Mathematica”

None of the great problems of philosophical logic from this era — i.e., the fruitful period in which Russell and several colleagues created mathematical logic — were “solved”; rather, a consensus emerged among philosophers of logic, conventions were established, and, perhaps most importantly, Zermelo’s axiomatization of set theory became the preferred mathematical treatment of set theory, which allowed mathematicians to skirt the difficult issues in philosophical logic and to focus on the mathematics of set theory largely without logical distractions.

It is an irony of intellectual history that the next great revolution in mathematics to follow after set theory — which latter is, essentially, the mathematical theory of the infinite — was to be that of computer science, which constitutes the antithesis of set theory in so far as it is the strictest of strict finitisms. It would be fair to characterize the implicit theoretical position of computer science as a species of ultra-finitism, since computers cannot formulate even the most tepid potential infinite. All computing machines have an upper bound of calculation, and this is a physical instantiation of the theoretical position of ultra-finitism. This finitude follows from embodiment, which a computer shares with the world itself, and which therefore makes ultra-finite computing consistent with an ultra-finite world. In an ultra-finite world, it is possible that the finite may exhaust the finite and computational omniscience realized.

The universe defined by the Big Bang and all that followed from the Big Bang is a finite universe, and may in virtue of its finitude admit of exhaustive calculation, though this finite universe of observable cosmology may be set in an infinite context. Indeed, even the finite universe may not be as rigorously finite as we suppose, given that the limitations of our observations are not necessarily the limits of the real, but rather are defined by the limit of the speed of light. Leonard Susskind has rightly observed that what we observe of the universe is like being inside a room, the walls of which are the distant regions of the universe receding from us at superluminous velocity at the point at which they disappear from our view.

Recently in The Size of the World I quoted this passage from Leonard Susskind:

“In every direction that we look, galaxies are passing the point at which they are moving away from us faster than light can travel. Each of us is surrounded by a cosmic horizon — a sphere where things are receding with the speed of light — and no signal can reach us from beyond that horizon. When a star passes the point of no return, it is gone forever. Far out, at about fifteen billion light years, our cosmic horizon is swallowing galaxies, stars, and probably even life. It is as if we all live in our own private inside-out black hole.”

Leonard Susskind, The Black Hole War: My Battle with Stephen Hawking to make the World Safe for Quantum Mechanics, New York, Boston, and London: Little, Brown and Company, 2008, pp. 437-438

This observation has not yet been sufficiently appreciated (as I previously noted in The Size of the World). What lies beyond Susskind’s cosmic horizon is unobservable, just as anything that disappears beyond the event horizon of a black hole has become unobservable. We might term such empirical realities just beyond our grasp empirical unobservables. Empirical unobservables include (but are presumably not limited to — our “out” clause) all that which lies beyond the event horizon of Susskind’s inside-out black hole, that which lies beneath the event horizon of a black hole as conventionally conceived, and that which lies outside the lightcone defined by our present. There may be other empirical unobservables that follow from the structure of relativistic space. There are, moreover, many empirically inaccessible points of view, such as the interiors of stars, which cannot be observed for contingent reasons distinct from the impossibility of observing certain structures of the world hidden from us by the nature of spacetime structure.

What if the greater part of the universe passes in the oblivion of the empirical unobservables? This is a question that was posed by a paper appeared that in 2007, The Return of a Static Universe and the End of Cosmology, which garnered some attention because of its quasi-apocalyptic claim of the “end of cosmology” (which sounds a lot like Heidegger’s proclamation of the “end of philosophy” or any number of other proclamations of the “end of x“). This paper was eventually published in Scientific American as The End of Cosmology? An accelerating universe wipes out traces of its own origins by Lawrence M. Krauss and Robert J. Scherrer.

In calling the “end of cosmology” a “quasi-apocalyptic” claim I don’t mean to criticize or ridicule the paper or its argument, which is of the greatest interest. As in the subtitle of the Scientific American article, it appears to be the case that an accelerating universe wipes out traces of its own origins. If a quasi-apocalyptic claim can be scientifically justified, it is a legitimate and deserves our intellectual respect. Indeed, the study of existential risk could be considered a scientific study of apocalyptic claims, and I regard this as an undertaking of the first importance. We need to think seriously about existential risks in order to mitigate them rationally to the extent possible.

In my posts on the prediction and retrodiction walls (The Retrodiction Wall and Addendum on the Retrodiction Wall) I introduced the idea of effective history, which is that span of time which lies between the retrodiction wall in the past and the prediction wall in the future. One might similarly define effective cosmology as consisting of that region or those regions of space within the practical limits of observational cosmology, and excluding those regions of space that cannot be observed — not merely what is hidden from us by contingent circumstances, but that which are are incapable of observing because of the very structure of the universe and our place (ontologically speaking) within it.

There are limits to what we can know that are intrinsic to what we might call the human condition, except that this formulation is anthropocentric. The epistemic limits represented by effective history and effective cosmology are limitations that would hold for any sentient, conscious organism emergent from natural history, i.e., would hold for any peer species. Some of these limitations are limitations intrinsic to our biology and to the kind of mind that is emergent from biological organisms. Some of these limitations are limitations intrinsic to the world in which we find ourselves, and the vantage point from within the cosmos that we view our world. Ultimately, these limitations are one and the same, as the kind of biological beings that we are is a function of the kind of cosmos in which we have emerged, and which has served as the context of our natural history.

Within the domains of effective history and effective cosmology, we are limited further still by the non-quantifiable aspects of the world noted above. Setting aside non-quantifiable aspects of the world, what I have elsewhere called intrinsically arithmetical realities are a paradigm case of what remains computable once we have separated out the non-computable exceptions. (Beyond the domains of effective history and effective cosmology, hence beyond the domain of computational omniscience, there lies the infinite context of our finite world, about which we will say no more at present.) Intrinsically arithmetical realities are intrinsically amenable to quantitative methods are potentially exhaustible by computational omniscience.

Some have argued that the whole of the universe is intrinsically arithmetical in the sense of being essentially mathematical, as in the “Mathematical Universe Hypothesis” of Max Tegmark. Tegmark writes:

“[The Mathematical Universe Hypothesis] explains the utility of mathematics for describing the physical world as a natural consequence of the fact that the latter is a mathematical structure, and we are simply uncovering this bit by bit.”

The Mathematical Universe by Max Tegmark

Tegmark also explicitly formulates two companion principles:

External Reality Hypothesis (ERH): There exists an external physical reality completely independent of us humans.


Mathematical Universe Hypothesis (MUH): Our external physical reality is a mathematical structure.

I find these formulations to be philosophically naïve in the extreme, but as a contemporary example of a perennial tradition of philosophical thought Tegmark is worth citing. Tegmark is seeking an explicit answer to Wigner’s famous question about the “unreasonable effectiveness of mathematics.” It is to be expected that some responses to Wigner will take the form that Tegmark represents, but even if our universe is a mathematical structure, we do not yet know how much of that mathematical structure is computable and how much of that mathematical structure is not computable.

In my Centauri Dreams post on SETI, METI, and Existential Risk I mentioned that I found myself unable to identify with either the proponents of unregulated METI or those who argue for the regulation of METI efforts, since I disagreed with key postulates on both sides of the argument. METI advocates typically hold that interstellar flight is impossible, therefore METI can pose no risk. Advocates of METI regulation typically hold that unintentional EM spectrum leakage is not detectable at interstellar distances, therefore METI poses a risk we do not face at present. Since I hold that interstellar flight is possible, and that unintentional EM spectrum radiation is (or will be) detectable, I can’t comfortably align myself with either party in the discussion.

I find myself similarly hamstrung on the horns of a dilemma when it comes to computability, the cosmos, and determinism. Computer scientists and singulatarian enthusiasts of exponential increasing computer power ultimately culminating in an intelligence explosion seem content to assume that the universe is not only computable, and presents no fundamental barriers to computation, but foresee a day when matter itself is transformed into computronium and the whole universe becomes a grand computer. Critics of such enthusiasts often take the form of denying the possibility of AI or denying the possibility of machine consciousness, denying this or that is technically possible, and so on. It seems clear to me that only a portion of the world will ever be computable, but that portion is considerable and that a great many technological developments will fundamentally change our relationship to the world. But no matter how much either human beings or machines are transformed by the continuing development of industrial-technological civilization, non-computable functions will remain non-computable. This I cannot count myself either as a singulatarian or a Luddite.

How are we to understand the limitations to computational omniscience imposed by the limits of computation? The transcomputational problem, rather than laying bare human limitations, points to the way in which minds are not subject to computational limits. Minds as minds do not function computationally, so the evolution of mind (which drives the evolution of civilization) embodies different bounds and different limits than the Bekenstein bound and Bremermann’s limit, as well as different possibilities and different opportunities. The evolutionary possibilities of the mind are radically distinct from the evolutionary possibilities of bodies subject to computational limits, even though minds are dependent upon the bodies in which they are embodied.

Bremermann’s limit is 1093, which is somewhat arbitrary, but whether we draw the line here or elsewhere it doesn’t really matter for the principle at stake. Embodied computing must run into intrinsic limits, e.g., from relativity — a computer that exceeded Bremerman’s limit by too much would be subject to relativistic effects that would mean that gains in size would reach a point of diminishing returns. Recent brain research was suggested that the human brain is already close to the biological limit for effective signal transmission within and between the various parts of the brain, so that a larger brain would not necessarily be smarter or faster or more efficient. Indeed, it has been pointed out the elephant and whale brains are larger than mammal brains, although the encephalization quotient is much higher in human beings despite the difference in absolute brain size.

The function of organic bodies easily peaks over 1093. The Wikipedia entry on the transcomputational problem says:

“The retina contains about a million light-sensitive cells. Even if there were only two possible states for each cell (say, an active state and an inactive state) the processing of the retina as a whole requires processing of more than 10 to the 300,000 bits of information. This is far beyond Bremermann’s limit.”

This is just the eye alone. The body has far more nerve ending inputs than just those of the eye, and essentially a limitless number of outputs. So exhausting the possible computational states of even a relatively simple organism easily surpasses Bremermann’s limit and is therefore transcomputational. Some very simple organisms might not be transcomputational, given certain quantifiable parameters, but I think most complex life, and certainly things are complex as mammals, are radically transcomputational. Therefore the mind (whatever it is) is embodied in a transcomputational body, of which no computer could exhaustively calculate its possible states. The brain itself is radically transcomputational with its 100 billion neurons (each of which can take at minimum two distinct states, and possibly more).

Yet even machine embodiments can be computationally intractable (in the same way that organic bodies are computationally intractable), exceeding the possibility of exhaustively calculating every possible material state of the mechanism (on a molecular or atomic level). Thus the emergence of machine consciousness would also supervene upon a transcomputational embodiment. It is, at present, impossible to say whether a machine embodiment of consciousness would be a limitation upon that consciousness (because the embodiment is likely to be less radically transcomputational than the brain) or a facilitation of consciousness (because machines can be arbitrarily scaled up in a way that organic bodies cannot be).

Since the mind stands outside the possibilities of embodied computation, if machine consciousness emerges, machine embodiments will be as non-transparent to machine minds as organic embodiment is non-transparent to organic minds, but the machine minds, non-transparent to their embodiment as they are, will have access to energy sources far beyond any resources an organic body could provide. Such machine consciousness would not be bound by brute force calculation or linear models (as organic minds are not so bound), but would have far greater resources at its command for the development of its consciousness.

Since the body that today embodies mind already far exceeds Bremermann’s limit, and no machine as machine is likely to exceed this limit, machine consciousness emergent from computationally tractable bodies may, rather than being super-intelligent in ways that biologically derived minds can never be, may on the contrary be a pale shadow of an organic mind in an essentially transcomputational body. This gives a whole new twist to the much-discussed idea of the mind’s embodiment.

Computation is not the be-all and end-all of of mind; it is, in fact, only peripheral to mind as mind. If we had to rely upon calculation to make it through our day, we wouldn’t be able to get out of bed in the morning; most of the world is simply too complex to calculate. But we have a “work around” — consciousness. Marginalized as the “hard problem” in the philosophy of mind, or simply neglected in scientific studies, consciousness enables us to cut the Gordian Knot of transcomputability and to act in a complex world that far exceeds our ability to calculate.

Neither is consciousness the be-all and end-all of mind, although the rise of computer science and the increasing role of computers in our life has led many to conclude that computation is primary and that it is consciousness is that is peripheral. and, to be sure, in some contexts, consciousness is peripheral. In many of the same contexts of our EEA in which calculation is impossible due to complexity, consciousness is also irrelevant because we respond by an instinct that is deeper than and other than consciousness. In such cases, the mechanism of instinct takes over, but this is a biologically specific mechanism, evolved to serve the purpose of differential survival and reproduction; it would be difficult to re-purpose a biologically specific mechanism for any kind of abstract computing task, and not particularly helpful either.

Consciousness is not the be-all and end-all not only because instinct largely circumvents it, but also because machines have a “work around” for consciousness just as consciousness is a “work around” for the limits of computability; mechanism is a “work around” for the inefficiencies of consciousness. Machine mechanisms can perform precisely those tasks that so tax organic minds as to be virtually unsolvable, in a way that is perfectly parallel to the conscious mind’s ability to perform tasks that machines cannot yet even approach — not because machines can’t do the calculations, but because machines don’t possess the “work around” ability of consciousness.

It is when computers have the “work around” capacity that conscious beings have that they will be in a position to effect an intelligence explosion. That is to say, machine consciousness is crucial to AI that is able to perform in that way that AI is expected to perform, though AI researchers tend to be dismissive of consciousness. If the proof of the pudding is in the eating, well, then it is consciousness that allows us to “chunk the proofs” (i.e., to divide the proof into individually manageable pieces) and get to the eating all the more efficiently.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .


Hegel and the Overview Effect

25 September 2013


G. W. F. Hegel

G. W. F. Hegel

Hegel is not remembered as the clearest of philosophical writers, and certainly not the shortest, but among his massive, literally encyclopedic volumes Hegel also left us one very short gem of an essay, “Who Thinks Abstractly?” that communicates one of the most interesting ideas from Hegel’s Phenomenology of Mind. The idea is simple but counter-intuitive: we assume that knowledgeable individuals employ more abstractions, while the common run of men content themselves with simple, concrete ideas and statements. Hegel makes that point that the simplest ideas and terms that tend to be used by the least knowledgeable among us also tend to be the most abstract, and that as a person gains knowledge of some aspect of the world the abstraction of a terms like “tree” or “chair” or “cat” take on concrete immediacy, previous generalities are replaced by details and specificity, and one’s perspective becomes less abstract. (I wrote about this previously in Spots Upon the Sun.)

We can go beyond Hegel himself by asking a perfectly Hegelian question: who thinks abstractly about history? The equally obvious Hegelian response would be that the historian speaks the most concretely about history, and it must be those who are least knowledgeable about history who speak and think the most abstractly about history.

Previously in An Illustration of the Truncation Principle I quoted a passage from the Annales school historian Marc Bloch:

“…it is difficult to imagine that any of the sciences could treat time as a mere abstraction. Yet, for a great number of those who, for their own purposes, chop it up into arbitrary homogenous segments, time is nothing more than a measurement. In contrast, historical time is a concrete and living reality with an irreversible onward rush… this real time is, in essence, a continuum. It is also perpetual change. The great problems of historical inquiry derive from the antithesis of these two attributes. There is one problem especially, which raises the very raison d’être of our studies. Let us assume two consecutive periods taken out of the uninterrupted sequence of the ages. To what extent does the connection which the flow of time sets between them predominate, or fail to predominate, over the differences born out of the same flow?”

Marc Bloch, The Historian’s Craft, translated by Peter Putnam, New York: Vintage, 1953, Chapter I, sec. 3, “Historical Time,” pp. 27-29

The abstraction of historical thought implicit in Hegel and explicit in Marc Bloch is, I think, more of a problem that we commonly realize. Once we look at the problem through Hegelian spectacles, it becomes obvious that most of us think abstractly about history without realizing how abstract our historical thought is. We talk in general terms about history and historical events because we lack the knowledge to speak in detail about exactly what happened.

Why should it be any kind of problem at all that we think abstractly about history? People say that the past is dead, and that it is better to let sleeping dogs lie. Why not forget about history and get on with the business of the present? All of this sounds superficially reasonable, but it is dangerously misleading.

Abstract thinking about history creates the conditions under which the events of contemporary history — that is to say, current events — are conceived abstractly despite our manifold opportunities for concrete and immediate experience of the present. This is precisely Hegel’s point in “Who Thinks Abstractly?” when he invites the reader to consider the humanity of the condemned man who is easily dismissed as a murderer, a criminal, or a miscreant. But we not only think in such abstract terms of local events, but also if not especially in regard to distant events, and large events that we cannot experience personally, so that massacres and famines and atrocities are mere massacres, mere famines, and mere atrocities because they are never truly real for us.

There is an important exception to all this abstraction, and it is the exception that shapes us: one always experiences the events of one’s own life with concrete immediacy, and it is the concreteness of personal experience contrasted to the abstractness of everything else not immediately experienced that is behind much (if not all) egocentrism and solipsism.

Thus while it is entirely possible to view the sorrows and reversals of others as abstractions, it is almost impossible to view one’s own sorrows and reversals in life as abstractions, and as a result of the contrast between our own vividly experienced pain and the abstract idea of pain in the life of another we have a very different idea of all that takes place in the world outside our experience as compared to the small slice of life we experience personally. This observation has been made in another context by Elaine Scarry, who in The Body in Pain: The Making and Unmaking of the World rightly observed that one’s own pain is a paradigm of certain knowledge, while the pain of another is a paradigm of doubt.

Well, this is exactly why we need to make the effort to see the big picture, because the small picture of one’s own life distorts the world so severely. But given our bias in perception, and the unavoidable point of view that our own embodied experience gives to us, is this even possible? Hegel tried to arrive at the big picture by seeing history whole. In my post The Epistemic Overview Effect I called this the “overview effect in time” (without referencing Hegel).

Another way to rise above one’s anthropic and individualist bias is the overview effect itself: seeing the planet whole. Frank White, who literally wrote the book on the overview effect, The Overview Effect: Space Exploration and Human Evolution, commented on my post in which I discussed the overview effect in time and suggested that I look up his other book, The Ice Chronicles, which discusses the overview effect in time.

I have since obtained a copy of this book, and here are some representative passages that touch on the overview effect in relation to planetary science and especially glaciology:

“In the past thirty-five years, we have grown increasingly fascinated with our home planet, the Earth. What once was ‘the world’ has been revealed to us as a small planet, a finite sphere floating in a vast, perhaps infinite, universe. This new spatial consciousness emerged with the initial trips into Low Earth Orbit…, and to the moon. After the Apollo lunar missions, humans began to understand that the Earth is an interconnected unity, where all things are related to one another, and there what happens on one part of the planet affects the whole system. We also saw that the Earth is a kind of oasis, a place hospitable to life in a cosmos that may not support living systems, as we know them, anywhere else. This is the experience that has come to be called ‘The Overview Effect’.”

Paul Andrew Mayewski and Frank White, The Ice Chronicles: The Quest to Understand Global Climate Change, University Press of New England: Hanover and London, 2002, p. 15


“The view of the whole Earth serves as a natural symbol for the environmental movement. it leaves us unable to ignore the reality that we are living on a finite ‘planet,’ and not a limitless ‘world.’ That planet is, in the words of another astronaut, a lifeboat in a hostile space, and all living things are riding in it together. This realization formed the essential foundation of an emerging environmental awareness. The renewed attention on the Earth that grew out of these early space flights also contributed to an intensified interest in both weather and climate.”

Paul Andrew Mayewski and Frank White, The Ice Chronicles: The Quest to Understand Global Climate Change, University Press of New England: Hanover and London, 2002, p. 20


“Making the right choices transcends the short-term perspectives produced by human political and economic considerations; the long-term habitability of our home planet is at stake. In the end, we return to the insights brought to us by our astronauts and cosmonauts as the took humanity’s first steps in the universe: We live in a small, beautiful oasis floating through a vast and mysterious cosmos. We are the stewards of this ‘good Earth,’ and it is up to us to learn how to take good care of her.”

Paul Andrew Mayewski and Frank White, The Ice Chronicles: The Quest to Understand Global Climate Change, University Press of New England: Hanover and London, 2002, p. 214

It is interesting to note in this connection that glaciology yielded one of the earliest forms of scientific dating techniques, which is varve chronology, originating in Sweden in the nineteenth century. Varve chronology dates sedimentary layers by the annual layers of alternating coarse and fine sediments from glacial runoff — making it something like dendrochronology, except for ice instead of trees.

Scientific historiography can give us a taste of the overview effect, though considerable effort is required to acquire the knowledge, and it is not likely to have the visceral impact of seeing the overview effect with your own eyes. Even an idealistic philosophy like that of Hegel, as profoundly different as this is from the empiricism of scientific historiography, can give a taste of the overview effect by making the effort to see history whole and therefore to see ourselves within history, as a part of an ongoing process. Probably the scientists of classical antiquity would have been delighted by the overview effect, if only they had had the opportunity to experience it. Certainly they had an inkling of it when they proved that the Earth is spherical.

There are many paths to the overview effect; we need to widen these paths even as we blaze new trails, so that the understanding of the planet as a finite and vulnerable whole is not merely an abstract item of knowledge, but also an immediately experienced reality.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .



catastrophism or uniformitarianism

In my last post, The Problem with Diachronic Extrapolation, I attempted to show how diachronic extrapolation, while the most familiar form of futurism, is often misleading because it fails to adequately account for synchronic interactions as a diachronic strategic trend develops. In other posts concerned with unintended consequences I have emphasized that, in the long term, unintended consequences often outweigh intended consequences. Unintended consequences are the result of synchronic interactions that were not foreseen, that were no part of diachronic agency, and those cases in which unintended consequences swamp intended consequences the synchronic interactions have proved more decisive in shaping the future than diachronic causality.

In my post on The Problem with Diachronic Extrapolation I made several assertions that clearly imply the limitation of inferences from the present to the future, which also implies the limitation of inferences from the present to the past. This brings up issues that go far beyond futurism.

In that post I wrote:

“…diachrony over significant periods of time cannot be pursued in isolation, since any diachronic extrapolation will interact with changed conditions over time, and this interaction will eventually come to constitute the consequences as must as the original trend diachronically extrapolated.”


“…the most frequent form of failed futurism is to take a trend in the present and to project it into the future, but any futurism worthy of the name must understand events in both their synchronic and diachronic context; isolation from succession in time is just as invidious as isolation from interaction across time…”

The reader may have noticed the resemblance of this species of failed futurism to uniformitarianism: instead of taking a strategic trend acting at present and extrapolating it into the future, uniformitarianism takes a physical force acting in the present and extrapolates it into the future (or, as is more likely the case in geology, into the past). This idea of uniformitarianism is usually expressed as, “the present is key to the past,” and we might similarly express the parallel form of futurism as being, “the present is key to the future.” These two claims — the present is the key to the past and the present is the key to the future — are logically equivalent since, as I pointed out previously, every present is the future of some past, and the past of some future.

Since these interpretations of uniformitarianism involve uniformity across past and future, these formulations closely resemble formulations of induction also stated in terms of past and future, as when the logical problem of induction is formulated, “Will the future be like the past?” It is at this point that the philosophy of time, the philosophy of history, the philosophy of science, and futurism all coincide, because it concerns a problem that all have in common.

Stephen Jay Gould noticed this similarity of uniformitarianism and induction in his first published paper, “Is uniformitarianism necessary?” Gould, of course, become famous for his critique of uniformitarianism, and for this alternative to it, punctuated equilibrium (for which he shares the credit with Niles Eldredge). In this early paper by Gould, Gould distinguished between substantive uniformitarianism and methodological uniformitarianism. He tried to show that the former is simply false, and the the latter, methodological uniformitarianism, is now subsumed under the scientificity of geology and paleontology. Here is now Gould put it:

“…we see that methodological uniformitarianism amounts to an affirmation of induction and simplicity. But since these principles belong to the modern definition of empirical science in general, uniformitarianism is subsumed in the simple statement: ‘geology is a science’. By specifically invoking methodological uniformitarianism, we do little more than affirm that induction is procedurally valid in geology.”

Stephen Jay Gould, “Is uniformitarianism necessary?” American Journal of Science, Vol. 263, March 1965, p. 227

That is to say, the earth sciences use the scientific method, which Gould characterizes in terms of inductive logic and the principle of parsimony (I would argue that Gould is also assuming methodological naturalism) — therefore everything that is worth saving in uniformitarianism is already secured by the scientific status of geology, and therefore uniformitarianism is dispensable. Having once served an important function in science, uniformitarianism has now, Gould contends, become an obstacle to progress.

As I noted above, Gould didn’t merely assert that uniformitarianism was no longer necessary, but devoted his career to arguing for an alternative, punctuated equilibrium, which asserts that long period of stasis are interrupted by catastrophic discontinuities. While much has been written about uniformitarianism vs. punctuated equilibrium, I see this as the thin end of the wedge for considering all kinds of alternatives to strict uniformitarianism, and to his end I think we would do well to explore all possible patterns of development, whether uniform (slow, gradual, incremental), punctuated (sudden, catastrophic, discontinuous), or otherwise.

Of course, we could easily produce more sophisticated formulations of uniformitarianism that would avoid the subsequent problems that have been raised, but this is the path that leads to Ptolemaic epicycles and attempts to “save the appearances,” whereas what we want is a rich mixture of theoretical innovation from which we can try many different models and select for further development those that are most true to the world.

Since the philosophy of time, the philosophy of history, the philosophy of science, and futurism all coincide at the point represented by the problem of the relationship of parts of time to other parts of time (and the idea of temporal parts is itself philosophical contested), all of these disciplines stand to learn something of value from exploring alternatives to uniformitarianism. In so far as futurism is dominated by nomothetic diachrony, and constitutes a kind of historical uniformitarianism, very different forms of futurism might emerge from a careful study of the alternatives to uniformitarianism, or merely from a recognition that, as Gould put, uniformitarianism is no longer necessary and something of an anachronism. If there is anything of which futurists ought to beware, being an anachronism must be close to the top of the list.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .




Much of what I write here, whether commenting on current affairs to delving into the depths of prehistory, could be classed under the general rubric of philosophy of history. One of my early posts to this forum was Of What Use is Philosophy of History in Our Time? (An echo of the title of Hans Meyerhoff’s widely available anthology Philosophy of History in Our Time.) It could be argued that my subsequent posts have been attempts to answer this question (that is to say, to answer the question what is the use of philosophy of history in our time), to demonstrate the usefulness of bringing a philosophical perspective to history, contemporary and otherwise. The reader is left to judge whether this attempt has been a success (partial or otherwise) or a failure (partial or otherwise).

In several recent posts — as, for example in The Science of Time, Addendum on Big History as the Science of Time, and Human Agency and the Exaptation of Selection, inter alia — I have been writing a lot about the philosophy of history from the perspective of big history, which is a contemporary historiographical school that comes to history from the perspective of the big picture and primarily proceeds according to scientific naturalism. This latter condition makes of big history a particular species of naturalism.

In many posts to this forum I have emphasized my own naturalistic perspective both in philosophy generally speaking as well as more specifically in the philosophy of history. For example, in posts such as Natural History and Human History, The Continuity of Civilization and Natural History, and An Existentialist Philosophy of History, I have emphasized the continuity of human history and natural history, especially making the attempt to place civilization in a natural historical context.

This emphasis on big history and naturalism has meant that I have spent very little time writing about alternatives to naturalistic historical thought — with a certain exception, which the reader may well not immediately recognize, so I will point it out explicitly. In several posts — The Ethos of Formal Thought, Foucault’s Formalism, Cartesian Formalism, and Formal Strategy and Philosophical Logic: Work in Progress among them — I have discussed the possibility of formal thought in relation to historical understanding, i.e., topics not usually discussed from a formal perspective (which is usually confined to logic, mathematics, and some branches of science). Formalism represents a certain kind of countervailing intellectual influence to naturalism, and it has probably served roughly that function in my thought.

I have previously mentioned Darren Staloff’s lectures on the philosophy of history, The Search for a Meaningful Past: Philosophies, Theories and Interpretations of Human History. One of the motifs running through Staloff’s lectures is a contrast between what he calls naturalism and idealism. He sums up this motif in the final lecture, in which he adopts the perspectives of naturalism and idealism in turn, trying give the listener a sense of the claims of each tradition. I found Staloff’s exposition of idealism less persuasive that his exposition of naturalism, and so I found the motif of a contrast between naturalism and idealism a bit strained, since it seemed to me that idealism really couldn’t carry its own weight in the way that it might have been able to in the past.

Recently I’ve encountered an approach to the philosophy of history that could be called “idealist” (at least in a certain sense), and this is much more persuasive to me that Staloff’s analytical representatives of the idealist tradition, like R. G. Collingwood. I have found this idealist perspective in the work of Ludwig Landgrebe, who was one of Husserl’s research assistants.

The casual reader of this blog might well have picked up on the amount of contemporary continental philosophy that I have read, but it unlikely to have realized the extent to which Edmund Husserl and phenomenology have been an influence on my thought. Nevertheless, that influence has been profound, to the point that many of Husserl’s expositors and commentators have also influenced my thinking. Recently I have been reading some essays by Ludwig Landgrebe, and this has started to give me another perspective on the philosophy of history.

Landgrebe wrote at least two papers on the philosophy of history, as well as one chapter of his book, Major Problems in Contemporary European Philosophy, from Dilthey to Heidegger. No doubt there is more material, but this is what I have found translated into English. (Landgrebe wrote an entire book on the phenomenological philosophy of history, Phänomenologie und Geschichte, but this has not been translated into English.) The two papers are “Phenomenology as Transcendental Theory of History” (which can be found in the collection of essays Husserl: Expositions and Appraisals, edited by Elliston and McCormick, University of Notre Dame Press, 1977. pp. 101-113) and “A Meditation on Husserl’s Statement: ‘History is the grand fact of absolute Being'” (The Southwestern Journal of Philosophy, Vol. 5, Issue 3, Fall 1974, pp. 111-125).

It is well known that Husserl’s last work, The Crisis of European Sciences and Transcendental Phenomenology: An Introduction to Phenomenological Philosophy, assembled posthumously from his papers, is the work in which Husserl placed phenomenology in historical context (for all practical purposes, for the first time), and considered the emergence of Western scientific thought in historical context. As such, this has been the point of departure of much historically-oriented phenomenological research, and the Crisis (as it has come to be known) and its supplementary texts were clearly influential for Landgrebe.

Landgrebe, however, as Husserl’s research assistant, was more than conversant with Husserl’s logical thought also. Husserl’s Experience and Judgment: Investigations in a Genealogy of Logic was a text assembled by Landgrebe from Husserl’s notes. Landgrebe consulted with Husserl throughout this project, and the original texts are all due to Husserl, but the structure of the book is entirely Landgrebe’s doing. Landgrebe brings the kind of rigor one learns in studying logic to his very compact essays on the philosophy of history. In this way, Landgrebe’s formulations have a formal character that makes them very congenial to me. Landgrebe’s approach is essentially that of a formal phenomenological theory of history, and this perspective allows me to assimilate Landgrebe’s insights both to idealistic historiography as well as my long-standing interest in formal thought.

If I were now to revise my speculative syllabus If I Lectured on the Philosophy of History (lecture 13 of which I had already assigned to phenomenology), I would definitely showcase Landgrebe’s philosophy of history as the most sophisticated phenomenological contribution to the philosophy of history.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .



soul rising from body


My title today, Human Agency and the Exaptation of Selection, is perhaps not a very good title, but if anyone out there has read a representative selection of my posts they will be aware that all of these topics — human agency, exaptation, and natural selection — are matters to which I have returned time and again, and I feel like I beginning to see my way clear to a point at which I can systematically tie together these themes into something more comprehensive than occasional remarks and comments of the sort that are the usual fare of blog posts.

Macro-Historical Revolutions

All macro-historical revolutions to date have simply happened to us; they were not planned or chosen or made to happen, they just happened. And before the emergence of human agency in history, all the great transitions of natural history — i.e., the natural equivalent of a macro-historical revolution — simply happened without design, purpose, or direction.

Human efforts (including individual choices) in constituting historical realities have, to date, been like the myriad accidents of natural history that together and cumulatively constitute natural history. Even though human consciousness gives meaning and value to these individual decisions, and at times we participate in collective meanings and values, none of this has yet risen to the level of consciously constituting an epoch of history on the basis of human meanings and values. We have given meaning and value to circumstances that we have (accidentally) brought about, but have not brought about a civilization or a way of life in response to a determination to realize particular meanings and values. This is the social equivalent of Schopenhauer’s assertion that, while we are free to do what we want, we are not free to want what we want.

To shape the future of history, to plan for the kind of civilization to come, and possibly even to create a kind of civilization consciously intended and brought into being, would be historically unprecedented on a scale beyond the unprecedented events of human history (such as I recently wrote about in Invariant Civilizational Properties in Futurist Scenarios, i.e., how it would be unprecedented for an invariant of civilization to be overturned), because the trend of human history being shaped by non-human forces is far older than human history, and far older than our species.

Naturalism and its Others

It is at this point that the naturalistically inclined philosopher of history must obviously and unavoidably part company with those who retain theological conceptions of the world and its development. The idea of the world, up until the emergence of human intelligence from human consciousness, being utterly unplanned, undirected, and undesigned is a rigorously (and indeed rigidly) naturalistic conception that excludes even the most distant and unconcerned creator of deism.

Even the religiously and theologically inclined who make no attempt to defy what science tells us about the world must retain some minimal sense of purpose and direction — perhaps a quasi-Aristotelian final cause — since without this there remains nothing upon which to pun one’s beliefs that is not strictly a part of nature — no transcendent eschatology or soteriology.

It should be obvious from my other posts that I am writing from a rigorously naturalistic perspective, but sometimes one must be explicit about these things so as not to leave any wiggle room, so that one’s naturalistic formulations will either be interpreted naturalistically or rejected tout court because they are naturalistic. What I have written above about unprecedented historical developments simply makes no sense is one deviates from a strict naturalism, and that is why I make it explicit here.

The Threshold of Agency

The imposition of human will upon unthinking and uncomprehending nature began in the most rudimentary ways — the chipping of stone for tools and the gathering of sufficient sustenance such that this might last beyond the next meal. At this level of planning and provision for the future, the human mind is no different from other mammalian minds, since we know that other mammals make rudimentary tools and store food for the future.

To define the point at which human planning and provision for the future exceed this common mammalian standard, and thereby also exceed the possibility of being entirely the result of instinct refined by natural selection, genetically encoded in our biology (and the ultimate limit of evolutionary psychology), involves a sorites paradox (i.e., the paradox of the heap). While we need not define a particular point that human planning exceeds the mammalian norm, we can content ourselves with a span of time (viz. between the emergence of biologically modern homo sapiens and the advent of the historical period strictly speaking, i.e., a span of time encompassing human prehistory). In accordance with what I have called the Truncation Principle, we can in fact recognize an historical discontinuity, even if that discontinuity comes about gradually.

Over some period of time, then, human planning and provision exceeded the mammalian norm and became something historically unprecedented. We tend to magnify this transition, calling ourselves the “rational animal” and associating our reason with that which is uniquely human. One of the great themes of our time is that of human beings asserting their control over the planet, assuming de facto right over the disposition of the biosphere. In fact, we don’t even control our own history, much less the history of the planet. We affect our history and the natural history of our planet, but we do not control them.

We have risen to the level of micro-historical efficacy with the first rudimentary steps of tool making and food storage. We rose to the level of meso-historical efficacy in constituting human societies. These societies began as emergent accidents of human behavior, but I think that we can assert that, over time, we have consciously constituted at least a few limited examples of communities intentionally constituted to certain ends. We rose to the level of exo-historical efficacy in constituting the largest institutions and political entities that have dominated human history. Many of these institutions and political entities have also been accidents of history, but, again, I think that we can say that there are at least some explicit examples of the purposeful constitution of human institutions and political entities.

In other words, have passed at least three thresholds of agency defined in terms of ecological temporality. For human agency to rise to the level of macro-historical efficacy we would need to rise to the level of shaping entire eras of civilization and history. We aren’t there yet. As with the natural historical emergence of human communities and later larger institutions, which began with historical accidents and were only later rationalized, human macro-history remains at the level of our accidental participation. Millions upon millions of conscious human actions were required to create the industrial revolution, but no one consciously sought to create the industrial revolution; although it was, in a sense, made by us, in a more important sense it simply happened to us.

The Problem of Progress

In several posts — Civilization and the Technium, Biology Recapitulates Cosmology, and Progress, Stagnation, and Retrogression among them — I have mentioned Kevin Kelly’s explicit arguments for progress in his book What Technology Wants. I have mentioned this because, in terms of our current intellectual climate, he is an outlier, although among techno-philosophers he may represent something closer to a consensus. Among contemporary academic philosophers and historians, almost no one argues for progress — to do so is considered an unforgivable form of naïveté.

I mention this again here because the above treatment of human agency in terms of ecological temporality might provide a quantitative way to talk about human progress and the progress of human civilization that is not tied to the development of some particular technology. Any time anyone asserts that there has been progress because we now have airplanes and computers whereas once we did not, someone else responds by pointing to the moral horrors of the twentieth century, such as genocide, to demonstrate that technological progress cannot be conflated with moral progress. Moral progress requires an entirely separate argument, as does aesthetic progress. (So too, presumably religious, ideological, or eschatological progress, but I will not attempt to address any of these at present.)

The expanding scope of human agency through levels of ecological temporality can be interpreted as a kind of progress independent of any technological development. In so far as human agency is centrally implicated in human morality, the progress of human agency could even be interpreted as a form of moral progress. Now, this is an admittedly deceptive way to formulate it, because I do not here mean “moral” in the narrow sense of “ethical” but rather “moral” in the way we would use the term in a phrase like, “the moral lives of human beings.” Another way to formulate this would be to call it human progress, but this is probably no improvement at all. I mean progress in the form of asserting human agency over the peculiarly human aspects of our lives — emotions, relationships, interactions, evaluations, creations, and so forth.

A Darwinian conception of history

A Darwinian conception of history and of civilization is simply a conception of history and civilization fully in accord with Darwin’s thorough-doing naturalism, and especially the role of selection in the constitution of historical entities (like human history and human civilization). We can understand Darwinian conceptions of history and civilization as aspects of a Darwinian cosmology. The above formulations of the ecological temporal thresholds of human agency allow us to do this in an interesting way.

When human agency crosses a threshold from being subject to accidents, including its own cumulative accidents, to asserting control over the whole process of agency and its consequences — i.e., what it brings about — what is essentially happening is that human agency is taking over for natural selection; selection, or some part of selection, is transferred from nature to humanity. In other words, the expansion of human agency is the exaptation of selection. Selection that began as natural selection, taken over by the expanding agency of human beings, becomes human selection. This is exaptation not of organic structures, but of behavioral structures, i.e., exaptation on the order of the will.

To assert that the expansion of human agency is the exaptation of selection is to formulate a Darwinian conception of history and of civilization that does not need to declare the progress is impossible to account for in a selective paradigm, and also is not obligated to argue that progress is inherent in the very nature of things, which it is not.


One can understand the problematic idea of “progress” (which we may someday be able to take out of scare quotes) as the increasing human ability to impose human direction, purpose, and design upon history.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: