From ‘Big Bang Discovery Opens Doors to the ‘Multiverse”

The observable/observed distinction

We can make a distinction between observable universes that are, in fact, observed, and observable universes that, while observable in principle, are not actually observed in fact. Thus, the set of all observable universes may be larger than the set of all universes actually observed, just as the set of all habitable planets is almost certainly larger than the set of all planets that are actually inhabited.

There are many parallels between the observable/observed and inhabitable/inhabited distinctions, and this is because this is, in each case, a modal distinction between potentiality and actuality. For a universe to be observable is for it to be potentially an object of perception, and for a universe to be observed is for it to be actually an object of perception. If “observation” is taken to include not only perception (which might be unknowing and unreflective, i.e., not self-aware) but also conception, we can revise these formulations so that some universe is potentially or actually both an object of perception and an object of thought.

But the observable/observed and inhabitable/inhabited distinctions are even more closely related than both being particular cases of potentiality vs. actuality; an observable universe is a habitable universe, and an observed universe is an inhabited universe. The universe (or a universe), then, is a generalization of a planet, so that in studying the habitable/inhabited distinction where it concerns planets, we are studying the question of observable/observed universes in miniature.

In the case of habitability (i.e., the habitable/inhabited distinction), we know the confusion that this routinely causes. With the increasing number of announcements of exoplanet discoveries, there have been an increasing number of confused accounts which imply that a planet of the right size found within a habitable zone is not just potentially habitable (arguably this formulation is redundant, and it should be sufficient to say “habitable”), but that it is, or must be, inhabited. Exoplanet scientists and astrobiologists are not guilty of this conflation, but accounts of their work in the legacy media make this conflation with regularity.

Perhaps because we see our near neighbors Venus and Mars, both smallish rocky planets like Earth, and both more-or-less in the habitable zone, we can easily understand that a planet that has the right conditions for life does not necessarily host life: these planets are habitable but not inhabited. We can bring the habitable/inhabited distinction home and understand it in human terms, but the observable/observed distinction, especially when applied to the universe entire, is likely to elude us. Moreover, the idea of an empty universe, that is to say, an entire universe without intelligent observers (observers who can both perceive the world and form a conception of what they perceive), is likely to strike many as a bit bizarre, if not absurd.

The Anthropic Cosmological Principle

Sometimes the idea that an empty universe is absurd is made explicit, or nearly so. John Wheeler is credited with saying, “A universe without an observer is not a universe at all.” In fact, Wheeler didn’t write these exact words, but the idea is pervasively present in his exposition of the anthropic cosmological principle. To give a sense of this, here is a comment on the weak anthropic principle (WAP) from Barrow and Tipler’s classic work (with a forward provided by John Wheeler):

“According to WAP, it is possible to contemplate the existence of many possible universes, each possessing different defining parameters and properties. Observers like ourselves obviously can exist only in that subset containing universes consistent with the evolution of carbon-based life.”

The Anthropic Cosmological Principle, John D. Barrow and Frank J. Tipler, Oxford: Oxford University Press, 1986, p. 19

Three interpretations are given of the strong anthropic principle:

(A) There exists one possible Universe ‘designed’ with the goal of generating and sustaining ‘observers’.

(B) Observers are necessary to bring the Universe into being.

(C) An ensemble of other different universes is necessary for the existence of our Universe.

Ibid., p. 22

As these ideas are given an extensive exposition in the text, I will not attempt to flesh them out, but I quote them here only for purposes of exhibition. It would be a considerably involved enterprise to give an exposition of the various formulations of the weak, strong, participatory, and final anthropic principles propounded by Barrow, Tipler, and Wheeler, and then to present them in comparison and contrast with what I have written here about empty universes, but I am not going to attempt that here. Some of these ideas are consistent with a range of universes, some of them empty, and some are not.

Empty, unobserved universes and scientific realism

There can only be two senses of “observable universe” if one is willing to countenance the possibility of empty, unobserved universes, which suggests a strongly realist position, and this interpretation takes to the limit of extrapolation the idea that something exists whether or not we see it (or anyone sees it). If we assume that the back side of the head of the person we are talking to continues to exist even when we do not see it (and if there is no one else looking at it), then we are assuming some degree of realism.

In the case of the person, it could be argued that the person in question is always viscerally conscious of their bodily integrity, and on this basis the back side of their head continues to be perceived, and hence continues to exist without the posit of realism. However, this argument cannot be made with inanimate objects without positing panpsychism. We assume that the back sides of houses, the insides of closets, and the contents of empty rooms continue to exist even when we are not looking at them. I can see no reason this intuitive realism should not be scaled up to entire universes that exist without being observed. This is, at least, consistent with scientific realism, even if it is not entailed by scientific realism.

The Principle of Plenitude

This kind of distinction I am making here between observable universes and observed universes immediately puts us in mind of the principle of plenitude (on which I previously wrote in Cosmology is the Principle of Plenitude Teaching by Example and Parsimony and Plenitude in Cosmology). The most obvious interpretation of the principle of plenitude in this context is that a universe that was habitable would eventually realize the potential of this habitability and would become inhabited. Perhaps this is why some advocates of the strong anthropic principle say that a universe that does not produce observers is a “failed” universe (not the kind of claim I would ever make, but one can understand something of this by saying that such a universe has failed to realize its potential). If we acknowledge the possibility of “failed” universes in this sense, then we would have empty, uninhabited universes, only we would attach a (negative) valuation to them (and presumably we would attach a positive valuation to successful universes that realize their potential and produce observers).

There is, however, another way to interpret the principle of plenitude in this context, and that is to argue that the principle of plenitude entails the realization of every possible kind of universe, and that the existence of an empty universe without observers is a potential that will eventually be realized, if it has not already been realized. Moreover, every kind of universe that can be observed by an observer that evolves within that universe constitutes another kind of universe that could exist in which the potential of such an observer is not realized. Thus if there are a plurality of observed universes, then this interpretation of the principle of plenitude suggests that there will be a plurality of observable but unobserved universes.

The Principle of Parsimony

The principle of plenitude as applied to worlds or to universes would imply densely inhabited worlds and intensively observed universes — what Frank Drake and Dava Sobel called, “an infinitely populated universe.” The principle of parsimony (often invoked as a counter to the principle of plenitude) as applied to worlds or the universe would limit us almost in a constructivistic sense to the world we inhabit — there is at least one observable universe that is, in fact, observed — though before or after the existence of this one known instance of an observer the universe would be empty and unobserved.

The intersection of the principle of plenitude and the principle of parsimony would yield at least one such-and-such (plenitude) and at most one such-and-such (parsimony), that is to say, this intersection would yield uniqueness, one and only one such-and-such — but whether this uniqueness should apply to each and every universe, or whether the universe itself ought to be considered unique, is another question.

A final reflection

It seems to me that the idea of an uninhabited planet, that is unobserved because it it uninhabited, has become a familiar and even a conventional idea of contemporary cosmology and astrobiology — it is, I think, widely assumed that we will eventually find other life in the universe, sprung from other origin of life events, but that intelligent life, and thus an observer that knows itself to be observing, is likely to be quite rare. This consensus view — if it is a consensus — encounters problems when it is extrapolated from habitable/inhabited planets to habitable/inhabited universes. Why this idea appears to transcend science (in the narrow sense) when extrapolated to the whole of the universe I am not yet prepared to say, but I will continue to think about this.

I began this post with the intention to make a simple and straight-forward distinction between observable universes and observed universes (my first draft was only three paragraphs), but as I worked on this I got myself entangled in a number of difficult questions that ended up entailing all-too-brief discussions of difficult ideas like the principle of plenitude and the principle of parsimony. This is admittedly unsatisfying, and I know that I have not done these ideas justice, but at some point I have to bring this to a close.

. . . . .

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


three peaks 3

This post is intended as a quick addendum to my post The Apotheosis of Emergent Complexity, in which I considered, in turn, the respective peaks of star formation, life, and civilization during the Stelliferous Era, as exemplifying significant forms of emergent complexity in the universe.

peak 5

The apotheosis of emergent complexity recognized in that earlier post — when stars, life, and civilization are all represented — can be further narrowed in scope beyond the parameters I previously set. With the sole examples of ourselves as representing life and civilization, we can acknowledge a minimal form of the apotheosis of emergent complexity already extant, and as long as our civilization endures and continues in development it retains the possibility of seeing further emergent complexities arise. Among the further emergent complexities that could arise from terrestrial life and civilization is the possibility of this life and civilization expanding to other worlds. A simple expansion would represent the spatial and temporal extension of emergent complexity, but life and civilization almost certainly will be changed by their adaptation to other worlds, and this adaptive radiation on a cosmological scale may involve the emergence of further emergent complexity (in which case a fourth peak would need to be defined beyond stars, life, and civilization).

peak 6

An expansion of terrestrial life and civilization into the universe that constitutes an adaptive radiation on a cosmological scale, is an event that I have called the Great Voluntaristic Divergence (in Transhumanism and Adaptive Radiation) — “great” because it takes place on a cosmological scale that dwarfs known adaptive radiations on Earth by many orders of magnitude, “voluntaristic” because both the direction and the nature of the radiation and the adaptation will be a function of conscious and intelligent choice, and “divergence” because different choices will lead to the realization of diverse forms of life and civilization not existing, and not possible, on Earth alone. We can think of the Great Voluntaristic Divergence as a “forcing” event for the principle of plenitude. I have noted previously that cosmology is the principle of plenitude teaching by example. When the principle of plenitude works at the scale of the cosmos and at the level of complexity of civilization, further emergent complexity may yet transform the universe.

peak 7

If we take the peak of emergent complexity as beginning with the Great Voluntaristic Divergence, this peak of emergent complexity so conceived will end with the End Stelliferous Mass Extinction Event (which I first formulated in my Centauri Dreams post Who will read the Encyclopedia Galactica?). Once star formation ceases, the remaining stars will burn out one by one, and, as they wink out, the planetary surfaces on which they have been incubating life and civilizations will go dark. Any life or civilization that survives the coming darkness of the Degenerate Era, the Black Hole Era, and the Dark Era, will have to derive its energy flows from some source other than stellar energy flux concentrated on planetary surfaces, which I noted in my previous post, Civilizations of Planetary Endemism, typify the origins of civilizations during the Stelliferous Era.

peak 8

If life and civilization endure for so long as to confront the end of the Stelliferous Era, there will be plenty of time to prepare for alternative methods of harnessing energy flows. Moreover, I strongly suspect that the developmental course of advanced civilizations — the only kind of civilizations that could so endure — will experience demographic changes that will bring populations into equilibrium with their energy environment, much as we have seen birth rates plummet in advanced industrialized civilizations where scientific medicine reduces infant mortality, lengthens life, and increases the costs of child-rearing. When the End Stelliferous Mass Extinction Event is visited upon our distant descendants and their successor institution to civilization, their horizons will already have been altered to accommodate the change.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: