Monday


Darwin’s Thesis on the Origin of Civilization

Charles Darwin

Charles Darwin

and its extrapolation to exocivilizations


In the scientific study of civilization we are beginning at the beginning because there is no established body of scientific knowledge about civilization — much historical knowledge, to be sure, but no science of civilization, sensu stricto, and therefore no scientific knowledge sensu stricto — and this demands that we begin with the simplest and most obvious propositions about civilization. The simplest and most obvious propositions about civilization are such as most discussions of civilization would simply pass over in silence as necessary presuppositions, or which would be dismissed by hand-waving and the assertion, “It is obvious that…” We will take a different point of view. Only a mathematician would think that the Jordan curve theorem was an idea in need of proof, and only someone engaged in attempting to formulate a science of civilization would think asserting that civilization originates in a pre-civilized condition was a condition of civilization that requires discussion.

Our point of departure in this discussion will be what I call Darwin’s Thesis on the origins of civilization, or, more simply, Darwin’s Thesis. I call this Darwin’s Thesis (and called it such in my presentation “What kind of civilizations build starships?”) because of the following passage from Darwin about the origins of civilization:

“The arguments recently advanced… in favour of the belief that man came into the world as a civilised being and that all savages have since undergone degradation, seem to me weak in comparison with those advanced on the other side. Many nations, no doubt, have fallen away in civilisation, and some may have lapsed into utter barbarism, though on this latter head I have not met with any evidence… The evidence that all civilised nations are the descendants of barbarians, consists, on the one side, of clear traces of their former low condition in still-existing customs, beliefs, language, &c.; and on the other side, of proofs that savages are independently able to raise themselves a few steps in the scale of civilisation, and have actually thus risen.”

Charles Darwin, The Descent of Man, Chapter V (I have left Darwin’s spelling in its Anglicized form.)

Darwin was here taking the same naturalistic stance in regard to civilization that he had earlier taken in regard to biology. Darwin made biology scientific by making it a domain of research approached by way of methodological naturalism; prior to Darwin there was biology of a kind, but not any study of biology that could be reconciled with methodological naturalism. Darwin applied this same reasoning to civilization, and this is the reasoning we must apply to civilization if we are to formulate a science of civilization that can be reconciled with methodological naturalism.

As far as ideas about civilization go, this is extremely basic. However, I will again stress the need to begin a science of civilization with the most basic and rudimentary propositions possible. While this is a proposition so rudimentary as to be mundane, there can be no more interesting question for the science of civilization than that of the origin of civilization (the question of the end of civilization is equally interesting, but I wouldn’t say it is more interesting).

While the simplest theses on civilization seem so mundane as to be uninteresting, they can nevertheless be deductively powerful in their application. We can only address the longevity of a civilization, for example, once we have established a point in time at which civilization begins, and counting forward in whatever temporal units we care to employ up to its demise (which also must be defined, if the civilization in question has come to an end), or up to the present day (if the civilization in question is still in existence).

According to Darwin’s Thesis, then, civilization is descended from a prior savage or barbaric condition (not terms we would likely employ today, but certainly terms we still understand). How are we to characterize this pre-civilized condition of humanity? What constitutes the non-civilization that preceded civilization?

A somewhat discerning distinction, albeit one with moral overtones, was made between savagery, barbarism, and civilization. Like the “three age” system of prehistory — stone age, bronze age, iron age — we still find traces of these distinctions in contemporary thought. Here is how I described it previously:

“Edward Burnett Tylor proposed that human cultures developed through three basic stages consisting of savagery, barbarism, and civilization. The leading proponent of this savagery-barbarism-civilization scale came to be Lewis Henry Morgan, who gave a detailed exposition of it in his 1877 book Ancient Society… A quick sketch of the typology can be found at Anthropological Theories: Cross-Cultural Analysis. One of the interesting features of Morgan’s elaboration of Tylor’s idea is his concern to define his stages in terms of technology. From the ‘lower status of savagery’ with its initial use of fire, through a middle stage at which the bow and arrow is introduced, to the ‘upper status of savagery’ which includes pottery, each stage of human development is marked by a definite technological achievement. Similarly with barbarism, which moves through the domestication of animals, irrigation, metal working, and a phonetic alphabet.”

Elsewhere I suggested that the non-civilization prior to civilization could be called proto-civilization. I just re-read my post on proto-civilization and now I find it inadequate, but I still endorse at least this much of what I said there:

“In the case of civilization, a state-of-affairs existed long before the idea of civilization was made explicit. But in projecting the idea of civilization backward in history, we already have the idea suggested by a particular cultural milieu, and the question becomes whether this idea can be applied further than the context in which it was initially proposed.”

This would be one methodology to employ: take the concept of civilization as it has been elaborated and seek to apply it to past social structures; determining at what point this concept no longer applies gives a point in time for the origin of civilization. This could be called the “retroactive method.”

Given the far greater archaeological data we possess than we possessed at the time the concept of civilization was first formulated, this method has new information to work with that it did not have at the time of its formulation. This is one of the points that I attempted to make, however poorly I did so, in my post on proto-civilization: we have an enormous amount of archaeological data on the Upper Paleolithic and Early Neolithic in the Old World, which is usually described in terms of “cultures” rather than “civilizations.” But when European explorers of the Early Modern period came to the New World, they encountered peoples that had social institutions that we today call civilizations, though these civilizations were closer to the “Stone Age” of the Old World than to the early civilizations of Egypt and Mesopotamia (to take to paradigm cases of civilization).

An alternative to the retroactive method would be to study the artifacts of the past on their own merits, to construct a definition of civilization on the basis of the earliest known human societies (on the basis of their material culture), and then apply this conception of civilization forward in time (for lack of a better term I will call this the proactive method, simply to contrast it to the retroactive method). It is arguable that some archaeologists do in fact follow this method, but I don’t know of anyone who has explicitly advanced this procedure as desirable (much less as necessary), although it does bear some resemblance to the implicit formalism of the cultural processual school in archaeological thought.

Both retroactive and proactive methods incorporate obvious problems that derive from parachronic distortions of evidence (the most obvious parachronism is the familiar idea of an anachronism, i.e., a survival from the past preserved into the present, where it is obviously out of place; the contrary parachronic distortion is that of projecting the present into the past).

To pull back from the provincial considerations of civilization studied by archaeology to date — that is to say, exclusively terrestrial civilizations — we can further develop the idea of Darwin’s Thesis in a cosmological context. Once we do this, we immediately understand that we have been asking questions focused on a particular set of conditions that are characteristic of civilizations during the Stelliferous Era, and our ideas worked out for terrestrial civilization (civilizations of planetary endemism during the Stelliferous Era) may not apply more generally to the largest scales of civilization achieved (or which may yet be achieved) in the cosmos.

Civilizations during the Degenerate Era may possess a different character due to their need to derive energy flows from sources other than stellar flux, which latter defines the conditions of the origins of civilization from intelligent biological agents during the Stelliferous Era, which might also be called the Age of Planetary Endemism. If the Degenerate Era begins with the universe having been exhaustively settled or inhabited by life and civilization, this densely inhabited universe not only would prevent the emergence of new civilizations, but also would mean an end to this living cosmos of starlight. In this case the Degenerate Era begins with what I have called the End-Stelliferous Mass Extinction Event (ESMEE), when widely distributed life and civilization of the Stelliferous Era, primarily supported by energy flows from stellar flux (and concentrated on planetary surfaces), comes to an end as the stars wink out one by one.

The cohort of emergent complexity that survives this transition is likely to be a post-civilization successor institution that is (by this time in the evolution of the universe) further removed from the origins of civilization than we are today removed from the origin of the universe. At this point, the origins of emergent complexity will be a distant question, largely inapplicable to contemporaneous concerns, and the central question will be what of the Stelliferous Era can survive into the Degenerate Era, and how it can perpetuate itself in a universe converging on heat death.

Would these civilizations of the Degenerate Era be newly originating civilizations, or would they be derivative from civilizations of the Stelliferous Era? The obvious answer would seem to be that these civilizations would be derivative, except that over such cosmological spans of time the concept of civilization (and the threshold of what constitutes a civilization) is likely to evolve as much as, if not more than, civilization itself. As civilization develops, and a greater degree of science, technology, and intellectual achievement is believed to be indispensable to what constitutes civilization, civilization may be redefined as something close to prevailing conditions, and everything prior to this is redefined as proto-civilization. For example, civilization today might be considered unimaginable without the conveniences of modern life, and everything prior is consigned to barbarism. This reasoning can be extended to hold that civilization is unimaginable without fusion energy, without strong AI, without interstellar travel, and so on. All of this is entirely consistent with Darwin’s Thesis, which holds regardless of whether we consider the Upper Paleolithic to be utter savagery, or 2016 to be utter savagery.

If we consciously make an effort to formulate and to retain a comprehensive conception of civilization, that is not continually revised forward in time in the light of the later developments of civilization, we can avoid the above problem, and it is this approach that gives us longer ages for our civilization today. I have often mentioned that it was once commonplace, and perhaps still commonplace, to fix the origins of civilization with the origins of written languages (i.e., the origins of the “historical period” sensu stricto), but scientific historiography has been slowly chipping away at the distinction between history and prehistory until it is no longer tenable. Hence I identify the origins of civilization with the emergence of cities during or shortly after the Neolithic Agricultural Revolution, which makes our civilization about ten thousand years old, rather than five thousand years old.

As our archaeological knowledge of the past improves, we may be able to set quantifiable conditions for the origins of civilization (say, a number of cities with a given population size, or a particular degree of sophistication in metallurgy, which latter seems to me to mark the ultimate origins of technological civilization). Again, Darwin’s Thesis is entirely in accord with this method also. Moreover, I think that this method gives a greater degree of independence to the determination of the origins of civilization, as it would also give us metrics by which we could determine the independent origin of a new civilization, say, even in the Degenerate Era, if this were to prove possible (which we really don’t know at present).

Beyond these concerns, and beyond the immediate scope of this post, we may need to posit a condition for the continuity of civilization — say, e.g., that metallurgical technological never lapses below a certain threshold — so that once given Darwin’s Thesis and some definition of civilization, we can determine when a civilization has originated de novo, and when a civilization is an evolutionary mutation of an earlier civilization, or a developmental achievement of an earlier civilization, rather than something new in history. This applies whether we take the threshold of achievement to be the smelting of copper or the building of starships. For example, if a civilization can smelt copper (or better), and never loses this technological capacity, it retains a minimal degree of continuity with the first civilization capable of this achievement, when an unbroken continuity of this capacity can be shown from the origins of this technology forward to some arbitrary date in the future.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


hunter-gatherers in outer space

What happens when you take a being whose mind was shaped by hunting and gathering in Africa over the past five million years or so, dress that individual in a spacesuit, and put that individual into a spaceship, sending them beyond the planet from which they evolved? What happens to hunter-gatherers in outer space?

As I pointed out in The Homeworld Effect and the Hunter-Gatherer Weltanschauung, the human environment of evolutionary adaptedness (EEA) shapes a worldview based on the standpoint of a planetary surface. Moreover, because the hunter-gatherer lives (or dies) by his attentiveness to his immediate environment, his immediate experience of leaving his planet of origin will make a disproportionate impact upon him. Whereas the hunter-gatherer may intellectually prepare himself, and may know on an intellectual level what to expect, the actual first person experience of leaving his planet of origin and seeing it whole — what Frank Drake calls the overview effect — may have an immediate and transformative impact.

The impact of the overview effect would force the hunter-gatherer to re-examine a number of ideas previously unquestioned, but his reactions, his instincts, would, for the time being, remain untouched. Of course, for a hunter-gatherer to have experienced the overview effect, he will have had to have achieved at least an orbital standpoint, and to achieve an orbital standpoint requires that the hunter-gatherer will have passed through a period of technological development that takes place over a civilizational scale of time — far longer than the scale of time of the individual life, but far shorter than the scale of biological time that could have modified the evolutionary psychology of the hunter-gatherer.

In the particular case of human beings, this period of technological development meant about ten thousand years of agricultural civilization, followed by a short burst of industrialized civilization that made the achievement of an orbital standpoint possible. While it is obvious that the short period of industrialized civilization will have left almost no trace of influence on human behavior, it is possible that the ten thousand years of acculturation to agricultural civilization (and the coevolution with a tightly-coupled cohort of species, as entailed by the biological conception of civilization) did leave some kind of imprint on the human psyche. Thus we might also inquire into the fate of agriculturalists in outer space, and how this might differ from the fate of hunter-gatherers in outer space. It is at least arguable that our interest in finding another planet to inhabit, or even terraforming other planets in our planetary system, is a function of our development of agricultural instincts, which are stronger in some than in others. Some individuals feel a very close connection to the soil, and have a special relationship to farming and food to be had by farming. However, the argument could be made equally well that our search for an “Earth twin” is a function of the homeworld effect more than a specifically agricultural outlook.

The principles to which I am appealing can be extrapolated, and we might consider what could happen in the event of a civilization with a very different history and its relationship to spacefaring, and how it makes the transition to a spacefaring civilization if that civilization is going to survival for cosmologically significant periods of time. Recently in Late-Adopter Spacefaring Civilizations: The Preemption That Didn’t Happen I suggested that terrestrial civilization might have been preempted in the second half of the twentieth century by the sudden emergence of a spacefaring civilization, though this did not in fact happen. Late-adopter spacefaring civilizations might indefinitely postpone the threshold presented by spacefaring, which is difficult, dangerous, and expensive — but also an intellectual challenge, and therefore a stimulus. It is entirely conceivable that, on a planet that remains habitable for a cosmologically significant period of time, that an intelligent species might choose to forgo the challenge and the stimulus of a spacefaring breakout from their homeworld, continuing to embody the homeworld effect even after the means to transcend the homeworld effect are available. What would the consequences be for civilization in this case?

In The Waiting Gambit I discussed the rationalizations and justifications employed to make excuses for waiting for the right moment to initiate a new undertaking, and especially waiting until conditions are “right” for making the transition from a planetary civilization to a spacefaring civilization. These justifications are typically formulated in moral terms, e.g., that we must “get things right” on Earth first before we can make the transition to spacefaring civilization, or, more insidiously, that we don’t deserve to become a spacefaring civlization (as though the Earth deserves to suffer from our presence for a few more million years). It would be easy to dismiss the waiting gambit as a relatively harmless cognitive bias favoring the status quo (a special case of status quo bias), except that there are real biological and civilizational consequences to waiting without limit.

The most obvious consequence of playing along with the waiting gambit is that civilization, or even the whole of humanity, might be wiped out on Earth before we ever achieve the promised moment when we can legitimately expand beyond Earth. This is the existential risk of the waiting gambit as a strategy for human history. But even if we could be assured of the survival of humanity on Earth for the foreseeable future (although no such assurance could be given that was not purely illusory), the waiting gambit still has profound consequences. In so far as civilization is a process of domestication (and in Transhumanism and Adaptive Radiation I suggested a biological conception of civilization based on a cohort of co-evolving species, which I elaborated in The Biological Conception of Civilization), the longer that human beings live in a planetary-bound, biocentric civilization the more domesticated we become. In other words, we are changed by remaining on Earth in the circumstances of civilization, because civilization itself is selective.

If the time between the advent of civilization and the advent of spacefaring is too short to be selective, then the hunter-gatherer mind is maintained because the genome on which this mind supervenes is essentially unchanged. But if the elapsed time between the advent of civilization and the advent of spacefaring is sufficiently extended so that civilizational selection of the intelligent species takes place, the mind is changed along with the genome upon which it supervenes. At some point, neither known nor knowable today, we will have self-selected ourselves (although not knowingly) for settled planetary endemism and we will lose the capacity to live as nomadic hunter-gatherers. This is an here-to-fore unrecognized consequence of long-lived planetary civilizations. If, on the other hand, human beings do make the transition to spacefaring civilization while retaining the evolutionary psychology of hunter-gatherers, the temporary phase of settled civilization (ten thousand years, more or less) will be seen as a temporary aberration, during which historical period the bulk of humanity lived in circumstances greatly at variance with the human EEA.

One aspect of the homeworld effect is acculturation to planetary endemism. This acculturation to planetary endemism helps to explain the waiting gambit and status quo bias, and if perpetuated it would explain the possibility of an advanced technological civilization that remains endemic to a single planet, attaining a full transition from biocentric to technocentric civilization without however making the transition to spacefaring civilization. This would present a radical break from the past, and thus presents us with the difficulty of conceiving a radically different human way of life — a way of life radically disconnected from the biocentric paradigm — but this is a radical difference from the biocentric paradigm that would in turn be radically different from a nomadic civilization with the entirety of the universe in which to roam. In both cases, traces of the biocentric paradigm are preserved, but different traces in each case. The planetary civilization would preserve continuity with the planet and thus a robust continuity with the homeworld effect; a spacefaring nomadic civilization would preserve continuity with the evolutionary psychology of our long hunter-gatherer past. A successor species to humanity, adapted to life in space, and choosing to live in space rather than upon planetary surfaces, would experience the overview effect exclusively, the overview effect supplanting the homeworld effect, and the homeworld effect might experience historical effacement, disappearing from human (or, rather, post-human) experience altogether.

If nomads were to go into space — that is to say, hunter-gatherers in outer space — they probably wouldn’t speak of “settling” a planet, because they would not assume that they would adopt a planetary mode of life for the sake of settling in one place. Perhaps they would speak of the “pastoralization” of a world (cf. Pastoralization, The Argument for Pastoralization, and The Pastoralist Challenge to Agriculturalism), or they might use some other term. The particular term doesn’t really matter, but the concept that the term is used to indicate does matter. Nomadic peoples have very different conceptions of private property, governmental institutions, social hierarchy, soteriology, and eschatology than do settled peoples; the transplantation (note the agricultural language here) of nomadic and settled conceptions to a spacefaring civilization would yield fascinating differences, and the universe is large enough for the embodiment of both conceptions in concrete institutions of spacefaring civilization — whereas Earth alone is not large enough.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


Late Adopter Spacefaring Civilizations:

Adoption-Lifecycle

The Preemption that Didn’t Happen


Wernher von Braun's design for a rotating space station that could simulate gravity.

Wernher von Braun’s design for a rotating space station that could simulate gravity.

Generalizing the Preemption Hypothesis

In The Preemption Hypothesis I advanced the idea that civilizations are sometimes suddenly preempted and rapidly supplanted by another kind of civilization. The paradigm case of this is the industrial revolution, which preempted a gradually emerging scientific civilization — a civilization I sometimes call Modernism without Industrialism — in favor of a radically different kind of civilization that changed the basic structure of life wherever the industrial revolution arrived.

A generalization of the preemption hypothesis suggests that any civilization is vulnerable to sudden preemption and rapid supplanting, should historical circumstances happen to line up — i.e., the ground is prepared for an innovation that arrives, which in the case of the industrial revolution meant that the legal and institutional framework of a commercial society was in place when the steam engine was invented, allowing this invention to be rapidly exploited, which in turn drove rapid social change.

The iconic space station featured in 2001: A Space Odyssey was an elaboration of von Braun's wheel space station.

The iconic space station featured in 2001: A Space Odyssey was an elaboration of von Braun’s wheel space station.

Unfulfilled Preemptions

If the generalization of the preemption hypothesis holds good, we would expect to be able to identify unfulfilled preemptions in history, and while any such judgment is inherently open to question, past preemptions that did not occur are not unfamiliar. On several occasions I have written about how Hero’s steam turbine did not trigger an industrial revolution in classical antiquity, nor did Taqi al-Din’s turbine trigger an industrial revolution in medieval Islamic civilization (cf. The Industrial Revolution and Scientific Civilization, Historical Disruption, and Hero’s Steam Engine and the Apollo Space Program).

In more recent history I would argue that an unfulfilled preemption occurred in the second half of the twentieth century. The industrial-technological civilization of the middle of the twentieth century (itself the consequence of preemption of the industrial revolution) might have been preempted by the sudden emergence of a spacefaring civilization. The technology was present, the ideas were in circulation, and even the economic basis of such an effort was in place. Nevertheless, this did not happen.

Often in the case of unfulfilled preemptions we find that a technology was present, but it is not yet fully exploited because a comprehensive conception of its use simply did not exist. I previously pointed this out in relation to the cluster of technologies that rapidly came into use during the Second World War (cf. Counter-factual Weapons Systems), when, during a period of five years, ballistic missiles, digital encryption, digital computers, radar, nuclear weapons, and jet propulsion all became available. While these technologies were individually put into use, the full comprehensive vision of how these technologies would function in concert was lacking, and it took several subsequent decades to draw out the consequences of these discoveries.

Another historical analogy: the first heavier-than-air powered human flight took place in 1903; the First World War began a decade later. The development of aircraft technology during the less than five year period of the First World War was in some ways as rapid as the technological developments that characterized the Second World War, and, moreover, by the end of the war the idea of strategic bombing had emerged, large fleets of airplanes communicating by radio were launching coordinated attacks on targets across national borders. It is arguable, on this basis, that the technologies available during the First World War reached a greater level of integration, and achieved that integration earlier, as compared to comparable technological innovations of the Second World War.

The NASA Integrated Program Plan (IPP) was an ambitious program that didn't get funded.

The NASA Integrated Program Plan (IPP) was an ambitious program that didn’t get funded.

What makes the transition to spacefaring civilization so fraught?

Spacefaring, as we know, is difficult. It is also dangerous and expensive. But it is not more dangerous or expensive than any number of routine human activities — though it may well be intellectually and technically more difficult than just about anything else accomplished by human civilization. If we had experienced a spacefaring preemption in the second half of the twentieth century, it is almost certain that many lives would have been lost in the effort to establish a demographically significant human presence in space. But we must place these casualties in context. We routinely accept automobile casualties in the tens of thousands every year (in the United States alone; global figures are much higher). A major spacefaring effort would have involved an increase in the loss of life, but it is unlikely that this figure would have even approached the 40,000 or so highway fatalities experienced every year, year on year. The commercial spacefaring industry is likely to mirror the commercial aviation industry, which does experience catastrophic failures and loss of life, but is statistically far safer than travel on any highway.

Similar arguments to those above could be made regarding the expense of a major spacefaring effort: it would have been expensive, but not radically more expensive than any number of other initiatives undertaken in human history. It would be difficult to argue that funding the space program at a level that would have made a spacefaring preemption possible would have “broken” the economy of either the US or the USSR, though this is often suggested. I would suggest, on the contrary, that if significant funding had followed the Apollo Program, rather than collapsing after the “space race” was won, that the unintended and unexpected technological spin-offs of a major space program would have transformed the terrestrial economy. However, counter-factuals are difficult if not impossible to prove, so I doubt I would convince anyone who did not want to be convinced on this score.

Probably among the least likely factors to be cited regarding the difficulty of the transition to spacefaring civilization would be the intellectual forces that shape history, but I think in the case of the spacefaring preemption that did not happen that it was the intellectual infrastructure that was the decisive element that derailed this potential historical disruption. Humanity was not ready to become a spacefaring species in the second half of the twentieth century; our concerns remained overwhelmingly terrestrial concerns, and those who tried to get their fellow Earth-bound human beings (Earth-bound in mind as well as in body) to see the possibilities for humanity beyond Earth were largely ignored. It was and still is routine to dismiss large-scale spacefaring as an impossible dream, notwithstanding proven technology and numerous space exploration successes, including human spaceflight.

Gerard K. O'Neill's conception of a spacefaring civilization with current technology was widely discussed, but never funded.

Gerard K. O’Neill’s conception of a spacefaring civilization with current technology was widely discussed, but never funded.

Crossing the Spacefaring Chasm

The absence of a relatively rapid spacefaring preemption of industrial-technological civilization in the recent past does not mean that terrestrial civilization will never make the transition to spacefaring civilization. This transition could come about as the result of a later preemption — perhaps as the result of new newly available technology that drastically reduces the cost of transport to Earth orbit — or as the result of a gradual and incremental transition that involves no preemption incident. In the latter case, it is entirely possible that planetary industrial-technological civilization might continue for hundreds or thousands of years, and hundreds or thousands of years of gradual transition would characterize the eventual emergence of a spacefaring civilization.

In several contexts (e.g., Getting to Starships and The Zoo Hypothesis as Thought Experiment) I have emphasized that human terrestrial civilization cannot be thought of as an “early adopter” spacefaring civilization. An early adopter spacefaring civilization would be a spacefaring civilization that came about as a result of a preemption episode in the early history of space travel. In the case of spacefaring, this did not happen; we did not widely adopt spacefaring technologies as soon as they were available and employ them to begin a human diaspora in the cosmos.

If our civilization does become a spacefaring civilization (we cannot yet say if that will happen), it will do so decades or centuries after having possessed the technological capability to do this, and so must be considered a late-adopter spacefaring civilization, if it is (or will become) any kind of spacefaring civilization at all. Spacefaring civilization has experienced is symbolic firsts, but it has not experienced its horizon — at least, not for human civilization (if there are other civilizations in the cosmos, there may be a civilization or civilizations that have experienced a spacefaring preemption). The temporal distance between spaceflight symbolic firsts and a spaceflight horizon is yet to be determined.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Martian Standpoint

31 March 2016

Thursday


Mars 0

Red Planet Perspectives

It is difficult to discuss human habitation of Mars scientifically because Mars has for so long played an disproportionate role in fiction, and any future human habitation of Mars will take place against this imaginative background. Future human inhabitants of Mars will themselves read this cultural legacy of fiction centered on Mars, and while some of it will be laughable, there are also likely to be passages that start heads nodding, however dated and inaccurate the portrayal of human life on Mars. And this human future on Mars is seeming increasingly likely as private space enterprises vie with national space agencies, and both public and private space programs are publicly discussing the possibility of sending human beings to Mars.

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site.  (NASA/JPL-Caltech/USGS/Cornell)

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site. (NASA/JPL-Caltech/USGS/Cornell)

A human population on Mars would eventually come to identify as Martians, even though entirely human — Ray Bradbury already said as much decades ago — and it would be expected that the Martian perspective would be different in detail from the terrestrial perspective, though scientifically literate persons in both communities would share the Copernican perspective. There would be countless small differences — Martians would come to number their lives both in Terrestrial years and Martian years, for example — that would cumulatively and over time come to constitute a distinctively Martian way of looking at the world. There would also be unavoidably important differences — being separated from the bulk of humanity, having no large cities at first, not being able to go outside without protective gear, and so on — that would define the lives of Martian human beings.

Wernher von Braun's Mars mission concept as imagined by Chesley Bonestell

Wernher von Braun’s Mars mission concept as imagined by Chesley Bonestell

At what point will Martians come to understand themselves as Martians? At what point will Mars become a homeworld? There will be a first human being to set foot on Mars, a first human being born on Mars, a first human being to die on Mars and be buried in its red soil, a first crime committed on Mars, and so on. Any of these “firsts” might come to be identified as a crucial turning point, the moment at which a distinctively Martian consciousness emerges among Mars residents, but any such symbolic turning point can only come about against the background of the countless small differences that accumulate over time. Given human settlement on Mars, this Martian consciousness will surely emerge in time, but the Martian conscious that perceives Mars as a homeworld will differ from the sense in which Earth is perceived as our homeworld.

An actual, and not a mythical, canal on Mars.

An actual, and not a mythical, canal on Mars.

Human beings lived on Earth for more than a hundred thousand years without knowing that we lived on a planet among planets. We have only known ourselves as a planetary species for two or three thousand years, and it is only in the past century that we have learned what it means, in a scientific sense, to be a planet among countless planets in the universe. A consequence of our terrestrial endemism is that we as a species can only transcend our homeworld once. Once and once only we ascend into the cosmos at large; every other celestial body we visit thereafter we will see first from afar, and we will descend to its surface after having first seen that celestial body as a planet among planets. Thus when we arrive at Mars, we will arrive at Mars knowing that we arrive at a planet, and knowing that, if we settle there, we settle on a planet among planets — and not even the most hospitable planet for life in our planetary system. In the case of Mars, our knowledge of our circumstances will precede our experience, whereas on Earth our experience of our circumstances preceded our knowledge. This reversal in the order of experience and knowledge follows from planetary endemism — that civilizations during the Stelliferous Era emerge on planetary surfaces, and only if they become spacefaring civilizations do they leave these planetary surfaces to visit other celestial bodies.

A sunset on Mars photographed by NASA's Mars Exploration Rover Spirit

A sunset on Mars photographed by NASA’s Mars Exploration Rover Spirit

What is it like, or what will it be like, to be a Martian? The question immediately reminds us of Thomas Nagel’s well known paper, “What is it like to be a bat?” (I have previously discussed this famous philosophical paper in What is it like to be a serpent? and Computational Omniscience, inter alia.) Nagel holds that, “…the fact that an organism has conscious experience at all means, basically, that there is something it is like to be that organism.” A generalization of Nagel’s contention that there is something that it is like to be a bat suggests that there is something that it is like to be a conscious being that perceives the world. If we narrow our conception somewhat from this pure generalization, we arrive at level of generality at which there is something that it is like to be a Terrestrial being. That there is something that it is like to be a bat, or a human being, are further constrictions on the conception of being a consciousness being that perceives the world. But at the same level of generality that there is something that it is like to be a Terrestrial being, there is also something that it is like to be a Martian. Let us call this the Martian standpoint.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

To stand on the surface of Mars would be to experience the Martian standpoint. I am here adopting the term “standpoint” to refer to the actual physical point of view of an intelligent being capable of looking out into the world and understanding themselves as a part of the world in which they find themselves. Every intelligent being emergent from life as we know it has such a standpoint as a consequence of being embodied. Being an embodied mind that acquires knowledge through particular senses means that our evolutionary history has furnished us with the particular sensory endowments with which we view the world. Being an embodied intelligence also means having a particular spatio-temporal location and having a perspective on the world determined by this location and the sensory locus of embodiment. The perspective we have in virtue of being a being on the surface of a planet at the bottom of a gravity well might be understood as a yet deeper level of cosmological evolution than the terrestrial evolutionary process that resulted in our particular suite of sensory endowments, because all life as we know it during the Stelliferous Era originates on planetary surfaces, and this precedes in evolutionary order the evolution of particular senses.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Mars, like Earth, will offer a planetary perspective. Someday there may be great cities and extensive industries on the moon, supporting a burgeoning population, but, even with cities and industries, the moon will not be a world like Earth, with an atmosphere, and therefore a sky and a landscape in which a human being can feel at home. For those native to Mars — for eventually there will be human beings native to Mars — Mars will be their homeworld. As such, Mars will have a certain homeworld effect, though limited in comparison to Earth. Even those born on Mars will carry a genome that is the result of natural selection on Earth; they will have a body created by the selection pressures of Earth, and their minds will function according to an inherited evolutionary psychology formed on Earth. Mars will be a homeworld, then, but it will not produce a homeworld effect — or, at least, no homeworld effect equivalent to that experienced due to the origins of humanity on Earth. The homeworld effect of Mars, then, will be ontogenic and not phylogenic.

The von Braun Mars mission concept was visionary for its time.

The von Braun Mars mission concept was visionary for its time.

If, however, human beings were to reside on Mars for an evolutionarily significant period of time, the ontogenic homeworld effect of individual development on Mars would be transformed into a phylogenic homeworld effect as Mars became an environment of evolutionary adaptedness. As the idea of million-year-old or even billion-year-old civilizations is a familiar theme of SETI, we should not reject this possibility out of hand. If human civilization comes to maturity within our planetary system and conforms to the SETI paradigm (i.e., that civilizations are trapped within their planetary systems and communicate rather than travel), we should expect such an eventuality, though over these time scales we will probably change Mars more than Mars will change us. At this point, Mars would become a homeworld among homeworlds — one of many for humanity. But it would still be a homeworld absent the homeworld effect specific to human origins on Earth — unless human beings settled Mars, civilization utterly collapsed, resulting in a total ellipsis of knowledge, and humanity had to rediscover itself as a species living on a planetary surface. For this to happen, Mars would have to be Terraformed in order for human beings to live on Mars without the preservation of knowledge sufficient to maintain an advanced technology, and this, too, is possible over time scales of a million years or more. Thus Mars could eventually be a homeworld for humanity in a sense parallel to Earth being a homeworld, though for civilization to continue its development based on cumulative knowledge implies consciousness of only a single homeworld, which we might call the singular homeworld thesis.

. . . . .

The descent to the surface of Mars will shape our perception of the planet.

The descent to the surface of Mars will shape our perception of the planet.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Settled agriculturalism in the European Middle Ages.

Settled agriculturalism in the European Middle Ages.

It was until recently uncontroversial that civilization begins with settled agriculturalism. The excavations at Göbekli Tepe have shown an unexpected light on some of the earliest human communities. The structures at Göbekli Tepe seem to have been been ritual spaces — perhaps the world’s earliest example of monumental architecture, one of the sure markers of civilization — but evidence suggests that the peoples who gathered at Göbekli Tepe neither cultivated grains nor actively engaged in pastoralism. If Göbekli Tepe provides an alternative to the agricultural model of what civilization might have been, it was not a model that was widely adopted; indeed, the site seems to have been not only abandoned, but purposefully covered over, and does not seem to have served as a social model for any other society except for the other hills in the immediate area that probably contain similar remains. An obvious alternative hypothesis is that Göbekli Tepe represents a transitional stage on the way to the development of settled agricultural civilization.

Göbekli Tepe, where large-scale social organization may have preceded both agriculturalism and pastoralism.

Göbekli Tepe, where large-scale social organization may have preceded both agriculturalism and pastoralism.

Thus while settled agriculturalism might not be the earliest or only model for the origins of civilization, it is unquestionably the most pervasive and the most successful. Independently in widely separated geographical regions peoples settled in communities and engaged in the production of staple crops. From these communities cities grew, and a network of such cities has meant civilization. Just as there were likely alternative paths to civilization that were abandoned in favor of the most robust path, so there have been alternative forms of the development of civilization. Several thousand years after the breakthrough to settled agriculturalism as a form of large-scale social organization, an alternative form emerged in Central Asia: pastoralism, in which the large-scale domestication and herding of animals substituted for the large-scale domestication of staple crops. This is not commonly recognized as a distinct form of civilization, because nomadic herders have rarely developed written languages, whereas settled agriculturalists did invent written languages, wrote histories, and called the nomadic pastoralists “barbarians” — a cultural slander that has endured to the present day.

Nomadic pastoralism: “The Qashqai of Iran use a system of opportunistic management that has evolved over centuries of dependence on a varied and unpredictable environment.” (from http://www.fao.org/nr/giahs/candidate-system/candidate/qashqai/en/)

Nomadic pastoralism: “The Qashqai of Iran use a system of opportunistic management that has evolved over centuries of dependence on a varied and unpredictable environment.” (from http://www.fao.org/nr/giahs/candidate-system/candidate/qashqai/en/)

Common to both settled agriculturalism and nomadic pastoralism as large-scale forms of social organization is the coupling of the fate of other species with human beings. Domestication, whether of plants or animals, lies at the basis of civilization as we know it. This suggests what I call the biological conception of civilization. I first explicitly formulated the biological conception of civilization in my Centauri Dreams post Transhumanism and Adaptive Radiation:

“Each biome into which human beings inserted themselves during our planetary diaspora out of our African origins has made available a unique cohort of species, some of which have been domesticated and the fates of which have thus become tied to human beings and their civilization (no less than our fate is joined to theirs). Terrestrial food production involves this tightly-coupled cohort of co-evolving species dependent upon one another as a consequence of domestication (which latter formulation would constitute a biologically minimalist conception of civilization). This species cohort varies according to endemic species, topography, and climatic conditions… Thus each region of Earth not only possesses a cultural diversity of civilizations, but also a biological diversity of civilizations, each of which may be defined in terms of the unique cohort of tightly-coupled co-evolving species. To date, this process has been an exclusively terrestrial one, but when cohorts of species representative of terrestrial civilizations leave Earth and establish themselves in other environments, the same principles will be iterated at higher orders of magnitude.”

Occasionally I refer to civilizations as “biocentric” (as, for example, in From Biocentric Civilization to Post-biological Post-Civilization). Biocentric civilization can defined in terms of the biological conception of civilization: a biocentric civilization is a civilization that can be exhaustively described by the biological conception of civilization. As a civilization begins to transcend its biocentric origins, the biological conception of civilization becomes less adequate for the description of that civilization. If a civilization were ever to wholly transcend its biocentric origins, the biological conception of civilization would be wholly inadequate and would at that point fail to capture the meaning of civilization. Yet as long as civilization continues to be associated with the biological beings from which it originated, it will continue to have recognizably biocentric features.

One consequence of the biocentric origins of civilization as we know it (which I recently formulated in Another Way to Think about Civilization), is that the human control of the reproduction of plants and animals has led to a radical change in the biology of our homeworld. One way to understand this radical change in the terrestrial biosphere due to civilization would be to identify the advent of civilization with initiating the process of creating an artificial biosphere in which naturally occurring ecosystems are progressively supplanted by artificial ecosystems constructed for the purpose of meeting the needs of civilization.

The interpolation of artificially maintained ecosystems within a wild ecosystem would simply disappear if it were not sustained by the agents who originated it. But as the artificial ecosystem of civilization expands and supplants the wild ecosystem of the planet, its expansion becomes a selection event that selects for domesticated species (as well as a range of parasitical species) and selects against non-domesticated species. As civilization has expanded, wild ecosystems have been pushed to the margins of the civilized world and the greater part of the planet has become dominated by human activities that have shaped the biosphere in a distinctive way. Non-agricultural peoples have also been pushed to the margins. When artificial ecosystems were first introduced by human beings, almost all of the world was the province of nomadic hunter-gathers who wandered freely through a wild landscape. Now the entire surface of our homeworld has been meticulously divided up among nation-states that all have their origins in the states or empires of agrarian-ecclesiastical civilization.

On Earth, the artificial biosphere created and maintained by biocentric civilization supplants a wild biosphere, but biocentric civilization could continue its development, facilitated by the resources of emergent technocentric civilization, through the extension of civilization’s artificial biospheres to other worlds or to artificial habitats. If the artificial biosphere of civilization is transitioned into artificial habitats, artificial ecosystems can be expanded without limit under controlled conditions that will allow for an even greater precision in the management artificial ecosystems. In so far as the initial creation of artificial ecosystems has aimed at greater human control over agricultural outcomes, we can regard this as the telos of agriculture, evident since the earliest stirrings of civilization, and the only context in which the implications of artificial ecosystems can be fully explored. Thus the departures from a strictly biological conception of civilization that point to a nascent technocentric civilization becomes another form of exaptation of coevolution, in which technology coevolves with biology by providing new scope to biocentric civilization.

The biological conception of civilization outlined above is neither anthropocentric nor necessarily tied to terrestrial forms of life, although we must express the concept by means of life as we know it; the biological conception of civilization is generalizable to any biota. Any biosphere that is sufficiently complex for the emergence of intelligent life will embody a high degree of biodiversity, i.e., a large number of distinct species forming complex biological communities, and we can furthermore expect that species will be grouped in the biomes to which they are endemic. Thus the same conditions as are found on Earth, and which have been exapted by human intelligence to produce civilization in the form of a cohort of coevolving species, will likely be present on any world with an intelligent species, and equally available for exaptation in the civilizing process.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


21refPicsSORT

It cannot be pointed out too often that by far the most extensive period of human history is prehistory. In the past it was possible to evade this fact and its problematic consequences for conventional historiography, because prehistory could be safely set aside as not being history at all. The subsequent rise of scientific historiography, which allows us to read texts other than written language — geological texts, genetic texts, the texts of material culture uncovered by archaeologists, and so on — have been progressively chipping away at the facile distinction between history and prehistory, so that boundary between the two can no longer be maintained and any distinction between history and prehistory must be merely conventional, such as the convention of identifying history sensu stricto with the advent of written language.

The evolutionary psychology of human beings carries the imprint of this long past until recently unknown to us, lost to us, its loss during the earliest period of civilization being a function of history effaced as the events of more recent history wipe clean the slate of the earlier history that preceded it. Scientific historiography provides us with the ability to recover lost histories once effaced, and, like a recovered memory, we recognize ourselves in this recovered past because it is true to what we are, still today.

From the perspective of illuminating contemporary human society, we may begin with the historical recovery of relatively complex societies that emerged from the Upper Paleolithic, which communities were the context from which the Neolithic Agricultural Revolution emerged. But from the perspective of the evolutionary psychology that shaped our minds, we must go back to the origins of the brain in natural history, and follow it forward in time, for each stage in the evolution of the brain left its traces in our behavior. The brainstem that we share with reptiles governs autonomous functions and the most rudimentary drives, the limbic system that we share with other mammals and which is implicated in our sentience-rich biosphere is responsible for our emotions and a higher grade of consciousness than the brainstem alone can support, and the cerebral cortex enables more advanced cognitive functions that include reflexive self-awareness and historical consciousness (awareness of the past and the future in relation to the immediacy of the present).

Each of these developments in terrestrial brain evolution carries with it its own suite of behaviors, with each new set of behaviors superimposed on previous behaviors much as each new layer of the brain is superimposed upon older layers. Over the longue durée of evolution these developments in brain evolution were also coupled with the evolution of our bodies, which enact the behaviors in question. As we descended from the trees and hunted and killed for food, our stomachs shrank and our brains grew. We have the record of this transition preserved in the bones of our ancestors; we can still see today the cone-shaped ribcage of a gorilla, over the large stomach of a species that has remained primarily vegetarian; we can see in almost every other mammal, almost every other vertebrate, the flat skull with nothing above the eyes, compared to which the domed cranium of hominids seems strange and out of place.

As I wrote in Survival Beyond the EEA, “Evolution means that human beings are (or were) optimized for survival and reproduction in the Environment of Evolutionary Adaptedness (EEA).” (Also on the EEA cf. Existential Threat Narratives) The long history of the formation of our cognitive abilities has refined and modified survival and reproduction behaviors, but it has not replaced them. Our hunter-gatherer ancestors of the Upper Paleolithic were already endowed with the full cognitive power that we continue to enjoy today, though admittedly without the concepts we have formulated over the past hundred thousand years, which have allowed us to make better use of our cognitive endowment in the context of civilization. Everything essential to the human mind was in place long before the advent of civilization, and civilization has not endured for a period of time sufficient to make any essential change to the constitution of the human mind.

The most difficult aspects of the human point of view to grasp objectively are those that have been perfectly consistent and unchanging over the history of our species. And so it is that we do not know ourselves as dwellers on the surface of a planet, shaped by the perspective afforded by a planetary surface, looking up to the stars through the distorting lens of the atmosphere, and held tight to the ground beneath our feet by gravity. At least, we have not known ourselves as such until very recently, and this knowledge has endured for a much shorter period of time than civilization, and hence has had even less impact on the constitution of our minds than has civilization, however much impact it has had upon our thoughts. Our conceptualization of ourselves as beings situated in the universe as understood by contemporary cosmology takes place against the background of the EEA, which is a product of our evolutionary psychology.

To understand ourselves aright, then, we need to understand ourselves as beings with the minds of hunter-gatherers who have come into a wealth of scientific knowledge and technological power over an historically insignificant period of time. How did hunter-gatherers conceive and experience their world? What was the Weltanschauung of hunter-gatherers? Or, if you prefer, what was the worldview of hunter-gatherers?

Living in nature as a part of nature, only differentiated in the slightest degree from the condition of prehuman prehistory, the hunter-gatherer lives always in the presence of the sublime, overwhelmed by an environment of a scale that early human beings had no concepts to articulate. And yet the hunter-gatherer learns to bring down sublimely large game — an empowering experience that must have contributed to a belief in human efficacy and agency in spite of vulnerability to a variable food supply, not yet under human control. Always passing through this sublime setting for early human life, moving on to find water, to locate game, to gather nuts and berries, or to escape the depredations of some other band of hunter-gatherers, our ancestor’s way of life was rooted in the landscape without being settled. The hunter-gatherer is rewarded for his curiosity, which occasionally reveals new sources of food, as he is rewarded for his technological innovations that allow him to more easily hunt or to build a fire. The band never has more children than can be carried by the adults, until the children can themselves escape, by running or hiding, the many dangers the band faces.

As settled agriculturalism began to displace hunter-gatherers, first from the fertile lowlands and river valleys were riparian civilizations emerged, new behaviors emerged that were entirely dependent upon the historical consciousness enabled by the cerebral cortex (that is to say, enabled by the ability to explicitly remember the past and to plan for the future). Here we find fatalism in the vulnerability of agriculture to the weather, humanism in this new found power over life, a conscious of human power in its the command of productive forces, and the emergence of soteriology and eschatology, the propitiation of fickle gods, as human compensations for the insecurity inherent in the unknowns and uncertainties of integrating human life cycles with the life cycles of domesticated plants and animals and the establishment of cities, with their social differentiation and political hierarchies, all unprecedented in the history of the world.

The Weltanschauung of hunter-gatherers, which laid the foundations for the emergence of agrarian and pastoral civilizations, I call the homeworld effect in contradistinction to what Frank White has called the overview effect. The homeworld effect is our understanding of ourselves and of our world before we have experienced the overview effect, and before the overview effect has transformed our understanding of ourselves and our world, as it surely will if human beings are able to realize a spacefaring civilization.

The homeworld effect — that our species emerged on a planetary surface and knows the cosmos initially only from this standpoint — allows us to assert the uniqueness of the overview effect for human beings. The overview effect is an unprecedented historical event that cannot be repeated in the history of a civilization. (If a civilization disappears and all memory of its having attained the overview effect is effaced, then the overview effect can be repeated for a species, but only in the context of a distinct civilization.) A corollary of this is that each and every intelligent species originating on a planetary surface (which I assume fulfills the principle of mediocrity for intelligent species during the Stelliferous Era) experiences a unique overview effect upon the advent of spacefaring, should the cohort of emergent complexities on the planet in question include a technologically competent civilization.

The homeworld effect is a consequence of planetary surfaces being a locus of material resources and energy flows where emergent complexities can appear during the Stelliferous Era (this is an idea I have been exploring in my series on planetary endemism, on which cf. Part I, Part II, Part III, Part IV, and Part V). We can say that the homeworld effect follows from this planetary standpoint of intelligent beings emerging on the surface of a planet, subject to planetary constraints, just as the overview effect follows from an extraterrestrial standpoint.

We can generalize from this observation and arrive at the principle that an effect such as the overview effect or the homeworld effect is contingent upon the experience of some standpoint (or, if you prefer, some perspective) that an embodied being experiences in the first person (and in virtue of being embodied). This first level of generalization makes it obvious that there are many standpoints and many effects that result from standpoints. Standing on the surface of a planet is a standpoint, and it yields the homeworld effect, which when formulated theoretically becomes something like Ptolemaic cosmology — A Weltanschauung or worldview that was implicit and informal for our hunter-gatherer ancestors, but which was explicitly formulated and formalized after the advent of civilization. A standpoint in orbit yields a planetary overview effect, with the standpoint being the conditio sine qua non of the effect, and this converges upon a generalization of Copernican cosmology — what Frank White has called the Copernican Perspective. (We could, in which same spirit, posit a Terrestrial Perspective that is an outgrowth of the homeworld effect.) If a demographically significant population attains a particular standpoint and experiences an effect as a result of this standpoint, and the perspective becomes the perspective of a community, a worldview emerges from the community.

Further extrapolation yields classes of standpoints, classes of effects, classes of perspectives, and classes of worldviews, each member of a class possessing an essential property in common. The classes of planetary worldviews and spacefaring worldviews will be different in detail, but all will share important properties. Civilization(s) emerging on planetary surfaces at the bottom of a gravity well constitute a class of homeworld standpoints. Although each homeworld is different in detail, the homeworld effect and the perspective it engenders will be essentially the same. Initial spacefaring efforts by any civilization will yield a class of orbital standpoints, again, each different in detail, but yielding an overview effect and a Copernican perspective. Further overview effects will eventually (if a civilization does not stagnate or collapse) converge upon a worldview of a spacefaring civilization, but this has yet to take shape for human civilization.

A distinctive aspect of the overview effect, which follows from an orbital standpoint, is the suddenness of the revelation. It takes a rocket only a few minutes to travel from the surface of Earth, the home of our species since its inception, into orbit, which no human being saw until the advent of spacefaring. The suddenness of the revelation not only furnishes a visceral counter-example to what our senses have been telling us all throughout our lives, but also stands in stark contrast to the slow and gradual accumulation of knowledge that today makes it possible to understand our position in the universe before we experience this position viscerally by having attained an orbital standpoint, i.e., an extraterrestrial perspective on all things terrestrial.

With the sudden emergence in history of the overview effect (no less suddenly than it emerges in the experience of the individual), we find ourselves faced with a novel sublime, the sublime represented by the cosmos primeval, a wilderness on a far grander scale than any wilderness we once faced on our planet, and, once again, as with our ancestors before the vastness of the world, the thundering thousands of game animals on the hoof, oceans that could not be crossed and horizons that could not be reached, we lack the conceptual infrastructure at present to fully make sense of what we have seen. The experience is sublime, it moves us, precisely because we do not fully understand it. The human experience of the homeworld effect eventually culminated in the emergence of scientific civilization, which in turn made it possible for human beings to understand their world, if not fully, at least adequately. Further extrapolation suggests that the human experience of the overview effect could someday culminate in an adequate understanding of the cosmos, as our hunter-gatherer drives for locating and exploiting resources wherever they can be found, and the reward for technological innovations that serve this end, continue to serve us as a spacefaring species.

. . . . .

I am indebted to my recent correspondence with Frank White and David Beaver, which has influenced the development and formulation of the ideas above. Much of the material above appeared first in this correspondence.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Illustrations from the early scientific revolution bear the stamp of an earlier and other civilization, as in this image, in which as much time has been spent on the trees and the clouds as the scientific experiment itself.

Illustrations from the early scientific revolution bear the stamp of an earlier and other civilization, as in this image, in which as much time has been spent on the trees and the clouds as the scientific experiment itself.

It is a convention of historiography to refer to the formative period of early modern science as “the scientific revolution” (with the definite article), and this is justified in so far as the definitive features of experimental science began to take shape in the period from Copernicus and Galileo to Newton. But in addition to the scientific revolution understood in this sense as a one-time historical process that would not be repeated, there is also the sense of revolutions in science, and there are many such revolutions in science. This sense of a revolution in scientific knowledge has become familiar through the influence of Thomas Kuhn’s book, The Structure of Scientific Revolutions. Kuhn made a now-famous distinction between normal science, which involves the patient elaboration of a scientific research program, and revolutionary science, which involves the shift (a paradigm shift) from an established scientific research program to a new and often unprecedented scientific research program.

Thomas Kuhn changed the way that we think about scientific revolutions.

Thomas Kuhn changed the way that we think about scientific revolutions.

Some revolutions in science happen rather rapidly, and some unfold over decades or even centuries. The revolution in earth science represented by geomorphology and plate tectonics was a slow-moving scientific revolution. As long as we have had accurate maps, many have noticed how the coastlines of Africa and South America fit together (a sea captain pointed this out to my maternal grandmother when she was a young girl). When Alfred Wegener put first put forth his theory of plate tectonics in 1912 he had a great deal of evidence demonstrating the geological relationship between the west coast of Africa and the east coast of South America, but he had no mechanism by which to explain the movement of continental plates. The theory was widely dismissed among geologists, but in the second half of the twentieth century more evidence and a plausible mechanism made plate tectonics the central scientific research program in the earth sciences. I have observed elsewhere that Benjamin Franklin anticipated plate tectonics, and he did so for the right reasons, so if we push the origins of the idea of plate tectonics back into the Enlightenment, this is a scientific revolution that unfolded over hundreds of years.

Alfred Wegener recognized fossil patterns over now-separated continents, which suggested a different arrangement of continents in the past, but Wegener had no causal mechanism to explain the movement (map by jmwatsonusgs.gov - United States Geological Survey - http://pubs.usgs.gov/gip/dynamic/continents.htmlen:Image:Snider-Pellegrini_Wegener_fossil_map.gif)

Alfred Wegener recognized fossil patterns over now-separated continents, which suggested a different arrangement of continents in the past, but Wegener had no causal mechanism to explain the movement (map by jmwatsonusgs.gov – United States Geological Survey – http://pubs.usgs.gov/gip/dynamic/continents.htmlen:Image:Snider-Pellegrini_Wegener_fossil_map.gif)

In the past, when knowledge was disseminated much more slowly than it is today, we are not surprised to learn that the full impact of the Copernican revolution unfolded over centuries, while today we expect the dissemination of major scientific paradigm shifts to occur much more rapidly. Indeed, we have the recent example of the discovery of the accelerating expansion of the universe as a perfect instance of a major and unexpected scientific discovery that was disseminated and accepted by most cosmologists within a year or so.

'The data summarized in the illustration above involve the measurement of the redshifts of the distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 km/s/mpc is a distance of about 5 billion light years.' (quoted from 'Evidence for an accelerating universe' at http://hyperphysics.phy-astr.gsu.edu/hbase/astro/univacc.html)

‘The data summarized in the illustration above involve the measurement of the redshifts of the distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 km/s/mpc is a distance of about 5 billion light years.’ (quoted from ‘Evidence for an accelerating universe’ at http://hyperphysics.phy-astr.gsu.edu/hbase/astro/univacc.html)

The facility with which the accelerating expansion of the universe was assimilated into contemporary cosmology could be used to argue that this was no revolution in science (or it could be said that it was not a “true” revolution in science, which would suggest an application of the “no true Scotsman” fallacy — what Imre Lakatos called “monster barring” — to scientific revolutions). The discovery of the accelerating expansion of the universe may be understood as an extension of the revolution precipitated by Hubble, who demonstrated by observational astronomy that the universe is expanding. Since Hubble’s discovery of the expansion of the universe it has assumed that the expansion of the universe was slowing down (a rate of deceleration already given the name of the “Hubble constant” even before the value of that constant had been determined). Hubble’s work was rapidly accepted, but its acceptance was the culmination of decades of debate over the size of the universe, including the Shapley–Curtis Debate, so we can treat this as a slow revolution or as a rapid revolution, depending upon the historical perspective we bring to science.

Harlow Shapley (left) and Heber Curtis (right) debated the structure and size of the universe in a famous confrontation in 1920.

Harlow Shapley (left) and Heber Curtis (right) debated the structure and size of the universe in a famous confrontation in 1920.

While general relatively came to be widely and rapidly adopted by the scientific community after the 1919 eclipse observed by Sir Arthur Eddington, I have noted in Radical Theories, Modest Formulations that Einstein presented general relativity in a fairly conservative form, and even in this conservative form the theory remained radical and difficult to accept, due to ideas such as the curvature of space and time dilation. After the initial acceptance of general relativity as a scientific research program, the subsequent century has seen a slow and gradual unfolding of some of the more radical consequences of general relativity, which became easier to accept once the essential core of the theory had been accepted.

Einstein formulated his field equations for general relativity in 1915, and we are still deducing the consequences of the theory.

Einstein formulated his field equations for general relativity in 1915, and we are still deducing the consequences of the theory.

It might be hypothesized that radical theories are accepted more rapidly when a crucial experiment fails to falsify the theory, and the more radical consequences of the theory are fudged a bit so that they do not play a role in galvanizing initial resistance to the theory. If Einstein had been talking about black holes and the expansion of the universe in 1915 he probably would have been dismissed as a crackpot. Another way to think about this is that general relativity appeared as a rigorous, mathematically formalized theory with specific predictions that admitted of crucial experiments within the scope of science at that time. But such a fundamental theory as general relativity was bound to continue to revolutionize cosmology as long as later theoreticians could elaborate the theory initially formulated by Einstein.

Jan Hendrik Oort, for whom the Oort Cloud is named, and an early discoverer of the influence of dark matter on cosmology.

Jan Hendrik Oort, for whom the Oort Cloud is named, and an early discoverer of the influence of dark matter on cosmology.

This discussion of slow-moving revolutions in cosmology brings us to the slow moving revolution that is coming to a head in our time. The recognition of dark matter, i.e., of something that accounts for the gravitational anomalies brought to attention by observational astronomy, has been slow to unfold over the last several decades. Two Dutch astronomers, Jacobus Kapteyn and Jan Oort (known for the eponymously-named Oort Cloud, suggested the possibility of dark matter in the early part of the twentieth century. Fritz Zwicky may have been the first person to use the term “dark matter” (“dunkle Materie“) in 1933. Further observations confirmed and extended these earlier observations, but it was not until the 1980s that the “missing” dark matter came to be widely recognized as a major unsolved problem in astrophysics. It remains an unsolved problem, with the best guess for its resolution being the theoretically conservative idea of an as-yet unobserved subatomic particle or particles that can be located within the standard model of particle physics with a minimum of disturbance to contemporary scientific theory.

An elegantly simple demonstration of how dark matter shapes the universe: the rotation curve of spiral galaxies cannot be accounted for by the luminous matter in the galaxy.

An elegantly simple demonstration of how dark matter shapes the universe: the rotation curve of spiral galaxies cannot be accounted for by the luminous matter in the galaxy.

There are two interesting observations to be made about this brief narrative of dark matter:

1) The idea of dark matter emerged from observational astronomy, and not as a matter of a theoretical innovation. Established theoretical ideas were applied to observations, and these ideas failed to explain the phenomena. The discovery of the expansion of the universe was also a product of observational astronomy, but it was preceded by Einstein’s theoretical work, which was already accepted at that time. Thus a number of diverse elements of scientific thought came together in a scientific research program for cosmology — a program the pursuit of which has revealed the anomaly of dark matter. There is, at present, no widely accepted physical theory that can account for dark matter, so that what we know of dark matter to date is what we know from observational astronomy.

2) No one has a strong desire to shake up the established theoretical framework either for cosmology or for fundamental physics. In other words, a radical theoretical breakthrough would upset the applecart of contemporary science, and this is not a desired outcome. The focus on dark matter as an undiscovered fundamental particle banks on the retention of the standard model in physics. Much as been invested in the standard model, and science would be more than a little out to sea if major changes had to be made to this model, so the hope is that the model can be tweaked and revised without greatly changing it. One approach to such change would be via what Quine called the “web of belief,” according to which we prefer to revise the outer edges of the web, since changing the center of the web ripples outward and changes everything else. The scientific research program at stake — which is practically the whole of big science today, with fundamental physics just as significant to astrophysics as observational astronomy — is an enormous web of belief, and if you got down to a fine-grained account of it, you would probably find that scientists would disagree as to what is the center of the web of belief and what is the periphery.

I suspect that it may be the case that, the more mature science becomes, the more difficult it will be for a major scientific revolution to occur. Any new theory to replace an old theory must not only explain observations that cannot be explained by the old theory, but the new theory must also fully account for all of the experiments and observations explained by the established theory. Quantum theory and general relativity are the best-confirmed theories in the history of physical science, and for any replacement theory to supplant them, it would have to be similarly precise and well confirmed, as well as being more comprehensive. This is a tall order. Early science picked the low-hanging fruit of scientific knowledge; the more we accumulate scientific knowledge, the more difficult it is to obtain more distant and elusive scientific knowledge. Today we have to build enormous and expensive instruments like the LHC in order to obtain new observations, so each round of expansion of scientific knowledge must wait for the newest scientific instrument to come on line, and building such instruments is becoming extremely expensive and can take decades to complete.

The particle zoo of the standard model of particle physics: where is dark matter?

The particle zoo of the standard model of particle physics: where is dark matter?

Partly in response to this slowing of the discovery of fundamental scientific principles as science matures, we can seen a parallel change in the use of the term “revolutionary” to identify changes in science. It is somewhat predictable that if a new particle is discovered that can account for dark matter observations, this discovery will be called “revolutionary” even if it can be formulated within the overall theoretical context of the standard model, rather than overturning the standard model. In other words, less is required today for a discovery to be perceived as revolutionary, but, at the same time, it is becoming ever more difficult even to achieve this lower standard of revolutionary change in science. It is extremely unlikely that the macroscopic features of the contemporary astrophysical research program will change, even if the standard model were overturned by a discovery related to dark matter. We will continue to use telescopes and colliders to observe the universe and use computers to run through simulations of incredibly complex models of the universe, so that both observational and theoretical astrophysicists will have a job for the foreseeable future.

. . . . .

Perhaps the most studied avenue to augment the standard model to account for dark matter is the supersymmetry (SUSY) approach, which posits a massive shadow particle for every known particle of the standard model.

Perhaps the most studied avenue to augment the standard model to account for dark matter is the supersymmetry (SUSY) approach, which posits a massive shadow particle for every known particle of the standard model.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Friday


'This is an artist's impression of innumerable Earth-like planets that have yet to be born over the next trillion years in the evolving universe.' Credits for image and text: NASA, ESA, and G. Bacon (STScI)

‘This is an artist’s impression of innumerable Earth-like planets that have yet to be born over the next trillion years in the evolving universe.’
Credits for image and text: NASA, ESA, and G. Bacon (STScI)

Review of Planetary Endemism

So that the reader doesn’t lose the thread of this series on planetary endemism (and to remind myself as well), I began by attempting to formulate a “big picture” taxonomy of planetary civilizations (Part I), but realized that this taxonomy ought to acknowledge the differences in civilization that would follow from civilizations emerging on different kinds of planets (Part II). Then I focused on the question, “What physical gradient is, or would be, correlated with the greatest qualitative gradient in the civilization supervening upon that physical gradient?” (Part III), and next considered how fundamentally different forms of energy flow would beget different kinds of biospheres, which would in turn result in different kinds of civilizations supervening upon these biospheres (Part IV).

This discussion of planetary civilization in terms of planetary endemism provides a new perspective on how we are to understand a civilization that has expanded to the limits dictated by planetary constraints. I have learned that most attempts to discuss planetary civilization get hung up on assumptions of global political and legal unification, which then inevitably gets hung up on utopianism, because nothing like global political and legal unification is on the horizon so this can only be discussed in utopian terms. Thinking about civilization, then, in terms of planetary endemism allows us to get to the substance of planetary civilization without getting distracted by utopian proposals for world government. And what I find to be the substance of planetary civilization is the relationship of a civilization to the intelligent species that produces a civilization, and the relation of an intelligent species to the biosphere from which it emerges.

biosphere

Thinking about biospheres

How can we scientifically discuss biospheres when we have only the single instance of the terrestrial biosphere as a reference? In order to discuss planetary civilizations scientifically we need to be able to scientifically discuss the biospheres upon which these civilizations supervene. We need a purely formal and general conception of a biosphere not tied to the specifics of the terrestrial biosphere. Ecology is not yet at the stage of development at which it can make this leap to full formalization, but we can make some general remarks about biospheres, continuous with previous observations in this series.

In the Immediately previous post in this series, Part IV, I considered the possibilities of biospheres that fall short of expanding to cover the entire surface of a planet, and so are not quite a biosphere, but constitute what we might call a partial biosphere. In that post I mentioned the terminological difficulties of finding an appropriate word for this and suggested that topology might provide some insight.

spherical shell

Biospheres and Partial Biospheres

In topology, a biosphere would be what is called a spherical shell, which is bounded by two concentric spheres of different radii. This is the three dimensional extrapolation of what mathematicians call an annulus, which is the area bounded by two concentric circles of different radii. Understanding the biosphere as a spherical shell is a good way to come to an appreciation of the “thickness” of the biosphere. The Terrestrial biosphere may be understood as that spherical shell bounded by the deepest living microbes as the shorter radius and the upper atmosphere as the longer radius. The entry on Deep Subsurface Microbes at MicrobeWiki states: “In oceanic crusts, the temperature of the subsurface increases at a rate of about 15 degrees C per kilometer of depth, giving a maximum livable depth of about 7 kilometers.” The convention establishing the distinction between the upper atmosphere and extraterrestrial space is the Kármán line, 100 km above Earth’s surface. Taking these as the deepest and highest figures, the terrestrial biosphere is a spherical shell approximately 107 km thick, though more conservative numbers could also be employed (as in the illustration above).

A partial biosphere that failed to expand across an entire planetary surface would in topological terms be a punctured spherical shell. Now, a punctured spherical shell is continuously deformable into a sphere, making the two topologically equivalent. This may sound a bit strange, but there is an old joke that a topologist is someone who can’t tell the difference between a doughnut and a coffee cup: each is continually deformable into the other (i.e., both are topologically equivalent to a torus, which is what topologists call a genus 1 surface). In topological terms, then, there is little difference between a biosphere and a partial biosphere (I will discuss a prominent exception in the next installment of this series).

While there is no topological difference between a biosphere and a partial biosphere, there could be a dramatic ecological difference, as a partial biosphere that covered too small of a proportion of a planetary surface would at some point fall below the threshold of viability, while, at the other end of the scale, if it becomes sufficiently extensive it passes the threshold beyond which it can support the evolution of complex life forms. And since only complex life forms produce civilizations, there may be a threshold below which a partial biosphere cannot be associated with a biota of sufficient complexity to allow for the emergence of an intelligent species and hence a civilization.

The extent of a biosphere may place a constraint upon life and civilization emerging from smaller celestial bodies, such as exomoons. So it is not only the possibility of a partial biosphere that may limit the development of complexity in a biota. On the other hand, a system of exomoons, i.e., several inhabitable exomoons orbiting an exoplanet, may have the opposite effect, serving as a speciation pump, leading to higher biodiversity and the emergence of higher forms of emergent complexity. Earlier I suggested that astrobiology is island biogeograpy writ large; a system of inhabitable exomoons, each with its own biosphere, orbiting an exoplanet would offer a particular elegant test of this idea, should we ever discover such a system (and in the immensity of the universe it seems likely that something like this would have happened at least once).

The topology of the biology of a system of exomoons no longer even approximates a biosphere, and this points to the limitation of the concept of a biosphere, and the need for a formalized science of inhabitability that is applicable to any inhabitable region whatever. However, this still is not sufficient for our needs. We must recognize the degree of biological relatedness or difference among separate but biologically related worlds as in the example above.

'This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.' (Image and text: NASA/ESA)

“This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.” (Image and text: NASA/ESA)

The long tail of planetary habitability

However exotic the topology of biospheres to be found in the universe, the biochemistry that populates these biologically connected regions is likely to be constrained by the chemical makeup of the universe. This chemical makeup seems to point to vaguely anthropocentric conditions for life in the universe, but this should not surprise us, as it would be a confirmation of the principle of mediocrity in biology. Water and carbon-based biochemistry is the basis of life on Earth, and the prevalence of these elements in the cosmos at large suggests this as the most common basis of life elsewhere.

Not only are there likely to be liquid subsurface oceans on Europa, Enceladus, and other moons of the outer solar system, possibly with a greater total amount of water on some of these small moons than in all the oceans of Earth, so that we know our solar system possesses enormous resources of water, but we now also know that the universe beyond our solar system possesses significant water resources. The discovery of water vapor at the quasar APM 08279+5255 (described in Astronomers Find Largest, Most Distant Reservoir of Water) represents the presence of vast amounts of water 12 billion light years away — so also 12 billion years in the past — demonstrating both the pervasive spatial and temporal distribution of water in the universe. Astrobiologists have been saying, “To find life, follow the water,” but we now know that following the water would take us far afield.

In additional to water being common in the universe, carbon-based organic chemistry is also known to be common in the universe:

“Astronomers who study the interstellar medium… have found roughly 150 different molecules floating in space… The list boasts many organic (which is to say, carbon-containing) molecules, including some sugars and a still controversial detection of the simplest amino acid, glycine…”

Seth Shostak, Confessions of an Alien Hunter: A Scientist’s Search for Extraterrestrial Intelligence, Washington, DC: National Geographic, 2009, p. 260

Thus, not only is water pervasively present in the universe, but so also are the basic molecules of organic chemistry. I had something like this in mind when in previous post (and elaborated in Not Terraforming, but Something Else…) I tried to outline what might be called variations on the theme of carbon-based life:

“…if life in the outer solar system is to be found, and it is significantly different from life of the inner solar system, how do we recognize it as life? How different is different? It is easy to imagine life that is different in detail from terrestrial life, but, for all intents and purposes, the same thing. What do I mean by this? Think of terrestrial DNA and its base paring of adenine with thymine, and cytosine with guanine: the related but distinct RNA molecule uses uracil instead of thymine for a slightly different biochemistry. Could something like DNA form with G-U-A-C instead of G-T-A-C? Well, if we can consider RNA as being ‘something like’ DNA, then the answer is yes, but beyond that I know too little of biochemistry to elaborate. As several theories of the origins of life on Earth posit the appearance of RNA before DNA, the question becomes whether the ‘RNA world’ of early life on Earth might have also been the origin of life elsewhere, and whether that RNA world matured into something other than the DNA world of terrestrial life.”

I think this is similar to some of the points made by Peter Ward in his book Life as We Do Not Know It, in which Ward wrote:

“…the simplest way to make an alien would be to change DNA slightly. Our familiar DNA is a double helix made up of two on strands of sugar, with the steps of this twisted ladder made up of four different bases. The code is based on triplet sequences, with each triplet either an order to go fetch a specific amino acid or a punctuation mark like ‘stop here.’ Within this elaborate system there are many specific changes that could be made — at least theoretically — that would be ‘alien’ yet might still work.”

Peter Ward, Life as We Do Not Know It: The NASA Search for (and Synthesis of) Alien Life, New York et al.: Penguin, 2005, p. 66-67

Ward considers variations such as changing the backbone of RNA, changing or adding proteins, changing chirality (the direction of the DNA spiral), changing solvents (i.e., a medium for biochemistry other than water), and substituting proteins for nucleic acids. All of these, I think, count as variations on the theme of carbon-based life, which is what we are to expect in the universe rich in carbon-based organic molecules.

Alternative biochemistries with methane-metabolizing microorganisms as described in the recent paper Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics might also be consistent with the dominant chemistry observed in the universe, and would constitute slightly more exotic variations on the theme of carbon-based life. Just as we will have investigated the subsurface oceans of the moons of the outer planets and will know how readily biochemistry emerges in these environments before we even pass the threshold of our own solar system to become an interstellar civilization, so too we will have the opportunity within our own solar system to investigate alternative biochemistries in environments such as Saturn’s moon Titan.

Both water and carbon-based organic chemistry are common in the universe during the Stelliferous Era in the same way that planetary surfaces are common loci of energy flows during the Stelliferous Era; indeed, planetary surfaces provide the vehicle upon which water and carbon-based organic chemistry can produce emergent complexity from energy flows.

The observable universe, then, is rich in planets, in water, and in organic molecules — everything for which one might hope in a search for life. There is no reason for our universe not to be a living universe, in which biochemistry is as common — or will be as common — as as there are planetary surfaces providing energy flows consistent with life as we know it. However, these multitudinous opportunities for life will be constrained by the prevalent organic chemistry of the universe, and this points to variations on the theme of carbon-based like. Other forms of life may exist as outliers, just as biospheres may be driven by energy flows other than insolation, but these will be unusual.

insolation

Provisional conclusions

As a provisional conclusion we assert that the same reasoning that leads us to planetary surfaces as the “Goldilocks” zone for energy flows during the Stelliferous Era also leads us to carbon-based life forms employing liquid water as a solvent during the same period of cosmological natural history.

Having thought a bit about the different kind of biospheres that might be possible given different forms of energy flow (Part IV), I have realized that these are probably outliers, and, if we remain focused on civilizations of the Stelliferous Era, insolation of planetary surfaces will be the primary source of energy flows, hence the primary basis of biospheres during the Stelliferous Era, hence the primary basis of civilization up to the point of development when biocentric civilization transitions into technocentric civilization and is no longer exclusively dependent upon a biosphere.

That being said, other sources of energy flow may play a significant role. Radioactive decay has played a significant role in the temperature of Earth (not taking account of radioactive decay, which was not then known, was the reason for Lord Kelvin’s attack on Darwinian time scales). Extrapolating from our own biosphere, we would expect to see a variety of biospheres in which stellar insolation is supplemented by other drivers of energy flow.

Later in the Stelliferous Era, when planetary systems have a greater proportion of heavy elements (due to the process of chemical enrichment), the habitable zone may move further out from parent stars because of the increased availability radioactive decay and natural fission reactors contributing relatively more to the energy flows of biospheres. The increased availability of heavier elements may also eventually impact biochemisty, as forms of life as we do not know it become more likely as the overall mixture of chemicals in the universe matures. The farther we depart in time from the present moment of cosmological natural history, the farther we depart from likely energy flows and biota depending upon these energy flows, until we reach the end of the Stelliferous Era. All that I have written above concerning the Stelliferous Era will cease to be true in the Degenerate Era, when stellar insolation ceases to be a source of energy flows.

For the time being, however, throughout the Stelliferous Era we can count on certain predictable features of life and civilization. Civilization follows intelligence, intelligence follows complex life, and complex life follows from habitability that passes beyond the kind of thresholds described above. Thus the cohort of emergent complexities found in the Stelliferous Era can be traced to the same root.

We may even discover that planetary biospheres exhibit a kind of convergent evolution, not in terms of specific species, but in terms of the kind of biomes and niches available, hence ecological structures to be found, and even the kinds of civilizations supervening upon these ecological structures. For example, I wrote a post on Civilizations of the Tropical Rainforest Biome: on another world with a peer biosphere and an intelligent species, any civilizations we found emergent in the equivalent of a tropical rainforest biome (high temperatures and high rainfall year round) would probably share certain structural features with civilizations of the tropical rainforest biome found on Earth.

The civilizations of planetary endemism, then, include all those classes of sub-planetary civilizations defined by regional biomes, prior to the emergence of a planetary civilization. Each regional (sub-planetary) civilization is consistent with its biome (i.e., it can supply the needs of its agents with the resources available within the biome in question), and in so far as the resources in a given biome govern what is possible for a biocentric civilization emergent within that biome, each such civilization is forced into a kind of uniformity that the institutions of civilization then take up in a spirit of iteration and refinement of a model (i.e., the iterative conception of civilization). When civilization expands until civilizations emergent in distinct biomes are forced into contact, resulting in communication, commerce, and conflict, new forms of planetary scale uniformity emerge in order to facilitate interchanges on a planetary scale.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

Civilizations of Planetary Endemism: Part IV

● Civilizations of Planetary Endemism: Part V

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Pricing Political Risk

25 February 2016

Thursday


David Cameron wants to keep Britain in the EU, and negotiated a deal with the EU to this end, but the deal undermines the EU, so that the EU is weakened regardless of the referendum outcome.

David Cameron wants to keep Britain in the EU, and negotiated a deal with the EU to this end, but the deal undermines the EU, so that the EU is weakened regardless of the referendum outcome.

The inability of the financial sector to price political risk is being made painfully clear by the “Brexit” situation and what it portends for Europe, for the EU, and for global finance. Now, “Brexit” is an unlovely neologism — much like “Grexit,” from which I believe it derives, both being conjunctions of the names of nation-states with the word “exit,” meaning an exit from the Eurozone, and, symbolically, ouster from Europe, the European project, the European idea — but I will employ it anyway, as it has rapidly become the convention.

It is important to observe that there are no good outcomes for the Eurozone in the wake of the British referendum on Brexit. If Cameron gets his way and Britain retains its EU membership, it will maintain this membership under specially negotiated terms, which demonstrates unambiguously that all members of the EU are equal, but some are more equal than others. If the British people vote against the deal and Britain voluntarily secedes from the EU, it will mean that one of the strongest economies in the EU, including the fabled banking center of London, have chosen to leave the EU, like the first rat leaving a sinking ship.

It isn’t just Britain and Brexit, of course. There is the lingering aftermath of the financial crisis, which began with the sub-prime mortgage crisis in the US, spread contagion-like to Europe, but was never resolved satisfactorily because of the financial difficulties of southern European nation-states like Italy and Spain, but especially Greece. Decisive and definitive action to reform Europe’s banking sector could not be pushed through under these circumstances, and now these unresolved problems are manifesting in unexpected and unintended ways due to the refugee crisis in Europe.

I am not predicting financial collapse in Europe, nor I am predicting social collapse in Europe; nor I am predicting large scale social turmoil. Europe is a very civilized place; the Europeans, by and large (and after spending hundreds of years killing each other), understand that it is in their interest to maintain economically, politically, and socially stable societies in which as many citizens as possible can live stable and prosperous lives. The approximately 500 million people in the EU are not going to suddenly shutter their shops, close their businesses, and stop buying things. Business as usual will continue, with interruptions and disruptions. Europe is, however, facing an existential crisis every bit as momentous as the Civil War that tested American unity as a nation-state. The basis of unity is distinct, and the test is distinct, but the danger is parallel.

We all know that, in cases of warfare, violent revolution, or even extreme social turmoil, that a financial position can unwind with shocking rapidity, leaving investors (typically, those investors slowest to respond to the crisis) holding the bag. The combination of financial ruin and the suddenness of its occurrence can be too much for some, and this is when we see people jumping out of windows rather than facing life as impoverished has-beens. It is no surprise that financial traumas of this kind, that emerge not from predictable market forces, but from human, all-too-human events, driven by emotion, passion, and and what Keynes called animal spirits, are put behind the market as quickly as possible, as the survivors go about the again-predictable business of picking up the pieces and going on with life.

Investment advisers like to tell potential investors that “market timing” is irrelevant, and that a prudent and long-term investor will consider market spikes and dips as somehow too petty to notice, almost beneath contempt. But if you invest your life’s savings in something as stable as bonds (like the investors in WPPSS, the Washington Public Power Supply System) or even in the very corporation that employs you (as with Enron employees who were actively encouraged to invest everything in Enron stock), and these apparently stable investment vehicles go sour due to reasons that have little to do with investment strategies, there is nothing left over to get back into the market. Yes, of course, the market will recover again, in time. By that time your retirement may be long over and you will have lived your final years in poverty before dying penniless. In the big picture such instances of individual suffering are unimportant and irrelevant, but to the individual who loses everything, it is everything.

This investment advice to disregard market timing is a rationalization and justification of the inability of the financial sector to price political risk. Political risk is a blindspot for finance capital, and as the world becomes more economically and politically integrated, this blindspot is becoming a serious stumbling block both to understanding and to action.

We have good economic models to describe how even complex industrialized economies function. But an economic model of a society is only a partial model of society. Sometimes business as usual continues even as a society is disrupted by political and social unrest (like the growing US economy despite Civil Rights protests in the 1960s and Vietnam war protests in the 1970s), but sometimes political and social unrest can cross a threshold beyond which business as usual ceases and the political and social unrest become the focus of all attention and business as usual does not recommence until the turmoil is resolved and business begins again under changed circumstances, sometimes even under changed institutions (as happened with the collapse of the Soviet Union).

A more complete model of society would include social and political factors in a way that the social sciences have not yet been able to pull off. At the end of this process would be a model of civilization itself, including economic, political, social, religious, and other factors. I have often pointed out that we lack a science of civilization, and the financial blindspot in pricing political risk is a perfect practical example of what it means to be without a model of civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


'Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.' (NASA)

“Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.” (NASA)

In earlier posts of this series on Civilizations of Planetary Endemism we saw that planets not only constitute a “Goldilocks” zone for liquid water, but also for energy flows consistent with life as we know it. I would like to go into this in a little more detail, as there is much to be said on this. It is entirely possible that energy flows on a planet or moon outside the circumstellar habitable zone (CHZ) could produce sufficient heat to allow for the presence of liquid water in the outer reaches of a planetary system. Indeed, it may be misleading to think of habitable zones (for life as we know it) primarily in terms of the availability of liquid water; it might be preferable to conceive a habitable zone primarily in terms of regions of optimal energy flow (i.e., optimal for life as we know it), and to understand the availability of liquid water as a consequence of optimal energy flow.

Our conception of habitability, despite what we already know, and what we can derive from plausible projections of scientific knowledge, is being boxed in by the common conceptions (and misconceptions) of biospheres and CHZs. We can posit the possibility of “oasis” civilizations on worlds where only a limited portion of the surface is inhabitable and no “biosphere” develops, although enough of a fragment of a biosphere develops in order for complex life, intelligence, and civilization to emerge. We do not yet have an accurate term for the living envelope that can emerge on a planetary surface, but which does not necessary cover the entire planetary surface. I have experimented with a variety of terms to describe this previously. For example, I used “biospace” in my 2011 presentation “The Moral Imperative of Human Spaceflight,” but this is still dissatisfying.

As is so often the case, we run into problems when we attempt to extrapolate Earth sciences formulated for the explicit purpose of accounting for contingent terrestrial facts, and never conceived as a purely general scientific exercise applicable to any comparable phenomena anywhere in the universe. This is especially true of ecology, and since I find myself employing ecological concepts so frequently, I often feel the want of such formulations. Ecology as a science is theoretically weak (it is much stronger on its observational side, which goes back to traditional nature studies that predate ecology), and its chaos of criss-crossing classification systems reflects this.

There are a great many terms for subdivisions of the biosphere — ecozone, bioregion, ecoregion, life zone, biome, ecotope — which are sometimes organized serially from more comprehensive to less comprehensive. None of these subdivisions of a biosphere, however, would accurately describe the inhabited portion of a world on which biology does not culminate in a biosphere. Perhaps we will require recourse to the language and concepts of topology, since a biosphere, as a sphere, is simply connected. The bioring of a tidally locked M dwarf planet would not be simply connected in this topological sense.

If we conceptualize habitable zones not in terms of a celestial body being the right temperature to have liquid water on its surface, or perhaps in a subsurface ocean, but rather view this availability of liquid water as a consequence of habitable zones defined in terms of the presence of energy flows consistent with life as we know it, then we will need to investigate alternative sources of energy flow, i.e., distinct from the patterns of energy flow that we understand from our homeworld. Energy flows consistent with life as we know it are consistent with conditions that allow for the presence of liquid water on a celestial body, but this also means energy flows that would not overwhelm biochemistry and energy flows that are not insufficient for biochemistry and the origins and maintenance of metabolism.

Energy flows might be derived from stellar output (thus a consequence of gravitational confinement fusion), from radioactivity, which could take the form of radioactive decay or even a naturally-occurring nuclear reactor, as as Oklo in Gabon (thus a consequence of fission), from gravitational tidal forces, or from the kinetic energy of impacts. All of these sources of energy flows have been considered in another connection: suggested ways to resolve the faint young sun paradox (the problem that the sun was significantly dimmer earlier in its life cycle, while there still seems to have been liquid water on Earth) are the contributions of other energy sources to maintaining a temperature on Earth similar to that of today, including greater tidal heating from a closer moon, more heating from radioactive decay, and naturally occurring nuclear fission.

It would be possible in a series of thought experiments to consider counterfactual worlds in which each of these sources of energy flow are the primary source of energy for a biosphere (or a subspherical biological region of a planetary surface). The Jovian moon Io, for example, is the most volcanically active body in our solar system; while Io seems to barren, one could imagine an Io of more clement conditions for biology in which the tidal heating of a moon with an atmosphere was the basis of the energy flow for an ecosystem. A world with more fissionables in its crust than Earth (the kind of worlds likely to be found during the late Stelliferous Era under conditions of high metallicity) might be heated by radioactive decay or natural fission reactors (or some combination of the two) sufficient to generate energy flows for a biosphere, even at a great distance from its parent star. It seems unlikely that kinetic impacts from collisions could provide a sufficiently consistent flow of energy without a biosphere suffering mass extinctions from the same impacts, but this could merely be a failure of imagination. Perhaps a steady rain of smaller impacts without major impacts could contribute to energy flows without passing over the threshold of triggering an extinction event.

Each of these exotic counterfactual biospheres suggests the possibility of a living world very different from our own. The source of an energy flow might be inconsistent, that is to say, consistent up to the point of making life possible, but not sufficiently consistent for civilization, or the development of civilization. That is to say, it is possible that a planetary biosphere or subspheric biological region might possess sufficient energy flows for the emergence of life, but insufficient energy flows (or excessive energy flows) for the emergence of complex life or civilization. Once can easily imagine this being the case with extremophile life. And it is possible that a bioregion might possess sufficient energy flows for the emergence of a rudimentary civilization, but insufficient for the development of industrial-technological civilization that can make the transition to spacefaring civilization and thus ensure its longevity.

Civlizations of planetary endemism on these exotic worlds would be radically different from our own civilization due to differences in the structure and distribution of energy flow. Civilizations of planetary endemism are continuous with the biosphere upon which they supervene, so that a distinct biosphere supervening upon a distinct energy flow would produce a distinct civilization. Ultimately and ideally, these distinct forms of energy flow could be given an exhaustive taxonomy, which would, at the same time, be a taxonomy of civilizations supervening upon these energy flows.

However, the supervenience of civilization upon biosheres and biospheres upon energy flows is not exhaustive. Civilizations consciously harness energy flows to the benefit of the intelligent agent engaged in the civilizing process. The first stage of terrestrial civilization, that of agricuturalism and pastoralism, was a natural extension of energy flows already present in the bioshere, but once the breakthrough to industrialization occurred, energy sources became more distant from terrestrial energy flows. Fossil fuels are, in a sense, stored solar energy, and derive from the past biology of our planet, but this is the use of biological resources at one or more remove. As technologies became more sophisticated, in became possible to harness energy sources of a more elemental nature that were not contingent upon extant energy flows on a planet.

It may be, then, that biocentric civilizations are rightly said to supervene upon biospheres. However, with the breakthrough to industrialization, and the beginning of the transition to a technocentric civilization, this supervenience begins to fail and a discontinuity is interpolated between a civilization and its homeworld. According to this account, the transition from biocentric to technocentric civilization is the end point of civilizations of planetary endemism, and the emergence of a spacefaring civilization as the consequence of technologies enabled by technocentric civilization is a mere contingent epiphenomenon of a deeper civilizational process. This in itself provides a deeper and more fundamental perspective on civilization.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

● Civilizations of Planetary Endemism: Part IV

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Follow

Get every new post delivered to your Inbox.

Join 482 other followers

%d bloggers like this: