Technological Succession

25 January 2011


Knives constitute a perennial technology

Reflecting on what I wrote some time ago about mature technologies, stalled technologies, and perennial technologies — whether hardware technologies or social technologies, i.e., whether a structural innovation or a functional innovation — I realized the inadequacy of throwing together these categories of technological institutions. For particular technologies have their distinctive institutions no less than particular peoples have their distinctive institutions.

Bicycle technology has improved significantly, but the basic design has not changed in more than a hundred years. Bicycles, then, would seem to be a perennial technology, though they emerged much later in history than knives.

An appropriately fine-grained account of technological institutions would recognize that while mature and perennial technologies are both robust and durable technologies, they nevertheless represent robustness and durability for different reasons. Indeed, there is a sense in which perennial and mature technologies are opposed, and that sense is rooted in the natural history of both technologies. A perennial technology derives from the first stages of the succession of technological institutions, while a mature technology derives from the latest stages of the succession of technological institutions.

Nuclear warhead design is now a mature technology that reflects a period of rapid development followed by a plateau of incremental development.

Perennial technologies are those which perennially emerge even under adverse conditions. These are the hardiest, and their appearance in the historical record is a response to perennial needs. Mature technologies emerge from stable societies with stable institutions that allow for continued and continuous development of a given technology over time. Such mature technologies do no necessarily correspond to a perennial social need, although changed social conditions that make use of available technologies create needs previously unanticipated.

Most of our strategic weapons systems are mature technologies.

A perennial technology matures early and remains useful despite having attained a plateau. It is useful precisely because it cannot be improved upon in any essential way. A perennial technology may change in inessential ways, and later iterations may make use of indirect technological innovations, but direct technological innovations to essentials are not possible for a truly perennial technology. Perennial technology could be defined in terms of its imperviousness to essential improvement.

I have argued previously that tire chains are a perennial technology, although I will allow that they are a little more problematic since they are contingent upon automobile technology, which is now a mature technology. However, tire chain design is not likely to change any more significantly than bicycle design.

Sometimes it is quite difficult to improve upon a perennial technology, even if it has direct origins in the earliest stages of technological succession. A knife, for example, is a perennial technology, and knives date back to the earliest human technological innovations. While the construction and composition of knives have changed as technology has changed, this is just an improvement in the way to produce essentially the same thing. It should also be noted that there is a great diversity of knives, some of them highly specialized for a particular purpose, and some of them useful precisely because they are not specialized. (It is interesting to observe that a tool or technology produced without a specific use in mind cannot properly said to be exapted by any unanticipated use in the future.)

A mature technology, on the other hand, derives from the later stages of technological succession. A mature technology has achieved a plateau in its development, with most of its aspects having been explored for their possibilities to further extend and exploit the technology. The technology of nuclear weapons is a mature technology. There are many designs for many different varieties of nuclear weapons, most designs have been tested repeatedly, and most of the possibilities of the technology have been explored. The technology of automobiles is also a mature technology.

Some technologies are more difficult to classify, and perhaps deserve a category of their own. It is to be expected that there will be problematic cases, which is not a counter-example to the clear cases that are easy to classify. (And this latter observation is a clear example of what I have called an unnamed principle and an unnamed fallacy and later called the truncation principle.)

It can now be seen that what I previously formulated in terms of the Law of Stalled Technologies has an alternate formulation in terms of technological succession. That is to say, we could formulate a law of technological succession, and it would look a lot like the law of stalled technologies.

The overtaking of a stalled technology that remains at a given plateau by another technology that fulfills a similar need but by way of a distinct method is an extension of a society with stable institutions that was able to bring to fruition a mature technology. With a mature technology in place, and stable economic and social institutions built upon this technology, there emerges an incentive to continue or to expand these institutions to a greater extent, at a cheaper cost, more efficiently, more effectively, and with less effort. This attempt to do previous technology one better is, in turn, a spur to social changes that will call forth further innovations. It could be argued that the Industrial Revolution emerged from just such an escalation of social and technological coevolution.

By analogy with microevolution (evolution within a species) and macroevolution (evolution from one species into another) in biology, we can see the microevolution and macroevolution of technologies. Perennial technologies exhibit micorevolution. No new technological “species” emerge from the incremental changes in perennial technologies. Technological macroevolution is the succession of a stalled technology by a new, immature technology, which latter still possesses the possibility of development. Mature technologies experience adaptive radiation under coevolutionary pressures, and this macroevolution can result in new technological species.

In Political Constraints on Weapons Systems I attempted to demonstrate some ways in which weapons systems, presumably constructed on a pure “form follows function” principle, with the function understood as winning battles, in fact are deeply embedded in a social context that dictate what tactical imperatives will be embodied in weapons systems. The idea of technological succession tied to coevolution with evolving social institutions gives us an alternative formulation of the same basic idea. Social institutions that govern the fighting of battles and the waging of wars spur particular developments of tactics and weapons systems, and these tactics and weapons systems, once employed in the battlespace, constitute a changed condition that will, in the fullness of time, make itself felt in the social institutions that influenced their development.

. . . . .

technological succession

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: