Friday


Quine

Twentieth century American analytical philosopher W. V. O. Quine said that, “Philosophy of science is philosophy enough.” (The Ways of Paradox, “Mr. Strawson on Logical Theory”) In so saying Quine was making explicit the de facto practice on which Anglo-American analytical philosophy was converging: if philosophy was going to be tolerated at all (even among professional philosophers!) it must delimit its horizons to science, as only in the conceptual clarification of science had philosophy any remaining role to play in the modern world. Philosophy of science was a preoccupation of philosophers throughout the twentieth century, from early positivist formulations in the early part of the century, through post-positivist formulations, to profoundly ambiguous reflections upon the rationality of science in Thomas Kuhn’s The Structure of Scientific Revolutions.

I have previously addressed the condition of contemporary philosophy in Philosophy Institutionalized, in which I noted that among the philosophical schools of our time, “there is a common thread, and that common thread is not at all difficult to discern: it is the relationship of thought to the relentless expansion of industrial-technological civilization.” I would like to take this idea a step further, and consider how philosophy might be both embedded in contemporary civilization and how it might look beyond the particular human condition of the present moment of history and also embrace something larger.

The position of philosophy in agrarian-ecclesiastical civilization was preeminent, and second only to theology. India had a uniquely philosophical civilization in which schools of thought wildly proliferated and were elaborated over the course of hundreds of years. In those agrarian-ecclesiastical civilizations in which religion simpliciter was the organizing principle, initially crude religious ideas were eventually given sophisticated and subtle formulations in an advanced technical vocabulary largely derived from philosophy. Where the explicitly religious impulse was less prominent than the philosophical impulse, a philosophical civilization came into being, as in the Balkans and the eastern Mediterranean, starting with ancient Greece and its successor civilizations.

With the end of agrarian-ecclesiastical civilization, as it was preempted by industrial-technological civilization, this tradition of philosophical preeminence in intellectual inquiry was lost, and philosophy, no longer being central to the motivating imperatives of civilization, became progressively more and more marginalized, until today, when it is largely an intellectual whipping boy that scientists point out as an object lesson of how not to engage in intellectual activity.

I have elsewhere described industrial-technological civilization as being defined by the STEM cycle, which I later further elaborated in One Hundred Years of Fusion as follows:

“…science drives technology, technology drives industrial engineering, and industrial engineering creates new resources that allow science to be pursued at a larger scope and scale. In some cases the STEM cycle functions as a loosely-coupled structure of our world. The resources of advanced mathematics are necessary to the expression of physics in mathematicized form, but there may be no direct coupling of physics and mathematics, and the mathematics used in physics may have been available for generations. Pure science may suggest a number of technologies, many of which lie fallow, with no particular interest in them. One technology may eventually come into mass manufacture, but it may not be seen to have any initial impact on scientific research. All of these episodes seem de-coupled, and can only be understood as a loosely-coupled cycle when seen in the big picture over the long term. In the case of nuclear fusion, the STEM cycle is more tightly coupled: fusion science must be consciously developed with an eye to its application in various fusion technologies. The many specific technologies developed on the basis of fusion science are tested with an eye to which can be practically scaled up by industrial engineering to build a workable fusion power generation facility.”

Given the role of the STEM cycle in defining industrial-technological civilization, a robust philosophical engagement with the civilization of our time would mean a philosophy of science, a philosophy of technology, and a philosophy of engineering, as well as an overall philosophy of civilization that knit these together in a way that reflects the STEM cycle that unifies the three in industrial-technological civilization. Thus the twentieth century preoccupation with the philosophy of science can be understood as the first attempt to come to grips with the new form of civilization that had replaced the civilization of our rural, agricultural past.

This fits in well with the fact that the philosophy of technology has been booming in recent decades (partially driven by our technophilia), with philosophers of many different backgrounds and orientations — analytical philosophers, phenomenologists, existentialists, Marxists, and many others — equally interested in providing a philosophical commentary on this central feature of our contemporary world. I have myself written about the emergence of what I call techno-philosophy. The philosophy of engineering is a bit behind philosophy of science and philosophy of technology, but it is rapidly catching up, as philosophers realize that they have had little to say about this essential dimension of our contemporary world. The academic publisher Springer now has a series of books on the philosophy of engineering, Philosophy of Engineering and Technology. I would purchase more of these volumes if they weren’t prohibitively expensive.

Beyond the specialized disciplines of philosophy of science, philosophy of technology, and philosophy of engineering, there also needs to be a “big picture” engagement with the three loosely coupled together in the STEM cycle, and beyond this there needs to be a philosophical engagement with how our industrial-technological civilization is embedded in a larger historical context that includes different forms of civilization with profoundly different civilizational motifs and imperatives.

To address the latter need for a truly big picture philosophy, that is not some backward-looking disinterment of Hegelian philosophy of history, but which engages with the world as it know it today, in the light of scientific rationality, we need a philosophy of history that understands history in terms of scientific historiography, which is how a scientific civilization grasps history and arrives at a self-understanding of its place in history.

Philosophical reflection upon existential risk partially serves as a reminder of the philosophical dimension of history and civilization, in a way not unlike meditations on eternity during the period of agrarian-ecclesiastical civilization served as a reminder that life is more than the daily struggle to stay alive. In my post, What is an existential philosophy?, I wrote, “…coming to terms with existence from an existential perspective means coming to terms with Big History, which provides the ultimate (natural historical) context for ordinary experience and its object.”

What we need, then, for a vital and vigorous philosophy for industrial-technological civilization, is a philosophy of big history. I intend to do something about this — in fact, I am working on it now — though it is unlikely that anyone will take notice.

. . . . .

big history with thinker small

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Friday


Learning to Love the Wisdom

Homo technologiensis

of Industrial-Technological Civilization


A confession of enthusiasm

Allow me to give free rein to my enthusiasm and to proclaim that there has never been a more exciting time in human history to be a philosopher than today. It is ironic that, at the same time, philosophers are probably held in lower esteem today than in any other period of human history. I have recently come to the opinion that it is intrinsic to the structure of industrial-technological civilization to devalue philosophy, but I have discussed the contemporary neglect of philosophy in several posts — Fashionable Anti-Philosophy, Further Fashionable Anti-Philosophy, and Beyond Anti-Philosophy among them — so that is not what I am going to write about today.

Today, on the contrary, I want to write about the great prospects that are now opening up to philosophy, despite its neglect in popular culture and its abuse by the enthusiasts of a positivistically-conceived science. And these prospects are not one but many. In some previous posts about object-oriented philosophy (also called object-oriented ontology, or OOO) I mentioned how exciting it was to be alive at a time when a new philosophical school was coming into being, especially at a time when academic philosophy seems to have stalled and relinquished any engagement with the world or any robust relationship to the ordinary lives of ordinary human beings. (As bitterly as the existentialists were denounced in their day, they did engage quite directly with contemporary events and contemporary life. Sartre made a fool of himself by meeting with Che Guevara and by mouthing Maoist claptrap in his later years, but he reached far more people than most philosophers of his generation, and like fellow existentialist Camus, did so through a variety of prose works, plays, and novels.) Now I see that we live in an age of the emergence of not one but of many different philosophical schools, and this is interesting indeed.

Philosophical periodization: schools of thought

Anyone who discusses so-called “schools” in philosophy is likely to run into immediate resistance, usually from those who have been characterized as belonging to a dubiously-conceived school. As soon as Sartre gave an explicit definition of existentialism as being based on the principle that existence precedes essence, Heidegger and Jaspers explicitly and emphatically denied that they were “existentialists.” And if we think of the hundreds years of philosophical research and the hundreds of philosophers who can be lumped under the label of “scholasticism,” the identification of a school of “scholastic” philosophers would seem to be without any content whatsoever.

Nevertheless, some of these labels remain accurate even when and where they are rejected. While Heidegger and Jaspers rejected the principle that existence precedes essence, there is no question that all three of these great existentialist thinkers were preoccupied with the problematic human condition in the modern world. Similarly, the ordinary language philosophers had their disagreements, but there were unified by a method of the analysis of ordinary language.

The school of techno-philosophy

With this caveat in mind about identifying a philosophical “school” that will almost certainly be rejected by its practitioners, I am going to identify what I will call techno-philosophy. In regard to techno-philosophy I will identify no common goals, aspirations, beliefs, principles, ideas, or ideals that belong to the practitioners of techno-philosophy, but only the common object of philosophical analysis. Techno-philosophy offers an initial exploration of novel ideas and novel facts of life in industrial society, and especially the ideas and facts of life related to technology that rapidly change within a single lifetime.

What makes the school of techno-philosophy interesting is not the special rigor or creativity of the philosophical thought in question — contemporary Anglo-American academic analytical philosophy is far more rigorous, and contemporary continental philosophy is far more imaginative — but rather the objects taken up by techno-philosophy. What are the objects of techno-philosophy? These objects are the novel productions of industrial-technological civilization, which appear and succeed each other in breathless rapidity. The fact of technological change, or even, if one would be so bold, rapid technological progress, is unprecedented. As an unprecedented aspect of life in industrial-technological civilization, rapid technological progress is an appropriate object for philosophical reflection.

The original position of technical society

The artifacts of technological progress have been produced in almost complete blindness as regard to their philosophical significance and consequences. What techno-philosophy represents is the first attempt to make philosophical sense of the artifacts of technology taken collectively, on the whole, and with an eye to their extrapolation across space and through time. In fact, the very idea of technology taken whole may be understood as a conceptual innovation of techno-philosophy, and this very idea has been called the technium by Kevin Kelly. (I wrote about the idea of the technium in Civilization and the Technium and The Genealogy of the Technium.)

Thus we can count Kevin Kelly among techno-philosophers, and even Ray Kurzweil — though Kurzweil does not seem to be interested in philosophy per se, he has pushed the limits of thinking about machine intelligence to the point that he is on the verge of philosophical questions. Thinkers in the newly emerging tradition of the technological singularity and transhumanism belong to techno-philosophy. Academic philosopher David Chalmers, known for his contributions to the philosophy of mind (and especially known for formulating the phrase “explanatory gap” to indicate the chasm between consciousness and attempted physicalistic accounts of mind) was invited to the last singularity conference and tried his hand at an essay in techno-philosophy.

Bostrom and Ćirković and techno-philosophers

The work of Nick Bostrom also represents techno-philosophy, as Professor Bostrom has engaged with a number of contemporary ideas such as superintelligence, the Fermi paradox, extraterrestrial life, transhumanism, posthumanism, the simulation hypothesis (which is a contemporary reformulation of Cartesian evil spirit), and existential risk (which is a contemporary reformulation and secularization of apocalypticism, but with a focus on mitigating apocalyptic scenarios).

Serbian astronomer and physicist Milan M. Ćirković has also dealt with many of the same questions in an admirably daring way (he has co-edited the volume Global Catastrophic Risks with Bostrom). What typifies the work of Bostrom and Ćirković — which definitely constitutes the best work in contemporary techno-philosophy — is their willingness to bring traditional philosophical sensibility to the analysis of contemporary ideas, and especially ideas enabled and facilitated by contemporary technology such as computing and space science.

The branches of industrial-technological philosophy

Industrial-technological civilization is created by practical men who eschew philosophy if they happen to be aware of it, and those with a bent for abstract or theoretical thought, and who desire a robust engagement with the world, turn to science or mathematics, where abstract and theoretical ideas can have a direct and nearly immediate impact upon the development of industrial society. Techno-philosophy picks up where these indispensable men of industrial-technological civilization leave off.

Once we understand the relationship between techno-philosophy and industrial-technological civilization (and its disruptions), and knowing the cycle of science, technology and engineering that drives such a civilization, we can posit a philosophical analysis of each stage in the escalating spiral of industrial-technological civilization, with a philosophy of the science of this civilization, a philosophy of the technology of this civilization, and a philosophy of the engineering of this civilization. Techno-philosophy, then, is the philosophy of the technology of industrial-technological civilization.

Philosophy in a time of model drift

In parallel to the emerging school of techno-philosophy, there is a quasi-philosophical field of popular expositions of science by those actively working on the frontiers of the sciences that have been most profoundly transformed by recent developments, and which are still in the process of transformation. This is the philosophy of the science of industrial-technological civilization, and it is distinct from traditional philosophy of science. The rapid developments in cosmology and physics in particular have led to model drift in these fields, and those scientists who are working on these concepts feel the need to give these abstract and theoretical conceptions a connection to ordinary human experience.

Here I have in mind the books of Brian Green, such as his exposition of string theory, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, as well as criticisms of string theory such as Peter Woit’s Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. Some of these books are more widely ranging and therefore more philosophical, such as David Deutsch’s The Fabric of Reality: The Science of Parallel Universes — and Its Implications, while some appeal to a traditional conception of “natural philosophy” as in David Grinspoon’s Lonely Planets: The Natural Philosophy of Alien Life. While these works do not constitute “techno-philosophy” as I have characterized it above, they stand in a similar relationship to the civilization the thought of which they represent.

The prospects for techno-philosophy

As techno-philosophy grows in scope, rigor, depth, and methodological sophistication, it promises to give to industrial-technological civilization something this civilization never wanted and never desired, but of which it is desperately in need: Depth. Gravitas. Intellectual seriousness. Disciplined reflection on the human condition. In a word: wisdom.

If there is anything the world needs today, it is wisdom.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Wednesday


Addendum on Civilization and the Technium

in regard to human, animal, and alien technology


One of the virtues of taking the trouble to formulate one’s ideas in an explicit form is that, once so stated, all kinds assumptions one was making become obvious as well as all kinds of problems that one didn’t see when the idea was just floating around in one’s consciousness, as a kind of intellectual jeu d’esprit, as it were.

Bertrand Russell wrote about this, or, at least, about a closely related experience in one of his well-known early essays, in which he discussed the importance not only making our formulations explicit, but of doing so by way of putting some distance between our thoughts and the kind of facile self-evidence that can distract us from the real business at hand:

“It is not easy for the lay mind to realise the importance of symbolism in discussing the foundations of mathematics, and the explanation may perhaps seem strangely paradoxical. The fact is that symbolism is useful because it makes things difficult. (This is not true of the advanced parts of mathematics, but only of the beginnings.) What we wish to know is, what can be deduced from what. Now, in the beginnings, everything is self-evident; and it is very hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we invent some new and difficult symbolism, in which nothing seems obvious. Then we set up certain rules for operating on the symbols, and the whole thing becomes mechanical. In this way we find out what must be taken as premiss and what can be demonstrated or defined. For instance, the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions. But without a symbolism it would have been very hard to find this out. It is so obvious that two and two are four, that we can hardly make ourselves sufficiently skeptical to doubt whether it can be proved. And the same holds in other cases where self-evident things are to be proved.”

Bertrand Russell, Mysticism and Logic, “Mathematics and the Metaphysicians”

Russell’s foundationalist program in the philosophical of mathematics closely followed the method that he outlined so lucidly in the passage above. Principia Mathematica makes the earliest stages of mathematics notoriously difficult, but does so in service to the foundationalist ideal of revealing hidden presuppositions and incorporating them into the theory in an explicit form.

Another way that Russell sought to overcome self-evidence is through the systematic pursuit of the highest degree of generality, which drives us to formulate concepts that are alien to common sense:

“It is a principle, in all formal reasoning, to generalize to the utmost, since we thereby secure that a given process of deduction shall have more widely applicable results…”

Bertrand Russell, An Introduction to Mathematical Philosophy, Chapter XVIII, “Mathematics and Logic”

These are two philosophical principles — the explication of ultimate simples (foundations) and the pursuit of generality — that I have very much taken to heart and attempted to put into practice in my own philosophical work. Russell’s foundationalist method shows us what can be deduced from what, and gives to these deductions the most widely applicable results. To these philosophical imperatives of Russell I have myself added another, parallel to his pursuit of generality, and that is the simultaneous pursuit of formality: it is (or ought to be) a principle in all theoretical reasoning to formalize to the utmost…

Russell also observed the imperative of formalization, though he himself did not systematically distinguish between generalization and formalization, and it is a tough problem; I’ve been working on it for about twenty years and haven’t yet arrived at definitive formulations. As far as provisional formulations go, generalization gives us the highly comprehensive conceptions like astrobiology and civilization and the technium that allow us to unify a vast body of knowledge that must be studied by inter-disciplinary means, while formalization gives us the distinctions we must carefully observe within our concepts, so that generalization does not simply give us the night in which all cows are black (to borrow a phrase that Hegel used to ridicule Schelling’s conception of the Absolute).

Foundationalism as a philosophical movement is very much out of fashion now, although the foundations of mathematics, pursued eo ipso, remains an active and highly technical branch of logico-mathematical research, and today looks a lot different from what it was when it was first formulated as a philosophical research program a hundred years ago by Frege, Peano, Russell, Whitehead, Wittgenstein, and others. Nevertheless, I continue to derive much philosophical clarification from the early philosophical stages of foundationalism, especially in regard to theories that have not (yet) been reduced to formal systems, as is the case with theories of history or theories of civilization.

I am still a long way from reducing my ideas about history or civilization to first principles, much less to symbolism, but I feel like I am making progress, and the discovery of assumptions and problems is a sure sign of progress; in this sense, my post on Civilization and the Technium marked a stage of progress in my thinking, because of the inadequacy of my formulations that it revealed.

In my Civilization and the Technium I compared the extent of civilization — a familiar idea that has not yet received anything like an adequate definition — with the extent of the technium — a recent and hence unfamiliar idea for which there is an explicit formulation, but since it is new its full scope remains untested and untried, and therefore it presents problems that the idea of civilization does not present. I formulated concepts of the technium parallel to formulations of astrobiology and astrocivilization, as follows:

● Eotechnium the origins of the technium, wherever and whenever it occurs, terrestrial or otherwise

● Esotechnium our terrestrial technium

● Exotechnium any extraterrestrial technium exclusive of the terrestrial technium

● Astrotechnium the totality of technology in the universe, our terrestrial and any extraterrestrial technium taken together in their cosmological context

I realize now that when I did this I was making slightly different assumptions for civilization and the technium. The intuitive basis of this was that I assumed, in regard to the technium, that the technium I was describing was all due to human activity (a clear case of anthropic bias), so that the distinction between the exotechnium and the exotechnium was the distinction between terrestrial human technology and extraterrestrial human technology.

When, on the other hand, I formulated the parallel concepts for civilization, I assumed that esocivilization was terrestrial human civilization and that exocivilization would be alien civilizations not derived from the human eocivilization source.

Another way to put this is that I assumed the validity of the terrestrial eotechnium thesis even while I also assumed that the terrestrial eocivilization thesis did not hold. Is that too much technical terminology? In other words, I assumed the uniqueness of the human technium but I did not assume the uniqueness of human industrial-technological civilization.

This points to a further articulation (and therefore a further formalization) of the concepts employed: one must keep the conception of eocivlization (the origins of civilization) clearly in mind, and distinguish between terrestrial civilization that expands into extraterrestrial space and therefore becomes exocivilization from its eocivilization source on the one hand, and on the other hand a xeno-eocivilization source that constitutes exocivilization by virtue of its xenomorphic origins. If one is going to distinguish between esocivilization and exocivilization, one must identify the eocivilization source, or all is for naught.

All of this holds, mutatis mutandis, for the eotechnium, esotechnium, exotechnium, and astrotechnium, although I ought to point that my formulations in Civilization and the Technium, and repeated above, were accurate because they were formulated in Russellian generality. It was in my following exposition that I failed to observe all the requisite distinctions. But there’s more. I’ve since realized that further distinctions can be made.

As I thought about the possibility of a xenotechnium, i.e., a technium produced by a sentient alien species, I realized that there is a xenotechnium right here on Earth (a terrestrial xenotechnium, or non-hominid technium), in the form of tool use and other forms of technology by non-human species. We are all familiar with famous examples like the chimpanzees who will strip the leaves off a branch and then use the branch to extract termites from a termite mound. Yesterday I alluded to the fact that otters use rocks to break open shells. There are many other examples. Apart from tool use, beaver damns and the nests of birds, while not constructed with tools, certainly represent a kind of technology.

The nest of a weaver bird is a form of non-human technology.

If we take all instances of animal technology together they constitute a terrestrial non-human technium. If we take all instances of technology known to us, human and non-human together, we have a still more comprehensive conception of the technium that is more general that the concept of the human-specific technium and therefore less subject to anthropic bias (the latter concept due to Nick Bostrum, who also formulated existential risk). This latter, more comprehensive conception of the technium would seem to be favored by Russell’s imperative of generalization to the utmost, although we must continue to make the finer distinctions within the concept for the formalization of the conception of the technium to keep pace with its generalization.

There is a systematic relationship between terrestrial biology and the terrestrial technium, both hominid and non-hominid. Eobiology facilitates the emergence of a terrestrial eotechnium, of which all instances of technology, hominid and non-hominid alike, can be considered expressions. This is already explicit in Kevin Kelly’s book, What Technology Wants, as one of his arguments is that the emergence and growth of the technium is continuous with the emergence of growth of biological organization and complexity. He cites John Maynard Smith and Eors Szathmary as defining the following thresholds of biological organization (p. 46):

One replicating molecule -» Interacting population of replicating molecules
Replicating molecules -» Replicating molecules strung into chromosome
Chromosome of RNA enzymes -» DNA proteins
Cell without nucleus -» Cell with nucleus
Asexual reproduction (cloning) -» Sexual recombination
Single-cell organism -* Multicell organism
Solitary individual -» Colonies and superorganisms
Primate societies -» Language-based societies

He then suggests the following sequence of thresholds within the growth of the technium (p. 47):

Primate communication -» Language
Oral lore -> Writing/mathematical notation
Scripts -» Printing
Book knowledge -» Scientific method
Artisan production -» Mass production
Industrial culture -» Ubiquitous global communication

And then he connects the two sequences:

The trajectory of increasing order in the technium follows the same path that it does in life. Within both life and the technium, the thickening of interconnections at one level weaves the new level of organization above it. And it’s important to note that the major transitions in the technium begin at the level where the major transitions in biology left off: Primate societies give rise to language. The invention of language marks the last major transformation in the natural world and also the first transformation in the manufactured world. Words, ideas, and concepts are the most complex things social animals (like us) make, and also the simplest foundation for any type of technology. (p. 48)

Thus the genealogy of the technium is continuous with the genealogy of life.

Considering this in relation to the possibility of a xenotechnium, one would expect the same to be the case: I would expect a systematic relationship to hold between xenobiology and a xenotechnium, such that an alien eobiology would facilitate the emergence of an alien eotechnium. And, extending this naturalistic line of thought, that assumes similar patterns of development to hold for peer industrial-technological civilizations, I would further assume that a xenotechnium would not always coincide with the xenocivilization with which it is associated. If there is a “first contact” between terrestrial civilization and a xenocivilization, it is likely that it will be rather a contact between the expanding terrestrial technium (which is, technically, no longer terrestrial precisely because it is expanding extraterrestrially) and an expanding xenotechnium.

There remains much conceptual work to be done here, as the reader will have realized. I’ll continue to work on these formulations, keeping in mind the imperatives of generality and formality, and perhaps someday converging on a foundationalist account of biology, civilization, and the technium that is at once both fully comprehensive and fully articulated.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


The “technium” is a term coined by Kevin Kelly in his book What Technology Wants. The author writes that he dislikes inventing words, but felt he needed to coin a term in the context of his exposition of technology; I, on the contrary, don’t mind in the least inventing words. I invent words all the time. When we formulate a new concept we ought to give it a new name, because we are not only expanding our linguistic vocabulary, we are also extending out conceptual vocabulary. So I will without hesitation take up the term “technium” and attempt to employ it as the author intended, though I will extend the concept even further by applying some of my own terminology to the idea.

In What Technology Wants the technium is defined as follows:

“I dislike inventing new words that no one else uses, but in this case all known alternatives fail to convey the required scope. So I’ve somewhat reluctantly coined a word to designate the greater, global, massively interconnected system of technology vibrating around us. I call it the technium. The technium extends beyond shiny hardware to include culture, art, social institutions, and intellectual creations of all types. It includes intangibles like software, law, and philosophical concepts. And most important, it includes the generative impulses of our inventions to encourage more tool making, more technology invention, and more self-enhancing connections. For the rest of this book I will use the term technium where others might use technology as a plural, and to mean a whole system (as in “technology accelerates”). I reserve the term technology to mean a specific technology, such as radar or plastic polymers.”

Some time ago, in some earlier posts here, I started using the term “social technology” to indicate those artifacts of human invention that are not particular pieces of hardware. In making that distinction I did not think to further subdivide and extrapolate all possible kinds of technology, nor to unify them all together into one over-arching term (at least, I don’t remember having the idea). This is what, as far as I understand it, the technium means: the most comprehensive conception of technology, including social technologies and electromechanical technologies and biological technologies and so forth.

Neolithic flint mining at Grimes Graves.

Although we usually don’t think of it like this, technology is older than civilization. Lord Broers led off his 2005 Reith Lectures with an account of the “Grimes Graves” flint mining site, which virtually constituted an entire Neolithic industrial complex. While Grimes Graves is contemporaneous with agriculture, and therefore with a broad conception of agricultural civilization, there were probably other such industries dating to the Paleolithic that are lost to us now.

Lithic technology: older than civilization.

With the emergence of human cognitive modernity sometime about fifty to sixty thousand years ago, human beings began making tools in a big way. Of course, earlier hominids before homo sapiens made tools also, although their toolkits were pretty rudimentary and showed little or no development over hundred of thousands of years. Still, it should be observed that tools and technology are not only older that civilization, they are even older than human beings, in so far as we understand human beings narrowly as homo sapiens only (though it would be just as legitimate to extend the honorific “human being” to all hominids). What this means is that the technium is older than civilization.

What hominids are we going to call human beings, and to what hominids will we deny the honorific? All hominids have been tool users, but so are otters.

If we take the technium as an historical phenomenon and study it separately from the history of human beings or the history of civilization, we see that it is legitimate to identify the technium as an independent object of inquiry since it has a life of its own. At some points in history the technium has coincided fully with civilization; at other points in time, the technium has not precisely coincided with civilization. As I have just noted above, the technium preceded the advent of civilization, and therefore in its earliest stages did not coincide with civilization.

The technium already extends significantly beyond the technosphere of the Earth.

At the present moment in history, with our technological artifacts spread across the solar system and crowding the orbit of the earth, the technium again, in extending beyond the strict range of human civilization, does not precisely correspond with the extent of civilization. The possibility of a solarnet (this term of due to Heath Rezabek, and the idea is given an exposition in my Cyberspace and Outer Space) that would constitute an internet for a human civilization throughout our native solar system, would be an expansion of the technium throughout our solar system, and it is likely that this will proceed human spacesteading (or, at least, will be at the leading edge of human spacesteading) so that the technium has a greater spatial extent than civilization for some time.

If, at some future time, human beings were to build and launch BracewellVon Neuman probes — self-replicating robotic probes sent to other solar systems, at which point the self-replicating probes employ the resources of the other solar system to build more BracewellVon Neuman probes which are then sent on to other solar systems in turn — when, in the fullness of time, these probes had spread through the entire Milky Way galaxy (which would take less than four million years), the technium would then include the entire Milky Way, even if we couldn’t properly say that human civilization covered the same extent.

It is an interesting feature of a lot of futurism that focuses on technology — and here I am thinking of Kevin Kelly’s book here under consideration as well as the extensive contemporary discussion of the technological singularity — that such accounts tend to remain primarily terrestrially-focused, while it is another party of futurists who focus on scenarios in which human space travel plays a significant role in the future. Both visions are inadequate, because both technological advances and space travel that projects civilization beyond the Earth will play significant roles in the future, and in fact the two will not be distinguishable. As I have noted above, the technium already extends well beyond the Earth to the other planets of our solar system, and, if we count the Voyager probes now in deep space, beyond the solar system.

One way in which we see technologically-based futurism focusing on terrestrial scenarios is the terminology and concepts employed. While the term isn’t used much today, there is the idea of a “technosphere” which is the technological analogue of those spheres recognized by the earth sciences such as the geosphere, the hydrosphere, the biosphere, the lithosphere, and so forth — essentially geocentric or Ptolemaic conceptions, which remain eminently valid in regard to Earth-specific earth sciences, but which when applied to technology, which has already slipped the surly bonds of earth, it is misleading.

More contemporary conceptions — which, of course, have a history of their own — would be that of a planetary civilization or, on a larger scale, the idea of a matrioshka brain, which latter could be understood as part of a human scenario of the future or part of a singularity scenario.

Michio Kaku has many times referenced the idea of a planetary civilization, and he often does so citing Kardashev’s classifications of civilization types based on energy uses. Here is Kaku’s exposition of what he calls a Type I civilization:

Type I civilizations: those that harvest planetary power, utilizing all the sunlight that strikes their planet. They can, perhaps, harness the power of volcanoes, manipulate the weather, control earthquakes, and build cities on the ocean. All planetary power is within their control.

Michio Kaku, Physics of the Impossible, Chapter 8, “Extraterrestrials and UFOs”

Of course, anyone is free to define types of civilization however they like, and Kaku has been consistent in which characterization of civilization across his own works, but this does have much of a relationship to the schema of Type I, II, and III civilizations as originally laid out by Kardashev. Kardashev was quite explicit in his original paper, “Transmission of Information by Extraterrestrial Civilizations” (1964), that a type I civilization was a, “technological level close to the level presently attained on the earth.” The earth’s energy use has increased significantly since Kardashev wrote this, so according to Kardashev’s original idea, we are today firmly within the territory of a Type I civilization. But Kardashev’s conception is not what Kaku has in mind as a planetary civilization:

“As I’ve discussed in my previous books, our own civilization qualifies a Type 0 civilization (i.e., we use dead plants, oil and coal, to fuel our machines). We utilize only a tiny fraction of the sun’s energy that falls on our planet. But already we can see the beginnings of a Type I civilization emerging on the Earth. The Internet is the beginning of a Type I telephone system connecting the entire planet. The beginning of a Type I economy can be seen in the rise of the European Union, which in turn was created to compete with NAFTA.”

Michio Kaku, Physics of the Impossible, loc. cit.

In his Physics of the Future, Kaku devotes Chapter 8, “Future of Humanity,” to the idea of a planetary civilization, in which he elaborates in more detail on the above themes:

The culmination of all these upheavals is the formation of a planetary civilization, what physicists call a Type I civilization. This transition is perhaps the greatest transition in history, marking a sharp departure from all civilizations of the past. Every headline that dominates the news reflects, in some way, the birth pangs of this planetary civilization. Commerce, trade, culture, language, entertainment, leisure activities, and even war are all being revolutionized by the emergence of this planetary civilization. Calculating the energy output of the planet, we can estimate that we will attain Type I status within 100 years. Unless we succumb to the forces of chaos and folly, the transition to a planetary civilization is inevitable, the end product of the enormous, inexorable forces of history and technology beyond anyone’s control.

Michio Kaku, Physics of the Future, p. 11

And to put it in a more explicitly moral (and bifurcated, i.e., Manichean) context:

There are two competing trends in the world today: one is to create a planetary civilization that is tolerant, scientific, and prosperous, but the other glorifies anarchy and ignorance that could rip the fabric of our society. We still have the same sectarian, fundamentalist, irrational passions of our ancestors, but the difference is that now we have nuclear, chemical, and biological weapons.

Michio Kaku, Physics of the Future, p. 16

For Kaku, the telos of civilization’s immediate future is the achievement of a planetary technium. The roots of this idea go back at least to the Greek architect and city planner Constantinos Doxiadis, who was quite famous in the middle of the twentieth century, authored many books, formulated a theory of urbanism that I personally find more interesting than anything written today (although he called his theory “ekistics” which is not an attractive name), and drew up the plans for Islamabad. Doxiadis forecast an entire hierachy of settlements (which he called ekistic units), from the individual to the ecumenopolis, the world-city.

Here is how Doxiadis defined ecumenopolis in his treatise on urbanism:

Ecumenopolis: the coming city that will, together with the corresponding open land which is indispensable for Man, cover the entire Earth as a continuous system forming a universal settlement. Term coined by the author and first used in the October 1961 issue of Ekistics.

Constantinos A. Doxiadis, Ekistics: An Introduction to the Science of Human Settlements, New York: Oxford University Press, 1968, p. 516 (Doxiadis, like me, had no compunctions about inventing his own terminology)

In What Technology Wants Kelly explicitly invoked ecumenopolis as both unsettling and possibly inevitable:

The technium is a global force beyond human control that appears to have no boundaries. Popular wisdom perceives no counterforce to prevent technology from usurping all available surfaces of the planet, creating an extreme ecumenopolis — planet-sized city — like the fictional Trantor in Isaac Asimov’s sci-fi stories or the planet Coruscant in Lucas’s Star Wars. Pragmatic ecologists would argue that long before an ecumenopolis could form, the technium would outstrip the capacity of Earth’s natural systems and thus would either stall or collapse. The cornucopians, who believe the technium capable of infinite substitutions, see no hurdle to endless growth of civilization’s imprint and welcome the ecumenopolis. Either prospect is unsettling.

Kevin Kelly, What Technology Wants, First published in 2010 by Viking Penguin, p. 197

Now, I am not saying that the scenarios of Kevin Kelly and Michio Kaku avoid the human future in space, but it doesn’t seem to be a particular interest of either author, so it doesn’t really receive systematic development or exposition. So I would like to place the technium in Copernican context, i.e., in the context of a Copernican civilization — although it should be obvious from what I wrote above that a Copernican technium will not always coincide with a Copernican civilization.

Some of this will be familiar to those who have read my other posts on Copernican civilization and astrobiology. In A Copernican Conception of Civilization (later refined in my formulations in Eo-, Eso-, Exo-, Astro-, based on Joshua Lederberg’s concepts of eobiology, esobiology, and exobiology) I formulated the following definitions of civilization:

● Eocivilization the origins of civilization, wherever and whenever it occurs, terrestrial or otherwise

● Esocivilization our terrestrial civilization

● Exocivilization extraterrestrial civilization exclusive of terrestrial civilization

● Astrocivilization the totality of civilization in the universe, terrestrial and extraterrestrial civilization taken together in their cosmological context

Now it should be obvious how we can further adapt these same definitions to the technium:

● Eotechnium the origins of the technium, wherever and whenever it occurs, terrestrial or otherwise

● Esotechnium our terrestrial technium

● Exotechnium any extraterrestrial technium exclusive of the terrestrial technium

● Astrotechnium the totality of technology in the universe, our terrestrial and any extraterrestrial technium taken together in their cosmological context

The esotechnium corresponds to what has been called the technosphere, mentioned above. I have pointed out that the concept of the technosphere (like other -spheres such as the hydrosphere and the sociosphere, etc.) is essentially Ptolemaic in conception, and that to make the transition to fully Copernican conceptions of science and the world we need to transcend our Ptolemaic ideas and begin to employ Copernican ideas. Thus to recognize that the technosphere corresponds to the esotechnium constitutes conceptual progress, because on this basis we can immediately posit the exotechnium, and beyond both the esotechnium and the exotechnium we can posit the astrotechnium.

A strict interpretation of technosphere or esotechnium would be limited to the surface of the earth, so that all the technology that is flying around in low earth orbit, and which is so closely tied in with planetary technological systems, constitutes an exotechnium. If we define the boundary of the earth as the Kármán line, 100 km above sea level, this would include within the technosphere or esotechnium all of the highest flying aircraft and the weather balloons, but would exclude all of the lowest orbiting satellites. Even if we were to include the near earth orbit so saturated with satellites as part of the esotechnium, there would still be our technological artifacts on the moon, Mars, Venus, and orbiting around distant bodies of the solar system. farthest out of all, already passing out of the heliosphere of the solar system, into the heliopause, and therefore into interstellar space, are the spacecraft Voyager 1 and Voyager 2.

One question that Kelly left unanswered in his exposition of the technium is whether or not it is to be understood as human-specific, i.e., as the totality of technology generated and employed by human beings. In the nearer-term future there may be a question of distinguishing between human-produced technology and machine-produced technology; in the longer-term future there may be a question of distinguishing between human-generated technology and exocivilization-produced technology. In so far as the idea of the technological singularity involves the ability of machines to augment their own technology, the distinction between human industrial-technological civilization and the post-human technological singularity is precisely that between human-generated technology and machine-generated technology.

There is a perfect parallel between the Terrestrial Eocivilization Thesis and, what is implied in the above, the Terrestrial Eotechnium Thesis, which latter would constitute the claim that all technology begins on the Earth and expands into the universe from this single point of origin.

At this point we might want to distinguish between an endogenous technium, having its origins on the Earth, and any exogenous technium, having its origins in an alien civilization. Another way to formulate this would be to identify any alien technium as a xenotechnium, but I haven’t thought about this systematically yet, so I will leave any attempted exposition for a later time.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Decadent Technologies

4 June 2012

Monday


In several previous posts I have discussed how novel technologies will often display a sigmoid growth curve, starting with a gradual development, suddenly experiencing an exponential increase in complexity, sophistication, and efficacy, followed by a long plateau of little or no development after that technology has achieved maturity. The posts in which I described this development include:

The Law of Stalled Technologies

More on Stalled Technologies

Blindsided by History

Technological Succession

In Blindsided by History I wrote:

“Present technologies will stall, and they will eventually be superseded by unpredicted and unpredictable technologies that will emerge to surpass them. Those who remain fixated on existing technologies will be blindsided by the new technologies, and indeed may simply fail to recognize new technologies for what they are when they do in fact appear.”

The phenomena of one technology superseding another results in Technological Succession. In my post on technological succession I wrote the following:

The overtaking of a stalled technology that remains at a given plateau by another technology that fulfills a similar need (although by way of a distinct method) is an extension of a society with stable institutions that was able to bring to fruition a mature technology. With a mature technology in place, and stable economic and social institutions built upon this technology, there emerges an incentive to continue or to expand these institutions to a greater extent, at a cheaper cost, more efficiently, more effectively, and with less effort. This attempt to do previous technology one better is, in turn, a spur to social changes that will call forth further innovations. It could be argued that the Industrial Revolution emerged from just such an escalation of social and technology coevolution.

Technological succession, then, develops in parallel with the social succession of institutions capable of fostering further technological development by different means once a given technology stalls. In this post I made a distinction between mature technologies (another name for stalled technologies), which are technologies that have passed through their exponential growth phase and have plateaued at a stable level, and perennial technologies, which are technologies that do not experience exponential growth curves in their development — things like knives that have always been a part of the human “toolkit” and always will be. This distinction between mature and perennial technologies I then developed according to a biological analogy:

By analogy with microevolution (evolution within a species) and macroevolution (evolution from one species into another) in biology, we can see the microevolution and macroevolution of technologies. Perennial technologies exhibit micorevolution. No new technological “species” emerge from the incremental changes in perennial technologies. Technological macroevolution is the succession of a stalled technology by a new, immature technology, which latter still possesses the possibility of development. Mature technologies experience adaptive radiation under coevolutionary pressures, and this macroevolution can result in new technological species.

The coevolutionary pressures are those social institutions that make demands upon a technology to continue its development in the face of advancing social developments, which latter might include expanding populations, higher standards of living, raised expectations and soaring ambitions.

Even if another technology does not come along to further extend the social functions served by the mature and now stalled technology, the incentives to continue to go one better with technology remains, and this incentive drives the attempt to try to squeeze more performance out of mature technologies that would, if surpassed in the process of technological succession, remain stalled at a stable plateau of development. The result of pushing for more performance from a stalled technology is what I will call decadent technology (though I could just as well call this baroque technology).

The obvious examples that come to mind of decadent technologies are either of a humorous or theatrical character (or both). Steampunk and tubepunk are obvious examples of the intentional elaboration of a decadent technology for aesthetic and theatrical effect. As genres of art and literature, steampunk and tubepunk aren’t seeking to supply the wants of mass society (except for aesthetic wants, which respond to a different class of coevolutionary pressures).

Another example of decadent technology is that of race car engines. If you want to go really fast, it would make more sense to strap a jet engine onto set of wheels (which would look like a steampunk contraption), but racing mostly means specialized internal combustion engines — engines pushed about as far as the technology of the internal combustion engine can be pushed. It is obvious, from the thousands of photographs in car magazines, that the builders of racing engines can an aesthetic pleasure in their creations. However, these engines are not merely aesthetic exercises like steampunk, because by pushing the technology of the internal combustion engine to its limits, much more horsepower can be obtained. Thus a decadent technology can be effective, though it quickly begins to reach a level of diminishing returns, and further investment yields progressively less of a return. That is why these engines are not models of efficiency that the mass producers of automobiles look to for technological developments (though this is often used as an excuse for car manufacturers to sponsor drag racing) but rather they are expressions of mechanical ambition. Like I wrote above, if you want to go really fast, you can build a jet; the challenge is to build an internal combustion engine with the power of a jet, and this is a challenge in which both builders of racing engines and race spectators enjoy.

Most examples of decadent technology are not as theatrical and not as much fun as steampunk and race cars, but the principles are essentially the same. Microchip technology, following the social coevolutionary pressure of fulfilling the prophecy of Moore’s Law, is close to becoming a decadent technology. If some other technology for computing fundamentally different from silicone wafer technology does not emerge soon (like quantum computing, which still seems to be some way off), the producers of microchips will come under considerable economic pressure to drive silicone technology beyond its natural (i.e., physical) limits and transform it into a decadent technology.

. . . . .

Decadent technology

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Tuesday


Recently my attention was brought to a blog that is dedicated to the critical discussion of the Technological Singularity, Blogging Against ‘The Future’. The author of the blog read my posts about artificial intelligence, machine consciousness, and the Technological Singularity from earlier this year and quoted me in one of his posts. I have already received a half dozen referrals from his website, and several of my posts that hadn’t been accessed in some time have shown up as having been read again.

It took John Locke a long time to write a book, and for good reason.

Somewhere, some years ago, I read that John Locke said that he would write a manuscript and then stick it away until he forgot about. Some time later he would take it out again, and from this later perspective he was able to criticize his own work more effectively. I know what he meant by this, and I have experienced it myself. (However, I have also experienced coming back to something I wrote and not being able to pick up the thread of understanding again.) So it was when I went back and re-read some of my Singularity posts.

In my Blindsided by History (a post I had almost completely forgotten), I wrote, “if and when machine consciousness emerges in history, it will be incomprehensibly alien, perhaps unrecognizable for what it is, because it will have emerged from a different evolutionary process than that from which we emerged.” When I read again this I was reminded of a famous quote from Ortega y Gasset: “Man has not an essence but a history.” Over the years I have thought a lot about this line, and I think it is an exceptionally profound observation. Not only man, but much else in the world, probably most of the world, has not an essence but a history. This, if extrapolated to complete generality, becomes a philosophy that is the antithesis of Platonism, but neither is it constructivism or antirealism or any other familiar doctrine formulated in contradistinction to Platonism. We could, if we liked, call it historical constructivism, and this has a certain intuitive plausibility.

José Ortega y Gasset (May 9, 1883 - October 18, 1955)

José Ortega y Gasset (May 9, 1883 - October 18, 1955)

Machines, too, have not an essence but a history. Perhaps they have an essence too, in addition to a history, but it is the history that crucially demarcates organically emergent beings from mechanically emergent beings. Man and machine have different histories, and if Ortega y Gasset is correct, and if we may make a valid extrapolation from his observation, because they have different histories they are differentiated on a level that previous history would have mistaken for essence, i.e., an essential difference.

I might also add to what I wrote in Blindsided by History about unpredictability: “Present technologies will stall, and they will eventually be superseded by unpredicted and unpredictable technologies that will emerge to surpass them.” It is precisely because future technologies will be unpredicted and unpredictable that the future itself will be unpredicted and unpredictable. History emerges from the cumulative events of passing time; it is built upon the details of individual lives, specific technologies with their advantages and disadvantages, particular circumstances, and concrete facts. The unpredictable emergence of technologies contributes its measure of instability to the general instability of history.

History is always in tension between equilibrium and instability. Sometimes the slow and steady accumulation of the minutiae of time changes the world so gradually that we don’t notice that anything has changed; it is only in reflection, retrospectively, that we are able to realize that the world is a different world than it was. sometimes the accumulation of relentless change spills over in a sudden revolution, a punctuation in the equilibrium of history, but in either case the steady rate of background change continues apace.

Evolution is by its nature unpredictable in its outcome. We can predict that certain selection forces will come to bear, that certain selection events will occur, and that certain entities (say, men and machines) will be subject to these forces and events, but we cannot say what will come of it all. But we can say with confidence that the distinct histories of man and machine will issue in distinct and divergent futures.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: