How to Live on a Planet

27 September 2017

Wednesday


Humanity is learning, slowly, how to live on a planet. What does it mean to live on a planet? Why is this significant? How has our way of living on a planet changed over time? How exactly does an intelligent species capable of niche-construction on a planetary scale go about revising its approach to niche construction to make this process consistent with the natural history and biospheric evolution of its homeworld?

Once upon a time the Earth was unlimited and inexhaustible for human beings for all practical purposes. Obviously, Earth was was not actually unlimited and inexhaustible, but for a few tens of thousands or hundreds of thousands of hunter-gatherers distributed across the planet in small bands, this was an ecosystem that they could not have exhausted even if they had sought to do so. Human influence over the planet at this time was imperceptible; our ancestors were simply one species among many species in the terrestrial biosphere. Even before civilization this began to change, as our ancestors have been implicated in the extinction of ice age megafauna. The evidence for this is still debated, but human populations had become sufficiently large and sufficiently organized by the upper Paleolithic that their hunting could plausibly have driven anthropogenic extinctions.

In this earliest (and longest) period of human history, we did not know that we lived on a planet. We did not know what a planet was, the relation of a planet to a star, and the place of stars in the galaxy. The Earth for us at this time was not a planet, but a world, and the world was effectively endless. Only with the advent of civilization and written language were we able to accumulate knowledge trans-generationally, slowly working out that we lived on a planet orbiting a star. This process required several thousand years, and for most of these thousands of years the size of our homeworld was so great that human efforts seemed to not even make a dent in the biosphere. It seemed the the forests could not be exhausted of trees or the oceans exhausted of fish. But all that has changed.

In the past few hundred years, the scope and scale of human activity, together with the size of the human population, has grown until we have found ourselves at the limits of Earth’s resources. We actively manage and limit the use of resources, because if we did not, the seven billion and growing human population would strip the planet clean and leave nothing. This process had already started in the Middle Ages, when many economies were forced to manage strategic resources like timber for shipbuilding, but the process has come to maturity in our time, as we are able to describe and explain scientifically the impact of the human population on our homeworld. We have, today, the conceptual framework necessary to understand that we live on a planet, so that we understand the limitations on our use of resources theoretically as well as practically. When earlier human activities resulted in localized extinctions and shortages, we could not put this in the context of the big picture; now we can.

Today we know what a planet is; we know what we are; we know the limitations dictated by a planet for the organisms constituting its ecosystems. This knowledge changes our relationship to our homeworld. Many definitions have been given for the Anthropocene. One way in which we could define the anthropocene in this context is that it is that period in terrestrial history when human beings learn to live on Earth as a planet. Generalized beyond this anthropocentric formulation, this becomes the period in the history of a life-bearing planet in which the dominant intelligent species (if there is one) learns to live on its planet as a planet.

In several posts I have written about the transition of the terrestrial energy grid from fossil fuels to renewable resources (cf. The Human Future in Space, The Conversion of the Terrestrial Power Grid, and Planetary Constraints 9). This process has already started, and it can be expected to play out over a period of time at least equal to the period of time we have been exploiting fossil fuels.

I recently happened upon the article How to Run the Economy on the Weather by Kris De Decker, which discusses in detail how economies and technologies prior to the industrial revolution were adapted to the intermittency of wind and water, and the adaptability of such habits to contemporary technologies. And I recall some years ago when I was in Greece, specially the island of Rhodes, every house had solar water heaters on the roof (and, of course, sunshine is plentiful in Greece), and everyone seemed to accept as a matter of course that you must shower while the sun is out. A combination of very basic behavioral changes supplemented by contemporary technology could facilitate the transition of the terrestrial power grid with little or no decline in standards of living. This is part of what it means to learn to live on a planet.

As we come to better understand biology, astrobiology, ecology, geology, and cosmology, and we thus come to better understand our homeworld and ourselves, we will learn more about how to live on a planet. But the expansion of our knowledge of exoplanets and astrobiology will be predicated upon our ability to travel to other worlds in order to study them, and if we are fortunate enough to endure for such a time and to achieve such things, then we will have to learn how to live in a universe.

The visible universe is finite. Though the visible universe may be part of an infinitistic cosmology (or even an infinitistic multiverse), the expansion of the universe has created a cosmological horizon beyond which we cannot see. I have previously quoted a passage from Leonard Susskind to this effect:

“In every direction that we look, galaxies are passing the point at which they are moving away from us faster than light can travel. Each of us is surrounded by a cosmic horizon — a sphere where things are receding with the speed of light — and no signal can reach us from beyond that horizon. When a star passes the point of no return, it is gone forever. Far out, at about fifteen billion light years, our cosmic horizon is swallowing galaxies, stars, and probably even life. It is as if we all live in our own private inside-out black hole.”

Leonard Susskind, The Black Hole War: My Battle with Stephen Hawking to make the World Safe for Quantum Mechanics, New York, Boston, and London: Little, Brown and Company, 2008, pp. 437-438

We know, then, scientifically, that the universe is effectively finite as our homeworld is finite, but the universe is so large in comparison to the scale of human activity, indeed, so large even in comparison to the aspirational scale of human activity, that the universe is endless for all practical purposes. Though we are already learning how to live on a planet, in relation to the universe at large we are like our hunter-gather ancestors dwarfed by a world that was, for them, effectively endless.

Only at the greatest reach of the scale of supercivilizations will we — if we last that long and achieve that scale of development — run into the limits of our home galaxy, and then into the limits of the universe, at which time we will have to learn how to live in a universe. I implied as much in an illustration that I created for my Centauri Dreams post, Stagnant Supercivilizations and Interstellar Travel (reproduced below), in which I showed a schematic representation of the carrying capacity of the universe. At this scale of activity we would be engaging in cosmological niche construction in order to make a home for ourselves in the universe, as we are now engaging in planetary-scale niche construction as we learn how to live on a planet.

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Friday


measuring earth

Traditional units of measure

Quite some time ago in Linguistic Rationalization I discussed how the adoption of the metric system throughout much of the world meant the loss of traditional measuring systems that were intrinsic to the life of the people, part of the local technology of living, as it were. In that post I wrote:

“The gains that were derived from the standardization of weights and measures… did not come without a cost. Traditional weights and measures were central to the lives and the localities from which they emerged. These local systems of weights and measures were, until they were obliterated by the introduction of the metric system, a large part of local culture. With the metric system supplanting these traditional weights and measures, the traditional culture of which they were a part was dealt a decisive blow. This was not the kind of objection that men of the Enlightenment would have paused over, but with our experience of subsequent history it is the kind of thing that we think of today.”

Perhaps it is not the kind of thing many think of today; most people do not mourn the loss of traditional systems of measurement, but it should be recalled that these traditional systems of measurement were not arbitrary — they were based on the typical experience of individuals in the certain milieu, and they reflected the life and economy of a people, who measured the things that they needed to measure.

In agrarian-ecclesiastical civilization, a common visual metaphor submitted souls to the rigors of weights and measures.

In agrarian-ecclesiastical civilization, a common visual metaphor submitted souls to the rigors of weights and measures.

It is often noted that languages have an immediate relation to the life of a people — the most common example cited is that of the number of words for snow in the languages of the native peoples of the far north. Weights and measures — in a sense, the language of commerce — also reflect the life of a people in the same immediate way as their vocabulary. Language and measurement are linked: much of the earliest writing preserved from the Fertile Crescent consists of simple accounting of warehouse stores.

sumerian tablet

A particular example can illustrate what I have in mind. It is common to give the measurement of horses in hands. The hand as as unit of measurement has been standardized as four inches, but it is obvious that the origins of the unit is derived from a human hand. Everyone has an admittedly vague idea of the average size of a human hand, and this gives an anthropocentric measurement of horses, which have been crucial to many if not most human economies. The unit of a hand is intuitive and practical, and it continues to be used by individuals who work with horses. It is, indeed, part of the “lore” of horsemanship. Many traditional units of measurement are like this: derived from the human body — as Pythagoras said, man is the measure of all things — they are intuitive and part of the lore of a tradition. To replace these traditional units has a certain economic rationale, but there is a loss if that replacement is successful. More often (as in measuring horses today), both traditional and SI units are employed.

horse-hands

Units of measure unique to a discipline

One response to the loss of traditional units is to define new units in terms of a system of weights and measures — today, usually the metric system — which reflect the particular concerns of a particular discipline. Having a unit of measurement peculiar to a discipline creates a jargon peculiar to a discipline, which is not necessarily a good thing. However, a unit of measurement unique to a discipline makes it possible to think in terms peculiar to the discipline. This “thinking one’s way into” some mode of thought is probably insufficiently appreciated, but it it quite common in the sciences. There are, for example, many different units that are used to measure energy. In principle, only one unit is necessary, and all units of measuring energy can be given a metric equivalent today, but it is not unusual for the energy of a furnace to be measured in BTUs while the energy of a particle accelerator is measured in electronvolts (eV).

For a science of civilization there must be quantifiable measurements, and quantifiable measurements imply a unit of measure. It is a relatively simple matter to employ (or, if you like, to exapt) existing units of measurement for an unanticipated field of research, but it is also possible to formulate new units of measurement specific to a scientific research program — units that are explicitly conceived and applied with the peculiar object of study of the science in view. It is arguable that the introduction of a unit of measurement specific to civilization would contribute to the formulation of a conceptual framework that allows one to think in terms of civilization in a way not possible, for example, in the borrowed terminology of historiography or some other discipline.

Thinking our way into civilization

With this in mind, I would like to suggest the possibility of a unit of time specific to civilization. We already have terms for ten years (a decade), a hundred years (a century), and a thousand years (a millennium), so that it would make sense to employ a metric of years for the quantification of civilization. The basic unit of time in the metric system is the second, and we can of course define the year in terms of the number of seconds in a year. The measurement of time in terms of a year derives from natural cosmological cycles, like the measurement of time in terms of days. With the increase in the precision of atomic clocks, it became necessary to abandon the calibration of the second in terms of celestial events, and this calibration is now done in terms of nuclear physics. Nevertheless, the year, like the day, remains an anthropocentric unit of time that we all understand and that we are likely to continue to use.

Suppose we posit a period of a thousand years as the basic temporal unit for the measurement of civilization, and we call this unit the chronom. In other words, suppose we think of civilization in increments of 1,000 years. In the spirit of a decimal system we can define a series of units derived from the chronom by powers of ten. The chronom is 1,000 years or 103 years; 1 centichronom is 100 or 102 years (a century), 1 decichronom is 10 years or 101 years (a decade), and 1 millichronom is 1.0 year or 100 years. In other other direction, in increasing size, 1 decachronom is 10 chronom or 10,000 years (104 years), 1 hectochronom is 100 chronom or 100,000 years (105 years), 1 kilochronom is 1,000 chronom or 1,000,000 years (106 years or 1.0 Ma, or mega-annum), and thus we have arrived at the familiar motif of a million year old supercivilization. Continuing upward we eventually would come to the megachronom, which is 1,000,000 chronom or 109 years or 1.0 Ga., i.e., giga-annum, at which point we reach the billion year old supercivilizations discussed by Ray Norris (cf. How old is ET?).

Defamiliarizing civilization

From such a starting point — and I am not suggesting that what I have written above should be the starting point; I have only given an illustration to suggest to the reader what might be possible — it would be possible to extrapolate further coherent units of measure. We would want to do so in terms of non-anthropocentric units, and, moreover, non-geocentric units. While the metric system is a great improvement (in terms of the standardization of scientific practice) over traditional units of measure, it is still a geocentric unit of measure (albeit appealing to geocentrism in an extended sense).

Traditional units of measurement were parochial; the metric system was based on the Earth itself, and so not unique to any nation-state, but still local in a cosmological sense. If we were to extrapolate a metric for civilization according to constants of nature (like the speed of light, or some property of matter such as now exploited by atomic clocks), we would begin to formulate a non-anthropocentric set of units for civilization. A temporal metric for the quantitative study of civilization suggests the possibility of also having a spatial metric for the quantitative study of civilization. For example, a unit of space could be defined that is the area covered by light traveling for 1 chronom. A sphere with a radius of one light year would entirely contain a civilization confined to the region of its star. That could be a useful metric for spacefaring civilizations.

What would be the benefit of such a system to quantify civilization? As I noted above, a system of measurement unique to a discipline allows us to think in terms of the discipline. Units of measurement for the quantification of civilization would allow us to think our way into civilization, and so possibly to avoid some of the traditional prejudices of historiographical thinking which have dominated thinking about civilization so far. Moreover, a non-anthropocentric system of civilization metrics would allow us to think our way into a non-anthropocentric metric for civilization, which would better enable us to recognize other civilizations when we have the opportunity to seek them out.

What I am suggesting here is a process of defamiliarization by way of scientific metrics to take the measure of something so familiar — human civilization — that it is difficult for us to think of it in objective terms. Previously in Kierkegaard and Russell on Rigor I discussed how a defamiliarizing process can be a constituent of rigorous thought. In so far as we aspire to the study of civilization as a rigorous science, the defamiliarization of a scientific set of metrics for quantifying civilization can be a part of that effort.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Monday


What might Byzantine civilization have been like if it had endured for a million years instead of a thousand years?

What might Byzantine civilization have been like if it had endured for a million years instead of a thousand years?

Carl Sagan often discussed the possibility of very old civilizations in the cosmos, hidden from us by distance or by our ignorance, but which we might someday hope to find by way of SETI initiatives. Here is a passage from Cosmos where he mentions the possibility of a million-year-old civilization:

“What does it mean for a civilization to be a million years old? We have had radio telescopes and spaceships for a few decades; our technical civilization is a few hundred years old, scientific ideas of a modern cast a few thousand, civilization in general a few tens of thousands of years; human beings evolved on this planet only a few million years ago. At anything like our present rate of technical progress, an advanced civilization millions of years old is as much beyond us as we are beyond a bush baby or a macaque. Would we even recognize its presence? Would a society a million years in advance of us be interested in colonization or interstellar spaceflight?”

Carl Sagan, Cosmos, Chapter XII, “Encyclopaedia Galactica”

While Sagan focused on the possibility of civilizations that are very old, Kardashev focused on the possibility of civilizations that are very large. Kardashev explicitly argued for the existence of civilizations that he called “supercivilizations” that had quite literally grown to astronomical dimensions. Kardashev wrote:

“The scales of activity of any civilization are restricted only by natural and scientific factors… Civilizations have no inner, inherent limitations on the scales of their activities.”

“On the inevitability and the possible structures of supercivilizations,” Nikolai S. Kardashev, in The Search for Extraterrestrial Life: Recent Developments, edited by M. D. Papagiannis, International Astronomical Union, 1985, pp. 497-504.

These themes occur throughout Kardashev’s writings on supercivilizations, which Kardashev asserted to probably exist and to be detectable by the methods of SETI, if only a SETI project were to focus on supercivilizations:

“Astrophysical research, data from biology and cybernetics, and from other sciences, point to a high probability for the detectability of extraterrestrial civilizations. Currently, what is needed is a fundamental review of our preliminary notions about the possible nature of these civilizations and of the particular method which must be used in the search for them. In my opinion, the only useful concept is the assumption that supercivilizations exist (in particular, also, that our civilization may eventually become a supercivilization).”

“Strategy for the search for extraterrestrial intelligence,” N. S. KARDASHEV, Institute for Space Research, Academy of Sciences, U.S.S.R., Acta Astronautica, Vol. 6, pp. 33-46, Pergamon Press, 1979

Ray Norris raises the stakes in his calculation of the age of detectable extraterrestrial civilizations and argues that any exocivilization we might hope to find would be on the order of a billion years old:

“Conventional models imply that supernovae and gamma-ray-bursters will extinguish life on planets at intervals of about 200 Myr. Since this has not happened on Earth, either these conventional models are wrong, or else life on Earth is probably unique in the Galaxy. The first case predicts a median age of ET as being of the order of 1 billion years. The second case predicts that we will never detect ET. Thus, if we do detect ET, the median age is of order 1 billion years. Note that, in this case, the probability of ET being less than one million years older than us is less than 1 part in 1000.”

“HOW OLD IS ET?” Ray P. Norris, CSIRO Australia Telescope National Facility, Acta Astronautica 47:731, 1999.

For Norris, the idea of a million-year-old supercivilization is a minimum threshold, while the median age for a detectable civilization would be closer to being a billion years old.

The idea of a million- or billion-year-old supercivilization would seem to be the antithesis of a suboptimal civilization, but the consideration of each can help us to refine our conception of the other. If a supercivilization is very old or very large, does this entail that any suboptimal civilization is very young or very small? Given the habitable lifespan of a planet around a stable star, it is possible that even a civilization confined to the surface of a planet (and therefore very small in astronomical terms) could grow very old, perhaps attaining Sagan’s threshold of being a million-year-old civilization. Could we call such a civilization a supercivilization?

A distinction I failed to make in Suboptimal Civilizations is that between civilizational longevity with and without attaining civilizational maturity. Under conditions of planetary constraint, a sequence of civilizations might arise, come to maturity, and disappear, each in turn fulfilling the essential idea of that particular civilization. This cyclical or sequential vision of civilization is distinct from a million-year-old civilization that is not a supercivilization merely in virtue or remaining “small” (confined to a planetary surface).

Furthermore, a million-year-old civilization might either attain its maturity, establishing itself at a plateau (a high level equilibrium, if you will) at or just past its mature plateau in a state of extended senescence (I can imagine this case being made for Byzantine civilization, so imagine, if you will, a million-year-old Byzantium), or a million-year-old civilization might continue indefinitely in the pursuit of some telos that indefinitely eludes it.

If no catastrophic event brings terrestrial civilization to an end (this does not include predictable change that may well be seen by human beings as catastrophic, but which must be expected over a million year horizon — I am thinking of climate change, inter alia), terrestrial civilization could go on to become a million-year-old civilization (that is not a supercivilization) if it fails to cross the threshold of becoming a demographically significant spacefaring civilization.

If we understand civilization of the third order (see below) to extend from the earliest origins of civilization on Earth to galaxy-spanning Kardashevian supercivilizations, than any civilization we know of occupies a point along this civilizational continuum, and the telos of civilization (and therefore the measure of whether civilization has reached maturity) is a supercivilization. In this sense, any civilization that has not evolved into a supercivilization is a suboptimal civilization.

However, given my definition of civilization of the third order, no individual civilization would thus attain supercivilization status; only the whole structure of intertwined civilizations (going back ten thousand years to the origins of civilization on our planet) could be said to be a supercivilization (and indeed not only in Kardashev’s sense of the term, but also a “supercivilization” in the sense of being a meta-conception of civilization distinct from any particular civilization). In the case of a supercivilziation of the third order, no individual civilization within that continuum of civilization could be judged as a suboptimal civilization in so far as each contributory civilization is part of a third order supercivilization.

If, on the other hand, we require that a supercivilization be a single, continuously extant individual civilization of great antiquity and achievement, then a supercivilization is a concept of civilization of the second order. In this case, even if an individual civilization were incorporated into a network of related civilizations (just as the civilizations of Earth manifest a reticulate organization) that eventually lasted a million years and attained supercivilization status, that individual civilization that itself failed to ultimately develop into a supercivilization could be said to be a suboptimal civilization. Thus a civilization’s attaining maturity could be a function of its development or of its place within the larger structure of civilizations. Distinctions need to be made to avoid confusion.

We could define the maturity of civilization in terms of any of the orders of civilization. In Thinking about Civilization I introduced the idea of orders of civilization as follows:

● Civilization of the Zeroth Order is the order of prehistory and of all human life and activity and comes before civilization in the strict sense. Civilization of the zeroth order may involve socioeconomic communities that do not rise to the threshold of civilization.

● Civilization of the First Order are those socioeconomic systems of large-scale organization that supply the matter upon which history works; in other words, the synchronic milieu of a given civilization, a snapshot in time.

● Civilization of the Second Order is an entire life cycle of civilization, from birth through growth to maturity and senescence unto death, taken whole.

● Civilization of the Third Order is the whole structure of developmental stages of civilization such that any particular civilization passes through, but taken comprehensively and embracing all civilizations within this structure and their interactions with each other as the result of these structures. In other words, civilization of the third order is the life cycle of many civilizations as they overlap and intersect in one grand narrative of civilization.

Based on these orders of civilization, the maturity of each conception of civilization can be distinctly defined:

● Zeroth Order Maturity Mature institutions of hunter-gatherer nomadism.

● First Order Maturity Mature institutions of large-scale socioeconomic organization, without reference to the stage of development of that civilization on the whole.

● Second Order Maturity A civilization that has completed its life cycle, including having passed through a stage of fulfillment of its essential idea.

● Third Order Maturity The maturity of the overall structure of civilization, including diachronic and synchronic relations between distinct civilizations, sufficiently developed that all of the essential features of this conception are present.

It is in this final sense of maturity, the maturity of civilization of the third order, that we can speak of all non-supercivilizations as suboptimal civilizations. However, we may wish to make further distinctions. In cases in which a planetary civilization never passes the threshold to a demographically significant spacefaring civilization, and the entirety of civilization originating on such a planet plays itself out on the same planet, there may be predictable patterns of such planetary civilization of the third order, and patterns distinct from spacefaring civilizations of graduated degrees of gravitational thresholds. Thus we might speak of planetary civilizations of the third order, stellar civilizations of the third order, galactic civilizations of the third order, and so on. This clearly implies all of these distinctions also being made for each order of civilization.

We will also want to formulate the orders of supercivilization:

● Supercivilization of the Zeroth Order I am not yet prepared to say what corresponds to this concept, but I leave it here as a placeholder.

● Supercivilization of the First Order This is essentially Kardashev’s conception of Type II and Type III civilizations from his 1964 paper, which are judged to be supercivilizations on the basis of a single technological capacity, which is a snapshot of their technology in time, divorced from any conception of civilizational development or evolution.

● Supercivilization of the Second Order This is the idea of a single civilization possessing a single developmental arc that leads from primitive origins to supercivilization status, in other words, Sagan’s idea of a million-year-old civilization or Norris’ idea of a billion-year-old civilization. Such a civilization might be the source of detectable civilization understood above as a supercivilization of the first order.

● Supercivilization of the Third Order This is the idea of a network of civilizations that overlap and intersect, with individual civilizations emerging and then disappearing, but with successor civilizations carrying on the tradition and eventually achieving supercivilization status.

Given this sketch of the orders of supercivilization, we would also want to formulate the orders of suboptimal civilizations:

● Suboptimal Civilization of the Zeroth Order Again (as above), I am not yet prepared to say what corresponds to this concept, but I leave it here as a placeholder.

● Suboptimal Civilization of the First Order A civilization the institutions of which fail to fulfill their intended purpose. This could be a civilization at any stage of development or evolution, and indeed it could pass on to a later developmental stage at which it ceases to be a suboptimal civilization. This could be taken as a description of every civilization on our planet today.

● Suboptimal Civilization of the Second Order A civilization that has passed through an entire developmental arc and has apparently completed a life cycle (and is possibly extinct) without however having fulfilled or brought to maturity the essential idea that drove its emergence and development.

● Suboptimal Civilization of the Third Order A network of related civilizations that fails to exhibit full development of individual civilizations within the structure and which fails to exhibit any evolution of the structure of civilization on the whole. In other words, the rise and fall of a series of civilizations that accomplish nothing individually or collectively.

That is a lot to think over, and as many of these ideas are almost as new to me as they may be to the reader (if the reader has not come to them through his or her own reflections on supercivilizations and suboptimal civilizations), as I only arrived at these formulations as I was taking a walk yesterday, it will take time to assimilate this conceptual framework and to see whether or not it is useful for the analysis of civilization. But I might mention that it is a certain satisfaction for me that the idea of orders of civilization lends itself so well to this extrapolation, which implies that this idea is useful in the exposition of other ideas.

If I can continue to develop these ideas in the light of each other, as is suggested by the above exposition, they will prove themselves useful as analytical tools in the study of civilization.

. . . . .

If a Byzantine civilization had endured for a million years, would it have exhibited a regular cyclical pattern of crises and stable periods, or would it have inscribed a long arc of development? Would it be possible for a million-year-old non-technological civilization to exhibit such a long arc of development?

If a Byzantine civilization had endured for a million years, would it have exhibited a regular cyclical pattern of crises and stable periods, or would it have inscribed a long arc of development? Would it be possible for a million-year-old non-technological civilization to exhibit such a long arc of development?

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Suboptimal Civilizations

25 April 2015

Saturday


sphinx-egypt-mcleish

When Thinking about civilization this also entails thinking about compromised forms of civilization as well as the end of civilization. Ideally, a comprehensive theory of civilization would be able to account for both civilizations that flourish and prosper as well as those that fail to flourish, and which stagnate, decline, or disappear, or which develop in an undesirable direction (flawed realization). One can think of stagnation and decline as selective or partial collapse; contrariwise, civilizational collapse can be understood as the totality of stagnation or decline (the fulfillment of decline, if you will, which shows that not only progress but also decay can be formulated in teleological terms).

ziggurat-ur

In what follows I will adopt the term “suboptimal civilizations” to indicate those civilizations that have weathered existential threats and which have not gone extinct, but have continued in existence, albeit in a damaged, deformed, or otherwise compromised form due to being subject to stresses beyond that civilization’s level of resilience. A suboptimal civilization, then, is a civilization that has fallen prey to existential risk or risks, but is still extant.

Angkor-Wat-by-Helen-Candee

A civilization may become extinct even when the species that produced that civilization has not gone extinct. Thus the extinction of civilizations is a separate and distinct question from that of the extinction of species. However, the extinction of a species is likely to be much more tightly coupled to the extinction of a civilization, though we could construct scenarios in which a civilization is continued by some other species, or some other agent, than that which originated a given civilization. Generally speaking, those existential risks that lead to the extinction of a civilization are extinction and subsequent ruination; those existential risks that lead to suboptimal civilizations are stagnation and flawed realization.

Temple of Heaven

There is a philosophical problem when it comes to judging civilizations of the past that have transitioned into contemporary forms of civilization, losing their identity in the process, but leaving a legacy in the form of a continuing influence. One way to deal with this problem is to distinguish between civilizations that attained maturity and those that did not. Is a civilization that failed to attain maturity because it was preempted by another form of civilization now to be considered extinct? The obvious example that I have in mind, and which I have cited numerous times, is that of early modern European civilization, which I have called modernism without industrialism, which rapidly was transformed by the industrial revolution, which latter preempted the “natural” development of modernity before that modernity had achieved maturity.

India postcard

I will not attempt at present to define maturity for civilization, but my assumption will be that the maturity of a civilization will have something to do with the bringing to fulfillment of the essential idea of a civilization. I am not prepared to say how the essential idea of a civilization is to be identified, or how it is to be judged to have come to fulfillment, but this should be sufficient to give the reader an intuitive sense of what I have in mind.

917_001

The range of suboptimal civilizations, including those trapped in the social equivalent of neurotic misery, might be quite considerable. Toynbee formulated a range of concepts to understand suboptimal civilizations, including abortive civilizations, arrested civilizations, and fossil civilizations. Extrapolating from Toynbee’s conceptions of suboptimal civilizations, I formulated the idea of submerged civilizations in my post In the Shadow of Civilization.

martin_chambi_141

Toynbee’s conceptions of suboptimal civilizations are imaginative and poetic, but more qualitative than quantitative conceptions. In order to do this in the spirit of science, we would want our comprehensive theory of civilization to incorporate quantifiable metrics for the success or failure of a civilization. At our present stage of social development, it is controversial to compare civilizational traditions and to rate any one tradition as “higher” or “more advanced” than any other tradition (an idea I discussed in Comparative Concepts in the Study of Civilization), as representatives of those civilizations that rate lower on any proposed scale are offended by the metric employed, and they will usually suggest alternative metrics by which their preferred civilizational metric fares much better, while the civilizational tradition that fared better under the other metric would not come off as well by this alternative metric. The attempt by the nation-state of Bhutan to measure “gross national happiness,” may be taken as an example of this, although I am not sure that this is a helpful measure.

BALBECK-Baalbek-LEBANON

It would also be desirable in a comprehensive theory of civilization to formulate metrics for the viability or sustainability of a given civilization. In some cases, metrics for the success of civilization might coincide with metrics for the viability of civilization, but the possibility of very long lived civilizations that are less than ideal — suboptimal civilizations — points out the limitations of defining civilizational success in terms of civilizational survival. In some cases viability and optimality will coincide, while in some cases they will not coincide, and suboptimal civilizations that survive existential risks in a compromised form will be an example of such non-coincidence. The survival of a stagnant civilization can be a matter of mere cosmic good fortune, whereby a particular planet enjoys an uncommonly clement cosmic climate for an uncharacteristically long period of time (while other contingent factors may mean that the climate for civilizational development to maturity is not equally clement).

Ancient-Greece-Ruins-Vintage-Postcards

There are many ways to explore the idea of suboptimal civilization, as was observed above there are many ways for a civilization to languish in suboptimality. Indeed, it may be the case that the essential idea of a civilization has a much smaller class of circumstances in which that idea comes to full fruition and maturity, and a much larger class of circumstances in which that idea fails to mature for any number of distinct reasons, so that suboptimal civilizations are likely to outnumber civilizations that have attained optimality.

Kars

There is another philosophical problem, related to the problem noted above, in identifying the continuity of a civilization, so that a later stage of development can be considered the fulfillment, or failure of fulfillment, of some earlier civilizational idea, and not the emergence of a new idea not yet brought to fulfillment. I have previously considered this problem in several posts on the invariant properties of civilization. If a civilization emerges that seems to lack heretofore invariant properties of civilization, is to identified as a new form of civilization, or as non-civilization? Another way to formulate the problem is to ask whether civilization is an open-textured concept. The problem is posed every time an unprecedented development occurs in the history of civilization, so that the problem re-emerges at every stage in the history of a tradition, since the unprecedented is always occurring in one form or another. Let me provide an example of what I mean by this claim.

bazaar-roof

Imagine, if you will (as a thought experiment), that there were social scientists prior to the scientific revolution who studied their contemporaneous society much as we study our own societies today, and further suppose that despite the disadvantages such pre-modern social scientists would have labored under, that they manage to assemble reasonably accurate data sets that allows them to model the world in which they live and the history up to that point that had resulted in the world in which they lived (that is, the world of modernism without industrialism).

Venice from the early 20th Century

If you were to show pre-modern social scientists the spike in demographics, technology, energy use, and urbanization that attended the industrial revolution they might deny that any such development was even possible, and if they admitted that it was possible, they might say that a world so transformed would not constitute civilization as they understood civilization. They would be right, in a sense, to characterize our world today, after the industrial revolution, as a post-civilizational institution, derived perhaps from the long tradition of civilization with which they were familiar, but not really a part of this tradition. I implied as much recently when I wrote that, “It could be argued that traditional society… has already collapsed and has been incrementally replaced by an entirely different kind of society. For this is surely what has happened in the wake of the industrial revolution, which destroyed more aspects of traditional society than any Marxist, any revolutionary, or any atheist.” (cf. Is society existentially dependent upon religion?)

072_001

The thought experiment that I have suggested here in regard to the industrial revolution could also be performed in regard to the Neolithic agricultural revolution, although in this case we could not properly speak of an ancient civilization. Humanity as a species might have attained a great antiquity and even have made use of its intellectual gifts without having passed through any stage of large-scale settlement. This is an especially interesting thought experiment when we reflect that the paradigmatically human activities of art and technology predate civilization and may be understood in isolation from civilization, and might have developed separately from civilization. The rate of technological innovation prior to the advent of civilization was very slow, but it was not zero, and extrapolated to a sufficient age it would have produced an impressive technology, though this would have taken an order of magnitude longer than it took as a result of the industrial revolution. Something like civilization, but not exactly civilization as we know it, might have emerged from a very old human society that had not adopted large-scale settlement and consequently the institutions of settled civilization.

060705h

This ancient human society that had never crossed the threshold of civilization proper — at least in some senses a suboptimal form of social organization, even if not a suboptimal civilization — suggests yet another thought experiment: an ancient civilization that, despite its antiquity, never passes the threshold to become a Kardashevian supercivilization. The motif of a million-year-old civilization is a common one, Kardashev called them “supercivilizations” and Sagan often speculated on their histories, but what about the possibility of a million-year-old civilization that never develops technologically and never experiences an industrial revolution?

south_am_travel

If we plot out the history of technology and population (among other metrics) on a graph and extrapolate from trends prior to the industrial revolution (when these metrics suddenly spike) we can easily see the possibility of a very old civilization — tens of thousands or hundreds of thousands of years old — that would be the result of a simple diachronic extrapolation of trends that had characterized human life from the emergence of hominids up until the industrial revolution. This is at least possible as a counter-factual, and conceivable by way of an analogy with our prehistoric past.

Downtown Hartford early 1900s

The very old civilization that would be the result of a straight-forward diachonic extrapolation of civilization prior to the industrial revolution, given climatological conditions that allow for continual development, would be a civilization conceived in terms proportional to human history. We often forget that, prior to Homo sapiens, there is a multi-million year history of hominids with minimal toolkits that changed almost not at all over a million or even two million years. The human condition need not change appreciably even over very long periods of time.

porta_nigra_black_gate_moselle

A million year old agricultural civilization would probably look much like a 2,000 year old civilization, except that it would have a very long history, which means either a massive archive if continuity is maintained, or a lot of ruins and buried artifacts of the past if continuity has not been maintained. Would we have anything to learn from a million-year-old civilization that was not a supercivilization? Consider the possibility of art and literature a million years in development — the steady rate at which civilization prior to the industrial revolution produced masterpieces of art suggests that civilization without industrialization would be a very old agrarian civilization that was laden with a million years’ worth of art treasures. In this case a suboptimal civilization would be productive of values that would not and could not be achieved under an optimal civilization, which ought to make us question the optimality of optimal civilization where our presuppositions of optimality are drawn from industrialization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo small

. . . . .

Sunday


The dawn of a new day always suggests possibilities.

The dawn of a new day always suggests possibilities.

Million year old civilizations are not necessarily supercivilizations

The most common way to think about the possibility of very old civilizations is in terms of an ancient supercivilization, in which it is implied that the civilization in question began much as our civilization began, but has continued its trajectory of development for a million years or more. I previously addressed this theme of a million year old supercivilization in Third Time’s a Charm.

It is also possible, however, to conceive of very old civilizations — perhaps even million year old civilizations — that do not correspond to the assumptions implicit in the idea of a supercivilization. Such ancient but not necessarily advanced civilizations would constitute counterfactual civilizations — paths to civilization not taken by humanity, but which were once open to humanity at one time. Indeed, such paths may be open to us yet.

I previously considered counterfactual civilizations in Counterfactual Conditionals of the Industrial Revolution. This post reviews scenarios for civilization absent the industrial revolution; below I will continue this line of counterfactual thought experiments in the history of civilization.

counterfactual graph

Diachronic extrapolation of the pre-industrial past

If we plot out the history of technology and population (among other metrics) on a graph and extrapolate from trends prior to the industrial revolution (when these metrics suddenly spike) we can easily see the possibility of a very old civilization — tens of thousands or hundreds of thousands of years old — that would be the result of a simple diachronic extrapolation of trends that had characterized human life from the emergence of hominids up until the industrial revolution. That is to say, if we had just kept doing what we had been doing before the industrial revolution, this slow development represented by a shallow angle could have continued indefinitely without ever catching up to the kind of development that followed the industrial revolution.

The very old civilization that would be the result of a straight-forward diachronic extrapolation of civilization prior to the industrial revolution would be a civilization conceived in terms proportional to earlier human history. We often forget that, prior to Homo sapiens, there was a multi-million year history of hominids with minimal toolkits that changed almost not at all over a million or even two million years. This same level and rate of progress might have continued to characterize human civilization in its later stages of development as well. It is at least possible as a counter-factual, and conceivable by way of an analogy with our prehistoric past, that the breakthrough to industrialization had never occurred.

If we were to add to the absence of an industrial revolution several strategic shocks or global catastrophic events — demographic catastrophes such as the Black Death or natural disasters such as a massive supervolcano eruption or an impact by an asteroid or comet — what little gains that may be made by the ever-so-gradual increases in technology and population due to civilization prior to the industrial revolution might be canceled or reversed. Contingent events could result in a contraction or collapse of a civilization that never made the breakthrough to an industrial revolution.

social science

The social science of a non-industrialized civilization

Imagine that there were social scientists prior to the scientific revolution who studied their contemporaneous society much as we study our own societies today, and further suppose, despite the disadvantages such pre-modern social scientists would have labored under, that they manage to assemble reasonably accurate data sets that allows them to model the world in which they live and the history up to that point that had resulted in the world in which they lived. What kind of future would these pre-modern social scientists forecast for their world?

If you were to show pre-modern social scientists the spike in demographics, technology, energy use, and urbanization that attended the industrial revolution, they might deny that any such development was even possible, and if they admitted that it was possible, they might say that a world so transformed would not constitute civilization as they understood civilization. They would be right, in a sense, to characterize our world today, after the industrial revolution, as a post-civilizational institution, derived perhaps from the long tradition of civilization with which they were familiar, but not really a part of this tradition.

I implied as much about the divergence of contemporary civilization from its pre-modern tradition recently when I wrote (in Is society existentially dependent upon religion?) that:

“It could be argued that traditional society… has already collapsed and has been incrementally replaced by an entirely different kind of society. For this is surely what has happened in the wake of the industrial revolution, which destroyed more aspects of traditional society than any Marxist, any revolutionary, or any atheist.”

Prior to the industrial revolution, the entire economy of civilization was based on agriculture. (Elsewhere I have called this biocentric civilization.) On the basis of this biocentric civilization, there was nothing to suggest (or, more cautiously, almost nothing to suggest) the possibility of a civilization with an economy in which agriculture was marginalized to the point of near invisibility to the overall economy. What could possibly replace agriculture in its role as the indispensable employer and primary producer of commodities?

marvin-the-martian

Non-civilizations and other non-peers

The thought experiment that I have suggested here in regard to the industrial revolution could also be performed in regard to the Neolithic agricultural revolution, although in this case we could not properly speak of an ancient civilization. Humanity as a species might have attained a great antiquity without ever making the breakthrough to civilization; just as we might never have experienced the industrial revolution, we might also have skipped the Neolithic Agricultural Revolution. In fact, if Marian scientists had been observing life on Earth for the five millions years or so of hominid history (prior to the Neolithic Agricultural Revolution), they might have said, “Here is an intelligence species with a very long history that has never created a civilization, and shows no signs of creating a civilization.”

It is an especially interesting thought experiment to imagine humanity having attained great antiquity without creating a civilization when we reflect that the uniquely human activities of art and technology predate civilization and may be understood in isolation from civilization. Even without the great impetus of civilization, there would have been some minimal continued development of art and technology. The rate of technological innovation prior to the advent of civilization was very slow, but it was not zero, and extrapolated to a sufficient age it would have produced an impressive technology. It could be argued that such a gradual development of technology, if extrapolated indefinitely into the distant future, could surpass any arbitrary technological measure.

Something like civilization, but not exactly civilization as we know it, might have emerged from a very old human social context that never passed through the Neolithic Agricultural Revolution or the industrial revolution — the two great disruptions in the history of humanity that define civilization, and which have come to define us as a species. Without these definitive events, humanity would be defined very differently.

The non-civilization social institution that could arise from the antiquity of humanity without civilization might qualify as an example of a non-civilization such as i described in my Seven Levels of Civilizational Comparability. In an attempt to define what constitutes a “peer” civilization we need to try to understand alternatives for sentient species that would not constitute peers, and this thought experiment provides just such an example.

. . . . .

thought experiment

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: