Tuesday


The “technium” is a term coined by Kevin Kelly in his book What Technology Wants. The author writes that he dislikes inventing words, but felt he needed to coin a term in the context of his exposition of technology; I, on the contrary, don’t mind in the least inventing words. I invent words all the time. When we formulate a new concept we ought to give it a new name, because we are not only expanding our linguistic vocabulary, we are also extending out conceptual vocabulary. So I will without hesitation take up the term “technium” and attempt to employ it as the author intended, though I will extend the concept even further by applying some of my own terminology to the idea.

In What Technology Wants the technium is defined as follows:

“I dislike inventing new words that no one else uses, but in this case all known alternatives fail to convey the required scope. So I’ve somewhat reluctantly coined a word to designate the greater, global, massively interconnected system of technology vibrating around us. I call it the technium. The technium extends beyond shiny hardware to include culture, art, social institutions, and intellectual creations of all types. It includes intangibles like software, law, and philosophical concepts. And most important, it includes the generative impulses of our inventions to encourage more tool making, more technology invention, and more self-enhancing connections. For the rest of this book I will use the term technium where others might use technology as a plural, and to mean a whole system (as in “technology accelerates”). I reserve the term technology to mean a specific technology, such as radar or plastic polymers.”

Some time ago, in some earlier posts here, I started using the term “social technology” to indicate those artifacts of human invention that are not particular pieces of hardware. In making that distinction I did not think to further subdivide and extrapolate all possible kinds of technology, nor to unify them all together into one over-arching term (at least, I don’t remember having the idea). This is what, as far as I understand it, the technium means: the most comprehensive conception of technology, including social technologies and electromechanical technologies and biological technologies and so forth.

Neolithic flint mining at Grimes Graves.

Although we usually don’t think of it like this, technology is older than civilization. Lord Broers led off his 2005 Reith Lectures with an account of the “Grimes Graves” flint mining site, which virtually constituted an entire Neolithic industrial complex. While Grimes Graves is contemporaneous with agriculture, and therefore with a broad conception of agricultural civilization, there were probably other such industries dating to the Paleolithic that are lost to us now.

Lithic technology: older than civilization.

With the emergence of human cognitive modernity sometime about fifty to sixty thousand years ago, human beings began making tools in a big way. Of course, earlier hominids before homo sapiens made tools also, although their toolkits were pretty rudimentary and showed little or no development over hundred of thousands of years. Still, it should be observed that tools and technology are not only older that civilization, they are even older than human beings, in so far as we understand human beings narrowly as homo sapiens only (though it would be just as legitimate to extend the honorific “human being” to all hominids). What this means is that the technium is older than civilization.

What hominids are we going to call human beings, and to what hominids will we deny the honorific? All hominids have been tool users, but so are otters.

If we take the technium as an historical phenomenon and study it separately from the history of human beings or the history of civilization, we see that it is legitimate to identify the technium as an independent object of inquiry since it has a life of its own. At some points in history the technium has coincided fully with civilization; at other points in time, the technium has not precisely coincided with civilization. As I have just noted above, the technium preceded the advent of civilization, and therefore in its earliest stages did not coincide with civilization.

The technium already extends significantly beyond the technosphere of the Earth.

At the present moment in history, with our technological artifacts spread across the solar system and crowding the orbit of the earth, the technium again, in extending beyond the strict range of human civilization, does not precisely correspond with the extent of civilization. The possibility of a solarnet (this term of due to Heath Rezabek, and the idea is given an exposition in my Cyberspace and Outer Space) that would constitute an internet for a human civilization throughout our native solar system, would be an expansion of the technium throughout our solar system, and it is likely that this will proceed human spacesteading (or, at least, will be at the leading edge of human spacesteading) so that the technium has a greater spatial extent than civilization for some time.

If, at some future time, human beings were to build and launch BracewellVon Neuman probes — self-replicating robotic probes sent to other solar systems, at which point the self-replicating probes employ the resources of the other solar system to build more BracewellVon Neuman probes which are then sent on to other solar systems in turn — when, in the fullness of time, these probes had spread through the entire Milky Way galaxy (which would take less than four million years), the technium would then include the entire Milky Way, even if we couldn’t properly say that human civilization covered the same extent.

It is an interesting feature of a lot of futurism that focuses on technology — and here I am thinking of Kevin Kelly’s book here under consideration as well as the extensive contemporary discussion of the technological singularity — that such accounts tend to remain primarily terrestrially-focused, while it is another party of futurists who focus on scenarios in which human space travel plays a significant role in the future. Both visions are inadequate, because both technological advances and space travel that projects civilization beyond the Earth will play significant roles in the future, and in fact the two will not be distinguishable. As I have noted above, the technium already extends well beyond the Earth to the other planets of our solar system, and, if we count the Voyager probes now in deep space, beyond the solar system.

One way in which we see technologically-based futurism focusing on terrestrial scenarios is the terminology and concepts employed. While the term isn’t used much today, there is the idea of a “technosphere” which is the technological analogue of those spheres recognized by the earth sciences such as the geosphere, the hydrosphere, the biosphere, the lithosphere, and so forth — essentially geocentric or Ptolemaic conceptions, which remain eminently valid in regard to Earth-specific earth sciences, but which when applied to technology, which has already slipped the surly bonds of earth, it is misleading.

More contemporary conceptions — which, of course, have a history of their own — would be that of a planetary civilization or, on a larger scale, the idea of a matrioshka brain, which latter could be understood as part of a human scenario of the future or part of a singularity scenario.

Michio Kaku has many times referenced the idea of a planetary civilization, and he often does so citing Kardashev’s classifications of civilization types based on energy uses. Here is Kaku’s exposition of what he calls a Type I civilization:

Type I civilizations: those that harvest planetary power, utilizing all the sunlight that strikes their planet. They can, perhaps, harness the power of volcanoes, manipulate the weather, control earthquakes, and build cities on the ocean. All planetary power is within their control.

Michio Kaku, Physics of the Impossible, Chapter 8, “Extraterrestrials and UFOs”

Of course, anyone is free to define types of civilization however they like, and Kaku has been consistent in which characterization of civilization across his own works, but this does have much of a relationship to the schema of Type I, II, and III civilizations as originally laid out by Kardashev. Kardashev was quite explicit in his original paper, “Transmission of Information by Extraterrestrial Civilizations” (1964), that a type I civilization was a, “technological level close to the level presently attained on the earth.” The earth’s energy use has increased significantly since Kardashev wrote this, so according to Kardashev’s original idea, we are today firmly within the territory of a Type I civilization. But Kardashev’s conception is not what Kaku has in mind as a planetary civilization:

“As I’ve discussed in my previous books, our own civilization qualifies a Type 0 civilization (i.e., we use dead plants, oil and coal, to fuel our machines). We utilize only a tiny fraction of the sun’s energy that falls on our planet. But already we can see the beginnings of a Type I civilization emerging on the Earth. The Internet is the beginning of a Type I telephone system connecting the entire planet. The beginning of a Type I economy can be seen in the rise of the European Union, which in turn was created to compete with NAFTA.”

Michio Kaku, Physics of the Impossible, loc. cit.

In his Physics of the Future, Kaku devotes Chapter 8, “Future of Humanity,” to the idea of a planetary civilization, in which he elaborates in more detail on the above themes:

The culmination of all these upheavals is the formation of a planetary civilization, what physicists call a Type I civilization. This transition is perhaps the greatest transition in history, marking a sharp departure from all civilizations of the past. Every headline that dominates the news reflects, in some way, the birth pangs of this planetary civilization. Commerce, trade, culture, language, entertainment, leisure activities, and even war are all being revolutionized by the emergence of this planetary civilization. Calculating the energy output of the planet, we can estimate that we will attain Type I status within 100 years. Unless we succumb to the forces of chaos and folly, the transition to a planetary civilization is inevitable, the end product of the enormous, inexorable forces of history and technology beyond anyone’s control.

Michio Kaku, Physics of the Future, p. 11

And to put it in a more explicitly moral (and bifurcated, i.e., Manichean) context:

There are two competing trends in the world today: one is to create a planetary civilization that is tolerant, scientific, and prosperous, but the other glorifies anarchy and ignorance that could rip the fabric of our society. We still have the same sectarian, fundamentalist, irrational passions of our ancestors, but the difference is that now we have nuclear, chemical, and biological weapons.

Michio Kaku, Physics of the Future, p. 16

For Kaku, the telos of civilization’s immediate future is the achievement of a planetary technium. The roots of this idea go back at least to the Greek architect and city planner Constantinos Doxiadis, who was quite famous in the middle of the twentieth century, authored many books, formulated a theory of urbanism that I personally find more interesting than anything written today (although he called his theory “ekistics” which is not an attractive name), and drew up the plans for Islamabad. Doxiadis forecast an entire hierachy of settlements (which he called ekistic units), from the individual to the ecumenopolis, the world-city.

Here is how Doxiadis defined ecumenopolis in his treatise on urbanism:

Ecumenopolis: the coming city that will, together with the corresponding open land which is indispensable for Man, cover the entire Earth as a continuous system forming a universal settlement. Term coined by the author and first used in the October 1961 issue of Ekistics.

Constantinos A. Doxiadis, Ekistics: An Introduction to the Science of Human Settlements, New York: Oxford University Press, 1968, p. 516 (Doxiadis, like me, had no compunctions about inventing his own terminology)

In What Technology Wants Kelly explicitly invoked ecumenopolis as both unsettling and possibly inevitable:

The technium is a global force beyond human control that appears to have no boundaries. Popular wisdom perceives no counterforce to prevent technology from usurping all available surfaces of the planet, creating an extreme ecumenopolis — planet-sized city — like the fictional Trantor in Isaac Asimov’s sci-fi stories or the planet Coruscant in Lucas’s Star Wars. Pragmatic ecologists would argue that long before an ecumenopolis could form, the technium would outstrip the capacity of Earth’s natural systems and thus would either stall or collapse. The cornucopians, who believe the technium capable of infinite substitutions, see no hurdle to endless growth of civilization’s imprint and welcome the ecumenopolis. Either prospect is unsettling.

Kevin Kelly, What Technology Wants, First published in 2010 by Viking Penguin, p. 197

Now, I am not saying that the scenarios of Kevin Kelly and Michio Kaku avoid the human future in space, but it doesn’t seem to be a particular interest of either author, so it doesn’t really receive systematic development or exposition. So I would like to place the technium in Copernican context, i.e., in the context of a Copernican civilization — although it should be obvious from what I wrote above that a Copernican technium will not always coincide with a Copernican civilization.

Some of this will be familiar to those who have read my other posts on Copernican civilization and astrobiology. In A Copernican Conception of Civilization (later refined in my formulations in Eo-, Eso-, Exo-, Astro-, based on Joshua Lederberg’s concepts of eobiology, esobiology, and exobiology) I formulated the following definitions of civilization:

● Eocivilization the origins of civilization, wherever and whenever it occurs, terrestrial or otherwise

● Esocivilization our terrestrial civilization

● Exocivilization extraterrestrial civilization exclusive of terrestrial civilization

● Astrocivilization the totality of civilization in the universe, terrestrial and extraterrestrial civilization taken together in their cosmological context

Now it should be obvious how we can further adapt these same definitions to the technium:

● Eotechnium the origins of the technium, wherever and whenever it occurs, terrestrial or otherwise

● Esotechnium our terrestrial technium

● Exotechnium any extraterrestrial technium exclusive of the terrestrial technium

● Astrotechnium the totality of technology in the universe, our terrestrial and any extraterrestrial technium taken together in their cosmological context

The esotechnium corresponds to what has been called the technosphere, mentioned above. I have pointed out that the concept of the technosphere (like other -spheres such as the hydrosphere and the sociosphere, etc.) is essentially Ptolemaic in conception, and that to make the transition to fully Copernican conceptions of science and the world we need to transcend our Ptolemaic ideas and begin to employ Copernican ideas. Thus to recognize that the technosphere corresponds to the esotechnium constitutes conceptual progress, because on this basis we can immediately posit the exotechnium, and beyond both the esotechnium and the exotechnium we can posit the astrotechnium.

A strict interpretation of technosphere or esotechnium would be limited to the surface of the earth, so that all the technology that is flying around in low earth orbit, and which is so closely tied in with planetary technological systems, constitutes an exotechnium. If we define the boundary of the earth as the Kármán line, 100 km above sea level, this would include within the technosphere or esotechnium all of the highest flying aircraft and the weather balloons, but would exclude all of the lowest orbiting satellites. Even if we were to include the near earth orbit so saturated with satellites as part of the esotechnium, there would still be our technological artifacts on the moon, Mars, Venus, and orbiting around distant bodies of the solar system. farthest out of all, already passing out of the heliosphere of the solar system, into the heliopause, and therefore into interstellar space, are the spacecraft Voyager 1 and Voyager 2.

One question that Kelly left unanswered in his exposition of the technium is whether or not it is to be understood as human-specific, i.e., as the totality of technology generated and employed by human beings. In the nearer-term future there may be a question of distinguishing between human-produced technology and machine-produced technology; in the longer-term future there may be a question of distinguishing between human-generated technology and exocivilization-produced technology. In so far as the idea of the technological singularity involves the ability of machines to augment their own technology, the distinction between human industrial-technological civilization and the post-human technological singularity is precisely that between human-generated technology and machine-generated technology.

There is a perfect parallel between the Terrestrial Eocivilization Thesis and, what is implied in the above, the Terrestrial Eotechnium Thesis, which latter would constitute the claim that all technology begins on the Earth and expands into the universe from this single point of origin.

At this point we might want to distinguish between an endogenous technium, having its origins on the Earth, and any exogenous technium, having its origins in an alien civilization. Another way to formulate this would be to identify any alien technium as a xenotechnium, but I haven’t thought about this systematically yet, so I will leave any attempted exposition for a later time.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Advertisements

Eo-, Exo-, Astro-

19 March 2012

Monday


This post has been superseded by Eo-, Eso-, Exo-, Astro-, which both corrects and extends what I wrote below.


The Philosophical Significance of Astrobiology as a

Cosmological Extrapolation of Terrestrial Biology


In yesterdays’ Commensurable Perspectives I finished with this observation:

Ecology is the master world-narrative that unifies the sub-narratives employed by individual species in virtue of their perceptual and cognitive architecture. Ultimately, astrobiology would constitute the universal narrative that would unify the ecological narratives of distinct worlds.

The naturalistic narrative has the power to unify even across species and across worlds. This power may not be particularly evident at present, but in the long term future of our species (if our species does in fact have a long term future) this power will prove to be crucial.

If indeed astrobiology is the universal narrative of life, that gives astrobiology a privileged position among the sciences. That is a tall order. But what is astrobiology? At one time I had heard both the terms “exobiology” and “astrobiology” and I was not quite clear about the exact difference between the two, or how each was defined. Thereby hangs a tale. The distinction between the two is in fact a very interesting story, and it is a story to which an entire book has been devoted, The Living Universe: NASA and the Development of Astrobiology, by Steven J. Dick and James E. Strick.

I urge the reader to get this book and peruse it for yourself for the detailed version of the emergence of astrobiology as a scientific discipline. I will give only the bare bones of that story here, which will be only enough to grasp the crucial concepts involved. And our interest is in the concepts, not the personalities.

Joshua Lederberg before he had formulated the distinction between eobiology and exobiology.

Exobiology is the older term, introduced by Joshua Lederberg (first used in a public lecture in 1960), and contrasted by him to eobiology. Exobiology has some currency in the public mind, but I didn’t know about eobiology until I read about the history of the discipline. However, the contrast between the two terms is conceptually important. Exobiology is concerned with biology off the surface of the earth, while eobiology is biology on the surface of the earth. (cf. p. 29) In other words, all biological science prior to human spaceflight was eobiology, even if we didn’t know that it was eobiology. Another way to formulate this distinction is to say that eobiology is the biology of the terrestrial biosphere, while exobiology is the biology of everything else.

In the book The Living Universe: NASA and the Development of Astrobiology the authors give a lot of background on the internal politics and budgeting of NASA and how this affected the emergence of astrobiology. It is an interesting story, but I will not go into it here, as our interest at present is exclusively with the conceptual infrastructure of the discipline. Suffice it to say that in 1996 the first attempts were made to define astrobiology (cf. p. 202), and within a couple of years there was a virtual Astrobiology Institute.

The NASA astrobiology website characterizes astrobiology as follows:

“Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. This multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System, the search for evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space.”

The NASA strategic plan of 1996 gives this definition of astrobiology:

“The study of the living universe. This field provides a scientific foundation for a multidisciplinary study of (1) the origin and distribution of life in the universe, (2) an understanding of the role of gravity in living systems, and (3) the study of the Earth’s atmospheres and ecosystems.”

The important lesson to take away from this is that astrobiology is the more comprehensive concept, and that in fact we can consider astrobiology the union of eobiology and exobiology. This sounds simple enough (and it is), but it is important to understand the conceptual leap that has been taken here.

From the perspective of astrobiology, earth sciences are only fragments of far larger and more comprehensive sciences. Just as all biology was once eobiology, the same observation can be made in regard to the other earth sciences, and the same tripartite conceptual distinction can be brought to the other earth sciences. We can formulate eogeology and exogeology unified in astrogeology; we can formulate eohydrology and exohydrology unified in astrohydrology; we can formulate eovulcanology and exovulcanology unified in astrovulcanology; we can formulate eoclimatology and exoclimatology unified in astroclimatology. All of these are cosmological extrapolations of earth sciences. One suspects that, in the future, the prefixes will be dropped and we will return to climatology simpliciter, e.g., but while the conceptual revolution is underway it is important to retain the prefixes as a reminder that science is no longer defined by the boundaries of the earth.

I assert that this is a conceptual leap of the first importance because what we have with astrobiology is the formulation of the first truly Copernican science; astrobiology includes eobiology but it is not exhausted by eobiology; it is supplemented by exobiology. The earth, for obvious reasons, remains important to us, but it no longer dictates the center of our science. All mature sciences will eventually need to take this Copernican turn and dethrone the earth from the center of its concern.

We can take a further step beyond this conceptual formulation of Copernican sciences by observing that traditional earth sciences began as local enterprises, and it has only been in recent decades that truly global sciences have emerged. These global sciences have culminated in objects of scientific study that take the world entire as their object. Thus biology has converged upon study of the biosphere; hydrology has converged on study of the hydrosphere; glaciology has culminated in the study of the cryosphere. Copernican sciences based on the model of astrobiology can go one better than this, transcending earth-defined “-spheres” in favor of more comprehensive concepts.

When I spoke last year on “The Moral Imperative of Human Spaceflight” at the NASA/DARPA 100 Year Starship Study symposium it was my intention to spend some time on the emergence of Copernican sciences, but I didn’t have enough time to elaborate. I cut most of that material out and still was rushed. The point that I wanted to make there was that the concepts of the biosphere, the lithosphere, the geosphere, hydrosphere, cryosphere, atmosphere, anthrosphere, sociosphere, noösphere, and technosphere are essentially Ptolemaic concepts. (If the proceedings of the symposium are published, and if my paper is included, this contains my first sketch of Copernican sciences as transcending these earth-defined “-spheres.”) The Copernican Revolution entails the formulation of Copernican concepts to supersede Ptolemaic concepts, and this work is as yet unfinished. In some spheres of human thought, it has scarcely begun.

One way to transcend our Ptolemaic concepts and to replace them with Copernican concepts, and thus to extend the ongoing shift to a truly Copernican perspective, is to substitute for the earth-defined “-spheres” a conception of the object of the sciences not dependent upon the earth, and this can be done by defining, respectfully, biospace (in place of the biosphere), lithospace, geospace, hydrospace, cryospace, atmospace, anthrospace, sociospace, noöspace, and technospace. In so far as we can facilitate the emergence of Copernican sciences, we can contribute to the ongoing Copernican Revolution, which will someday culminate in a Copernican civilization (if we do not first destroy ourselves).

We can pass beyond the earth sciences and the natural sciences and similarly extend our conceptions of a the social and political sciences. Although concepts from the social sciences are not usually expressed in geocentric terms — except for the above-mentioned anthrosphere, sociosphere, noösphere, and technosphere (which are not employed very often) — our social and political thought is usually even more tied to planetary prejudices than the concepts of the natural sciences. Thus we can extend our conception of politics by distinguishing between eopolitics and exopolitics, both of which are subsumed under astropolitics. Similarly, we can formulate eoeconomics and exoeconomics, subsumed by astroeconomics, eostrategy and exostrategy, subsumed by astrostrategy, and so forth.

As a final note, it is ironic that the breakthrough to a Copernican science should occur first with biology, because biology was among the latest of the sciences to actually attain a scientific status. Prior to Darwin, biological theories were essentially theological theories with but a few exceptions. Darwin put biology on a firm biological footing and created the discipline in its modern scientific form. Thus biology was among the last of the sciences to attain a modern scientific form, though it was the first to attain to a Copernican form.

. . . . .

This post has been superseded by Eo-, Eso-, Exo-, Astro-.
.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

%d bloggers like this: