Thursday


In my Addendum on Naturalism Purged of Metaphysical Fallacies I proposed an analogy between the role of Scholasticism in the medieval work with the role of naturalism in the modern world:

“Naturalism stands in relationship to 21st century philosophical thought as scholasticism stood in relation to 13th century philosophical thought: it is the background conceptual framework (usually itself imperfectly and incompletely articulated, but nevertheless pervasively present) that underlies most explicit philosophical formulations. In the same way that it would be difficult to identify the exact content of scholasticism in the 13th century, it would be difficult to identify the exact content of naturalism today, and this is to be expected from a fundamental philosophical orientation in its ascendancy.”

One could argue that we are already seeing the beginnings of the breakdown of naturalism. In 2012, when Thomas Nagel published Mind & Cosmos: Why the Materialist Neo-Darwinian Conception of Nature is Almost Certainly False, the book came in for surprisingly harsh criticism, simply for Nagel being a philosopher of his stature questioning the now received presumption of physicalism. This controversy over Nagel’s book, however, is a conflict internal to naturalism — specifically, a conflict between a narrowly conceived physicalism (but still conceived within the framework of naturalism) and any alternative (but still naturalistic) explanatory framework. There are any number of naturalistic interpretations of mind (or consciousness, if you prefer), so that insisting upon an eliminationist account seems unnecessarily extreme, as though there were something more going on here than the mere formulation of a philosophical position. The eliminationists protest too much.

Just as logical positivism was a particularly narrow form of naturalism in the early twentieth century (similar in many respects to contemporary physicalism), physicalism is the particularly narrow form of naturalism prevalent today. Perhaps it is the character of naturalism to be repeatedly expressed in minimalist forms like this until their manifest inadequacy has been demonstrated to the current generation of philosophers. Minimalist forms of naturalism have the virtues of parsimony, both ontological and theoretical, and the kind of elegant argumentation often associated with parsimony, but there are limits beyond which minimalism passes from being merely austere to being downright perverse and no longer being parsimonious in terms of what it requires that one believe.

A conceptual framework as robust as naturalism can be expected to endure for many centuries, as indeed the Scholastic conceptual framework endured for many centuries. The efflorescence of the Scholastic synthesis (as it is sometimes called) is usually associated with the work of Saint Thomas Aquinas, with the work of William of Ockham marking the unraveling of the Scholastic synthesis. But while the Scholastic synthesis may have declined in the late middle ages, with its replacement with the rising scientific synthesis (part of the rise of naturalism) in the early modern period, the better part of the European conceptual framework remained essentially Scholastic for hundreds of years yet to come.

E. M. W. Tillyard’s classic study The Elizabethan World Picture emphasized the essentially medieval character of the Elizabethan world picture (“…it was still solidly theocentric, and that it was a simplified version of a much more complicated medieval picture…”), and Carl Becker’s equally famous lectures The Heavenly City of the Eighteenth-Century Philosophers, extends the influence of the Scholastic conceptual framework into the Enlightenment: “…the underlying preconceptions of eighteenth-century thought are still, allowance made for certain important alterations in the bias, essentially the same as those of the thirteenth century.” (From the final paragraph of lecture 1.) If we are permissive in the range of dates we give for Scholasticism, this was a conceptual framework that endured for well over a thousand years, and fifteen hundred years by some measures.

The replacement of Scholasticism by naturalism begs the question as to what conceptual framework eventually will follow naturalism, when naturalism itself follows Scholasticism into the dustbin of history. Suppose after another several hundred years, when the naturalistic conceptual framework has run its course and has been exhausted, that some other conceptual framework begins to replace naturalism, a process as gradual and as piecemeal as the replacement of Scholasticism by naturalism. What might this post-naturalism conceptual framework look like? Can we even imagine such a thing, or are we too much the products of naturalism ourselves that we cannot free ourselves from it even if we try to do so?

Merely to ask the question is to build certain assumptions into our conception of history. There is, most obviously, the presupposition of the possibility of a sequence of co-equal conceptual frameworks, the later frameworks supplanting the earlier, but not being an improvement over the earlier (or a decline compared to the earlier framework). This is somewhat like the Thomas Kuhn idea of a paradigm, which has prompted an enormous commentary. There is also the related presupposition that there will be a sequence of conceptual frameworks like this, rather than a linear development in which the human conceptual framework comes to maturity, and, having come to maturity, can only decay and then disappear—but this decline and disappearance is part of an organic life-cycle of conceptual frameworks, and not an arbitrary sequence of conceptual frameworks in which the historical process of succession is essentially irrational.

If we make these presuppositions about one conceptual framework following another without rhyme or reason, why not go even further? Why not posit a cyclical development of conceptual frameworks, such that framework A is followed by framework B, framework B is followed by framework C, but human beings have run out of new ideas at this point, so that framework C is followed once again by framework A (or its functional equivalent), and so on, ad infinitum. One could even argue that the conceptual framework of classical antiquity was more-or-less naturalistic, so that the rise of naturalism with the scientific revolution was actually the recrudescence of naturalism. Thus when this current age of naturalism has exhausted itself, we are likely to see the recrudescence of non-naturalism, mysticism, and mythology. In fact, the sharp criticism of Nagel might be credited to a concern on the part of his critics that any non-reductive, non-physicalist theory of mind was the opening of a Pandora’s box of mystification, which lid needs to be kept firmly shut so as to avoid the return of a non-naturalistic conceptual framework (a slippery slope fallacy).

N.B. — Nagel’s critics may well be right: those who hope for a future of rationalist and Enlightenment values may have a legitimate reason to be concerned about the influence of such a book from a prominent philosopher. In the same way that A. J. Ayer was said to have had a deathbed conversion (the circumstances of which are insufficiently known to the public to make sense of the contradictory accounts that have been published—cf. “An Atheist Meets the Masters of the Universe” by Peter Foges and An Analysis of the Near-Death Experiences of Atheists), and in the same way that Bertrand Russell’s casual mention of “Christian love” was immediately taken as a sign that Russell himself now had a more charitable view of traditional systems of belief (what Russell said was, “The thing I mean — please forgive me for mentioning it — is love, Christian love or compassion. If you feel like this, you have a motive for existence, a guide in action, a reason for courage, an imperative necessary for intellectual honesty”; Russell briefly addressed the response to this passage in his essay, “What is an Agnostic?”), Nagel’s book is viewed by some as a means to worm their way into otherwise reasonable discussions in order to strike a blow for unreconstructed supernaturalism.

By definition, any conceptual framework that follows naturalism but which is not itself naturalism would be non-naturalistic, though it would not necessarily be non-naturalistic in the sense of being supernaturalistic. A post-naturalistic conceptual framework would be, by definition, non-naturalistic, but we are only limited to non-naturalistic supernaturalism if we believe that there are no further conceptual possibilities for human beings, i.e., if we are unable to conceive of any non-naturalism that is not supernaturalistic, which I will here assume posits the existence of a realm of reality inaccessible to empirical investigation. Whether or not we can conceive of a non-supernatural non-naturalism remains an open question at this time—not surprisingly, as comparatively little effort (to my knowledge) has been invested in the possibility.

I have myself benefited greatly from making the attempt, over many years, and going over the same ground time and again, to imagine forms of emergent complexity not realized on Earth, as well as forms of civilization not yet realized. At first, one is simply lost when questioning fundamental presuppositions, but, if persistent, one can begin to make very small changes in one’s presuppositions, like a hole in the dike of pervasive matters of fact with no countervailing experiences, and, once imagination begins flowing ever so slowly through these holes in the dike, the dike itself becomes unstable and one can begin to picture scenarios in which the dike is washed away and the landscape appears transformed.

Thus would it be in any attempt we could make today, with naturalism at the fullness of its power, waxing in its influence, to conceive of a non-naturalistic conceptual framework. This is not a project to be taken up lightly, but a kind of meditation to which one might return repeatedly over many years as a longitudinal thought experiment on the emergence of a radically new conceptual framework. However, the fact that a naturalistic conceptual framework likely would be gradually replaced by a future non-naturalistic conceptual framework, in a piecemeal fashion, could be our point of entry into another way of thinking about the world. If we could identify isolated non-naturalistic concepts with some future promise (I can offer no instances at this time, so my positing of such concepts must remain non-constructive for the time being), we could take these promising concepts and attempt to construct with them and around them a conceptual framework that extends, elaborates, and applies this promising non-naturalistic concept. Eventually, a conceptual framework begins to form, and, when sufficiently elaborated, some other concepts within that framework present themselves as those concepts whose initial adoption would form the basis of gradual adoption of the framework entire.

This thought experiment implies another thought experiment, to which it is related, but with which it is not identical, that that is the thought experiment of a radically novel form of emergent complexity appearing within the emergent complexities familiar to us on Earth. This is a distinct but overlapping thought experiment with that which seeks to project a future non-naturalistic conceptual framework because a conceptual framework could be a novel emergent, but it not necessarily a novel emergent complexity. And the most radical forms of novel emergent complexity would not be anything as predictable and projectable as a novel conceptual framework. Thus in attempting to imagine a new form of emergent complexity coming into being we might consider radically new conceptual frameworks, but we would also want to go beyond this and try to conceive of emergent complexities that would have nothing whatsoever to do with conceptual frameworks, that are already familiar to us in several distinct forms.

The obvious kinds of emergent complexity (i.e., those that are predictable and projectable) that may arise on Earth would be those that develop from the already elaborated emergent complexities of consciousness, intelligence, technology, and social organization. For example, a new and unprecedented form of civilization. Possible instances are not difficult to formulate. A human civilization off the surface of Earth, whether on another planet (or on a moon), or in an artificial environment maintained in outer space, would be absolutely unprecedented: there has never before been a human civilization in outer space. Nevertheless, the existence of human civilizations on Earth gives us a clear template for constructing human civilizations in outer space, no matter how unprecedented such a development may be. This would constitute a predictable and obvious form of emergent complexity not yet realized but potentially looming large in the human future, and so it is with many of the more imaginative futurist scenarios, such as the emergence of machine consciousness, and all that implies, or our contact with another civilization from elsewhere in the universe, and so on.

Now let us try to set aside these obvious extrapolations of emergent complexity as we know it on Earth today and attempt to conceive a novel emergent complexity that is not only unprecedented, but which would be completely unexpected and as close to being incomprehensible as human cognition will allow us to conceptualize—a thought experiment on a radical new emergent, as different from mind as mind is different from the organisms upon which mind supervenes.

Say, for example, that the ocean begins to turn poison, and ocean food webs begin to collapse. Imagine that an enormous red tide algal bloom, of a slightly different chemical composition than familiar algal blooms, is the culprit, but the poison, while deadly to life as we know it, is some other kind of emergent complexity, another kind of chemical complexity, which is arising on the basis of existing chemical complexity in the oceans, and by establishing itself as the new chemical regime on Earth, becomes the basis of further kinds of emergent complexity that supervene upon it. Human beings might stand helplessly by, or we might frantically but ineffectually attempt to intervene, even as the chemistry of the world’s oceans changed and rendered our biology archaic, as though we belonged to a bygone era of Earth’s history. The nature we know today would be replaced by the nature that will represent the Earth in future ages, and this, too, would be a kind of post-natural world, and understanding it might require a post-naturalistic conceptual framework, if any human beings remained to possess a conceptual framework.

A scenario not unlike this unfolded on Earth billions of years ago. The Great Oxygen Catastrophe was a kind of poisoning of the environment on a planetary scale, though it was the poisoning of the atmosphere for the anaerobic organisms that had dominated the biosphere up to this time. Later, with the atmosphere enriched with oxygen, other kinds of life evolved that employed oxygen in metabolic processes, turning this poison to their advantage. Now imagine an oceanic parallel to the Great Oxygen Catastrophe — the Great Oceanic Catastrophe — that would leave our Earth as unrecognizable as our reconstructions of the earliest stages of Earth’s history are unrecognizable to us today. I attach no particular importance to the scenario I have just briefly sketched; it is intended only as an example, since examples of counterintuitive counterfactuals are difficult to come by, and I wanted to offer something concrete, and not merely leave the reader hanging.

I am not expecting the foundations of a new conceptual framework to begin to take shape tomorrow, nor do I expect to wake up tomorrow and hear news of a mysterious and ominous new oceanic anomaly. Indeed, I do not expect these events, or events of a similar magnitude, to begin to unfold in hundreds or perhaps even in thousands of years. So in discussing “the coming age of post-naturalism” I mean only that post-naturalism is “coming” on geological and cosmological scales of time, and to think of phenomena on this scale in terms of a human scale of time is not merely misleading, but actually fallacious.

The Age of Post-Naturalism will not arrive for several centuries at earliest, even if the conceptual framework of our civilization is such as can be replaced at regular intervals. And if naturalism is the mature conceptual framework for beings such as ourselves, then naturalism will endure as long as a civilization endures that can maintain the level of development that allows for the mature expression of the human intellect to remain. If we maintain our developmental accomplishments at the current stage of civilization that we enjoy today, or better, then naturalism would be our final conceptual framework, and this would be true also if our civilization were abruptly cut short by some terrible catastrophe. If, on the contrary, our level of civilization declines, our conceptual framework would almost certainly decline along with civilization. However, it is possible that this decline could be found in parallel with another traditional of thought gaining historical momentum. E. M. W. Tillyard, as quoted above, characterized the Elizabethan world picture as constituting a simplified iteration of the medieval world picture, but we also know that, at the same time, the scientific and naturalistic world picture was just then coming into being, parallel with the declining medieval world picture.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

. . . . .

Discord Invitation

. . . . .

Saturday


Knowledge relevant to the Fermi paradox will expand if human knowledge continues to expand, and we can expect human knowledge to continue to expand for as long as civilization in its contemporary form endures. Thus the development of scientific knowledge, once the threshold of modern scientific method is attained (which, in terrestrial history, was the scientific revolution), is a function of “L” in the Drake equation, i.e., a function of the longevity of civilization. It is possible that there could be a qualitative change in the nature of civilization that would mean the continuation the civilization but without the continuing expansion of scientific knowledge. However, if we take “L” in the big picture, a civilization may undergo qualitative changes throughout its history, some of which would be favorable to the expansion of scientific knowledge, and some of which would be unfavorable to the same. Under these conditions, scientific knowledge will tend to increase over the long term up to the limit of possible scientific knowledge (if there is such a limit).

At least part of the paradox of the the Fermi paradox is due to our limited knowledge of the universe of which we are a part. With the expansion of our scientific knowledge the “solution” to the Fermi paradox may be slowly revealed to us (which could include the “no paradox” solution to the paradox, i.e., the idea that the Fermi paradox isn’t really paradoxical at all if we properly understand it, which is an understanding that may dawn on us gradually), or it may hit us all at once if we have a major breakthrough that touches upon the Fermi paradox. For example, a robust SETI signal confirmed to emanate from an extraterrestrial source might open up the floodgates of scientific knowledge through interstellar idea diffusion from a more advanced civilization. This isn’t a likely scenario, but it is a scenario in which we not only confirm that we are not alone in the universe, but also in which we learn enough to formulate a scientific explanation of our place in the universe.

The growth of scientific knowledge could push our understanding of the Fermi paradox in several different directions, which again points to our relative paucity of knowledge of our place in the universe. In what follows I want to construct one possible direction of the growth of scientific knowledge and how it might inform our ongoing understanding of the Fermi paradox and its future formulations.

At the present stage of the acquisition of scientific knowledge and the methodological development of science (which includes the development of technologies that expand the scope of scientific research), we are aware of ourselves as the only known instance of life, of consciousness, of intelligence, of technology, and of civilization in the observable universe. These emergent complexities may be represented elsewhere in the universe, but we do not have any empirical evidence of these emergent complexities beyond Earth.

Suppose, then, that scientific knowledge expands along with human civilization. Suppose we arrive at the geologically complex moons of Jupiter and Saturn, whether in the form of human explorers or in the form of automated spacecraft, and despite sampling several subsurface oceans and finding them relatively clement toward life, they are all nevertheless sterile. And suppose that we extensively research Mars and find no subsurface, deep-dwelling microorganisms on the Red Planet. Suppose we search our entire solar system high and low and there is no trace of life anywhere except on Earth. The solar system, in this scenario, is utterly sterile except for Earth and the microbes that may float into space from the upper atmosphere.

Further suppose that, even after we discover a thoroughly sterile solar system, all of the growth of scientific knowledge either confirms or is consistent with the present body of scientific knowledge. That is to say, we add to our scientific knowledge throughout the process of exploring the solar system, but we don’t discover anything that overturns our scientific knowledge in a major way. There may be “revolutionary” expansions of knowledge, but no revolutionary paradigm shifts that force us to rethink science from the ground up.

At this stage, what are we to think? The science that brought to to see the potential problem represented by the Fermi paradox is confirmed, meaning that our understanding of biology, the origins of life, and the development of planets in our solar system is refined but not changed, but we don’t find any other life even in environments in which we would expect to find life, as in clement subsurface oceans. I think this would sharpen the feeling of the paradoxicalness of the Fermi paradox still without shedding much light on an improved formulation of the problem that would seem less paradoxical, but it wouldn’t sharpen the paradox to a degree that would force a paradigm shift and a reassessment of our place in the universe, i.e., it wouldn’t force us to rethink the astrobiology of the human condition.

Let us take this a step further. Suppose our technology improves to the point that we can visit a number of nearby planetary systems, again, whether by human exploration or by automated spacecraft. Supposed we visit a dozen nearby stars in our galactic neighborhood and we find a few planets that would be perfect candidates for living worlds with a biosphere — in the habitable zone of their star, geologically complex with active plate tectonics, liquid surface water, appropriate levels of stellar insolation without deadly levels of radiation or sterilizing flares, etc. — and these worlds are utterly sterile, without even so much as a microbe to be found. No sign of life. And no sign of life in any other nooks and crannies of these other planetary systems, which will no doubt also have subsurface oceans beyond the frost line, and other planets that might give rise to other forms of life.

At this stage in the expansion of our scientific knowledge, we would probably begin to think that the Fermi paradox was to be resolved by the rarity of the origins of life. In other words, the origins of life is the great filter. We know that there is a lot of organic chemistry in the universe, but what doesn’t take place very often is the integration of organic molecules into self-replicating macro-molecules. This would be a reasonable conclusion, and might prove to be an additional spur to studying the origins of life on Earth. Again, our deep dive both into other planets and into the life sciences, confirms what we know about science and finds no other life (in the present thought experiment).

While there would be a certain satisfaction in narrowing the focus of the Fermi paradox to the origins of life, if the growth of scientific knowledge continues to confirm the basic outlines of what we know about the life sciences, it would still be a bit paradoxical that the life sciences understood in a completely naturalistic manner would render the transition from organic molecules to self-replicating macro-molecules so rare. In addition to prompting a deep dive into origins of life research, there would probably also be a lot of number-crunching in order to attempt to nail down the probability of an origins of life event taking place given all the right elements are available (and in this thought experiment we are stipulating that all the right elements and all the right conditions are in place).

Suppose, now, that human civilization becomes a spacefaring supercivilization, in possession of technologies so advanced that we are more-or-less empowered to explore the universe at will. In our continued exploration of the universe and the continued growth of scientific knowledge, the same scenario as previously described continues to obtain: our scientific knowledge is refined and improved but not greatly upset, but we find that the universe is utterly and completely sterile except for ourselves and other life derived from the terrestrial biosphere. This would be “proof” of a definitive kind that terrestrial life is unique in the universe, but would this finding resolve the Fermi paradox? Wouldn’t it be a lot like cutting the Gordian knot to assert that the Fermi paradox was resolved because only a single origins of life event occurred in the universe? Wouldn’t we want to know why the origins of life was such a hurdle? We would, and I suspect that origins of life research would be pervasively informed by a desire to understand the rarity of the event.

Suppose that we ran the numbers on the kind of supercomputers that a supercivilization would have available to it, and we found that, even though our application of probability to the life sciences indicated the origins of life events should, strictly speaking, be very rare, they shouldn’t be so rare that there was only a single, unique origins of life event in the history of the universe. Say, given the age and the extent of the universe, which is very old and vast beyond human comprehension, life should have originated, say, a half dozen times. However, at this point we are a spacefaring supercivilization, we can can empirically confirm that there is no other life in the universe. We would not have missed another half dozen instances of life, and yet our science points to this. However, a half dozen compared to no other instances of life isn’t yet even an order of magnitude difference, so it doesn’t bother us much.

We can ratchet up this scenario as we have ratcheted up the previous scenarios: probability and biology might converge upon a likelihood of a dozen instances of other origins of life events, or a hundred such instances, and so on, until the orders of magnitude pile up and we have a paradox on our hands again, despite having exhaustive empirical evidence of the universe and its sterility.

At what point in the escalation of this scenario do we begin to question ourselves and our scientific understanding in a more radical way? At what point does the strangeness of the universe begin to point beyond itself, and we begin to consider non-naturalistic solutions to the Fermi paradox, when, by some ways of understanding the paradox, it has been fully resolved, and should be regarded as such by any reasonable person? At what point should a rational person consider as a possibility that a universe empty of life except for ourselves might be the result of supernatural creation? At what point would we seriously consider the naturalistic equivalent of supernatural creation, say, in a scenario such as the simulation hypothesis? It might make more sense to suppose that we are an experiment in cosmic isolation conducted by some greater intelligence, than to suppose that the universe entire is sterile except for ourselves.

I should be clear that I am not advocating a non-naturalistic solution to the Fermi paradox. However, I find it an interesting philosophical question that there might come a point at which the resolution of a paradox requires that we look beyond naturalistic explanations, and perhaps we may have to, in extremis, reconsider the boundary between the naturalistic and the non-naturalistic. I have been thinking about this problem a lot lately, and it seems to me that the farther we depart from the ordinary business of life, when we attempt to think about scales of space and time inaccessible to human experience (whether the very large or the very small), the line between the naturalistic and the non-naturalistic becomes blurred, and perhaps it ultimately ceases to be meaningful. In order to solve the problem of the universe and our place within the universe (if it is a problem), we may have to consider a solution set that is larger than that dictated by the naturalism of science on a human scale. This is not a call for supernaturalistic explanations for scientific problems, but rather a call to expand the scope of science beyond the bounds with which we are currently comfortable.

. . . . .

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Ribera painted several imaginary portraits of ancient philosophers.

Protagoras of Abdera, by Jusepe de Ribera

In the spirit of my Extrapolating Plato’s Definition of Being, in which I took a short passage from Plato and extrapolated it beyond its originally intended scope, I would like to take a famous line from Protagoras and also extrapolate this beyond its originally intended scope. The passage from Protagoras I have in mind is his most famous bon mot:

“Man is the measure of all things, of the things that are, that they are, and of the things that are not, that they are not.”

…and in the original Greek…

“πάντων χρημάτων μέτρον ἔστὶν ἄνθρωπος, τῶν δὲ μὲν οντῶν ὡς ἔστιν, τῶν δὲ οὐκ ὄντων ὠς οὐκ ἔστιν”

Presocratic scholarship has focused on the relativism of Protagoras’ μέτρον, especially in comparison to the strong realism of Plato, but I don’t take the two to be mutually exclusive. On the contrary, I think we can better understand Plato through Protagoras and Protagoras through Plato.

Firstly, the Protagorean dictum reveals at once both the inherent naturalism of Greek philosophy, which is the spirit that continues to motivate the western philosophical tradition (which Bertrand Russell once commented is all, essentially, Greek philosophy), and the ontologizing nature of Greek thought, which is another persistent theme of western philosophy, though less often noticed than the naturalistic theme. Plato, despite his otherworldly realism, is part of this inherent naturalism of Greek philosophy, which in our own day has become explicitly naturalistic. Indeed, Greek philosophy since ancient Greece might be characterized as the convergence upon a fully naturalistic conception of the world, though this has been a long and bumpy road.

The naturalism of Greek thought, in turn, points to the proto-scientific character of Greek philosophy. The closest approximation to modern scientific thought prior to the scientific revolution is to be found in works such as Archimedes’ Statics and Eratosthenes of Cyrene’s estimate of the diameter of the earth. If these examples are not already fully scientific inquiries, they are at least proto-science, from which a fully scientific method might have emerged under different historical conditions.

Plato and Protagoras were both guilty of a certain degree of mysticism, but strong traces of the scientific naturalism of Greek thought is expressed in their work. Protagoras’ μέτρον in particular can be understood as an early step in the direction of quantificational concepts. Quantification is central to scientific thought (in my podcast The Cosmic Archipelago, Part II, I offered a variation on the familiar Cartesian theme of cogito, ergo sum, suggesting that, from the perspective of science, we could say I measure, therefore I am), and when we think of quantification we think of measurement in the sense of gradations on a standard scale. However, the most fundamental form of quantification is revealed by counting, and counting is essentially the determination whether something exists or not. Thus the Protagorean μέτρον — specifically, the things that are, that they are, and the things that are not, that they are not — is a quantificational schema for determining existence relative to a human observer. Protagoras’ μέτρον is a postulate of counting, and without counting there would be no mathematicized natural science.

All scientific knowledge as we know it is human scientific knowledge, and all of it is therefore anthropocentric in a way that is not necessarily a distortion. For human beings to have knowledge of the world in which they find themselves, they must have knowledge that the human mind can assimilate. Our epistemic concepts are the framework we have erected in order to make sense of the world, and these concepts are human creations. That does not mean that they are wrong, even if they have been frequently misleading. The pyrrhonian skeptic exploits this human, all-too-human weakness in our knowledge, claiming that because our concepts are imperfect, no knowledge whatsoever is possible. This is a strawman argument. Knowledge is possible, but it is human knowledge. Protagoras made this explicit. (This is one of the themes of my Cosmic Archipelago series.)

Taking Plato and Protagoras together — that is, taking Plato’s definition of being and Protagoras’ doctrine of measure — we probably come closer to the originally intended meaning of both Plato and Protagoras than if we treat them in isolation, a fortiori if we treat them as antagonists. Plato’s definition of being — the power to affect or be affected — and Protagoras’ dictum — that man is the measure of all things, which we can take to mean that quantification begins with a human observer — naturally coincide when the power to affect or be affected is understood relative to the human power to affect or be affected.

Since human knowledge begins with a human observer and human experience, knowledge necessarily also follows from that which affects a human being or that which a human being can effect. The role of experimentation in science since the scientific revolution takes this ontological interaction of affecting and being affected, makes it systematic, and derives all natural knowledge from this principle. Human beings formulate scientific experiments, and in so doing affect the world in building an experimental apparatus and running the experiment. The experiment, in turn, affects human beings as the scientist observes the experiment running and records how it affects him, i.e., what he observers in the world as a result of his intervention in the course of events.

Plato and Protagoras taken together as establishing an initial ontological basis for quantification lay the metaphysical groundwork for scientific naturalism, even if neither philosopher was a scientific naturalist in the strict sense.

. . . . .

I have previously discussed Protagoras’ μέτρον in Ontological Ruminations: Six Protagorean Propositions on the Nature of Man and the World and A Non-Constructive World.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


munchnietzsche

Nietzsche’s Big History

One of the most succinct formulations of Big History of which I am aware is a brief paragraph from Nietzsche:

“In some remote corner of the universe, poured out and glittering in innumerable solar systems, there once was a star on which clever animals invented knowledge. That was the highest and most mendacious minute of ‘world history’ — yet only a minute. After nature had drawn a few breaths the star grew cold, and the clever animals had to die.

“On Truth and Lie in an Extra-Moral Sense,” Friedrich Nietzsche, Fragment, 1873: from the Nachlass. Translated by Walter Kaufmann

…and in the original German:

In irgend einem abgelegenen Winkel des in zahllosen Sonnensystemen flimmernd ausgegossenen Weltalls gab es einmal ein Gestirn, auf dem kluge Tiere das Erkennen erfanden. Es war die hochmütigste und verlogenste Minute der “Weltgeschichte”: aber doch nur eine Minute. Nach wenigen Atemzügen der Natur erstarrte das Gestirn, und die klugen Tiere mußten sterben.

Über Wahrheit und Lüge im außermoralischen Sinne, Friedrich Nietzsche, 1873, aus dem Nachlaß

This passage has been translated several times, so, for purposes of comparison, here is another translation:

“In some remote corner of the universe that is poured out in countless flickering solar systems, there once was a star on which clever animals invented knowledge. That was the most arrogant and the most untruthful moment in ‘world history’ — yet indeed only a moment. After nature had taken a few breaths, the star froze over and the clever animals had to die.”

ON TRUTH AND LYING IN AN EXTRA-MORAL SENSE (1873), Edited and Translated with a Critical Introduction by Sander L. Gilman, Carole Blair, and David J. Parent, New York and Oxford: OXFORD UNIVERSITY PRESS, 1989

Bertrand Russell, who rarely passed over an opportunity to criticize Nietzsche in the harshest terms, expressed a tragic interpretation of human endeavor that is quite similar to Nietzsche’s capsule big history:

“That Man is the product of causes which had no prevision of the end they were achieving; that his origin, his growth, his hopes and fears, his loves and his beliefs, are but the outcome of accidental collocations of atoms; that no fire, no heroism, no intensity of thought and feeling, can preserve an individual life beyond the grave; that all the labours of the ages, all the devotion, all the inspiration, all the noonday brightness of human genius, are destined to extinction in the vast death of the solar system, and that the whole temple of Man’s achievement must inevitably be buried beneath the debris of a universe in ruins–all these things, if not quite beyond dispute, are yet so nearly certain, that no philosophy which rejects them can hope to stand. Only within the scaffolding of these truths, only on the firm foundation of unyielding despair, can the soul’s habitation henceforth be safely built.”

Bertrand Russell, “A Free Man’s Worship”

Even closer to Nietzsche, in both style and spirit, is the passage that immediately precedes this in the same essay by Russell, told, as with Nietzsche, in the form of a parable:

“For countless ages the hot nebula whirled aimlessly through space. At length it began to take shape, the central mass threw off planets, the planets cooled, boiling seas and burning mountains heaved and tossed, from black masses of cloud hot sheets of rain deluged the barely solid crust. And now the first germ of life grew in the depths of the ocean, and developed rapidly in the fructifying warmth into vast forest trees, huge ferns springing from the damp mould, sea monsters breeding, fighting, devouring, and passing away. And from the monsters, as the play unfolded itself, Man was born, with the power of thought, the knowledge of good and evil, and the cruel thirst for worship. And Man saw that all is passing in this mad, monstrous world, that all is struggling to snatch, at any cost, a few brief moments of life before Death’s inexorable decree. And Man said: `There is a hidden purpose, could we but fathom it, and the purpose is good; for we must reverence something, and in the visible world there is nothing worthy of reverence.’ And Man stood aside from the struggle, resolving that God intended harmony to come out of chaos by human efforts. And when he followed the instincts which God had transmitted to him from his ancestry of beasts of prey, he called it Sin, and asked God to forgive him. But he doubted whether he could be justly forgiven, until he invented a divine Plan by which God’s wrath was to have been appeased. And seeing the present was bad, he made it yet worse, that thereby the future might be better. And he gave God thanks for the strength that enabled him to forgo even the joys that were possible. And God smiled; and when he saw that Man had become perfect in renunciation and worship, he sent another sun through the sky, which crashed into Man’s sun; and all returned again to nebula.

“`Yes,’ he murmured, `it was a good play; I will have it performed again.'”

Here Russell, unlike Nietzsche, gives theological meaning to the spectacle, however heterodox that meaning may be; I can easily imagine someone preferring Russell’s theological version to Nietzsche’s secular version, though both highlight the meaninglessness of human endeavor in a thermodynamic universe.

Our sun — a star among stars — will be a relatively early casualty in the heat death of the universe. While the life of the sun is orders of magnitude beyond the life of the individual human being, as soon as we understood that the sun’s life will pass through predictable stages of stellar evolution, we understood that the sun, like any human being, was born, will shine for a time, and then will die, and, when the sun dies, everything that is dependent upon the light of the sun for life will die also. It is only if we can make ourselves independent of the sun that we will not inevitably share the fate of the sun.

The idea that the sun is a star among stars, and that any star will do in terms of supporting human life, is embodied in a quote attributed to Wernher von Braun by Tom Wolfe and reported in Bob Ward’s book about von Braun:

“The importance of the space program is not surpassing the Soviets in space. The importance is to build a bridge to the stars, so that when the Sun dies, humanity will not die. The Sun is a star that’s burning up, and when it finally burns up, there will be no Earthno Marsno Jupiter.”

quoted in Dr. Space: The Life of Wernher von Braun, Bob Ward, Chapter 22, p. 218, with a footnote giving as the source, “Transcript, NBC’s Today program, New York, November 11, 1998”

Wernher von Braun had seized upon the essential insight of existential risk mitigation, as had many involved in the space program from its inception. As soon as one adopts a naturalistic understand of the place of humanity in the universe, and when technology develops to a point at which its extrapolation offers human beings options and alternatives within the universe, anyone will draw the same conclusion. Another quote from von Braun makes the same point in another way:

“…man’s newly acquired capability to travel through outer space provides us with a way out of our evolutionary dead alley.”

Bob Ward, Dr. Space: The Life of Wernher von Braun, Annapolis, US: Naval Institute Press, 2013.

I have previously written about the idea that humanity is a solar species, but the fact that humanity and the biosphere from which we derive has been utterly dependent upon solar insolation has been an accident of history. Any sun will do. We can, accordingly, re-conceive humanity as a stellar species, the kind of species that requires a star and its planetary system to make a home for ourselves. In this sense, all species of planetary endemism are stellar species.

Even this idea of immigration to another star, and of any other star being as good as the sun, is ultimately too narrow. Our sun, or any star, can be the source of energy that powers our civilization, but it can easily be seen that substitute forms of energy could equally well power the future of our civilization, and that it has merely been an historical contingency — a matter of our planetary endemism — that we have been dependent upon a single star, or upon any star, for our energy needs.

This more radical and farther-reaching vision is embodied in a quote attributed to Ray Bradbury by Oriana Fallaci:

“Don’t let us forget this: that the Earth can die, explode, the Sun can go out, will go out. And if the Sun dies, if the Earth dies, if our race dies, then so will everything die that we have done up to that moment. Homer will die. Michelangelo will die, Galileo, Leonardo, Shakespeare, Einstein will die, all those will die who now are not dead because we are alive, we are thinking of them, we are carrying them within us. And then every single thing, every memory, will hurtle down into the void with us. So let us save them, let us save ourselves. Let us prepare ourselves to escape, to continue life and rebuild our cities on other planets: we shall not be long of this Earth! And if we really fear the darkness, if we really fight against it, then, for the good of all, let us take our rockets, let us get well used to the great cold and heat, the no water, the no oxygen, let us become Martians on Mars, Venusians on Venus, and when Mars and Venus die, let us go to the other solar systems, to Alpha Centauri, to wherever we manage to go, and let us forget the Earth. Let us forget our solar system and our body, the form it used to have, let us become no matter what, lichens, insects, balls of fire, no matter what, all that matters is that somehow life should continue, and the knowledge of what we were and what we did and learned: the knowledge of Homer and Michelangelo, of Galileo, Leonardo, Shakespeare, of Einstein! And the gift of life will continue.”

Oriana Fallaci, If the Sun Dies, New York: Atheneum, 1966, pp. 14-15

Fallaci refers to this as a “prayer,” and indeed we might see this as a prayer or a catechism of the Space Age — not a belief, not merely belief, but an imperative ever-present in the hearts and minds of those who have fully imbibed the spirit of the age and who seek to carry that spirit forward with evangelical fervor, proselytizing to the masses and bringing them to the True Faith through purity of will and vision — another way of saying naïveté.

Do the clever animals have to die? No, not yet. Not if they are clever enough to move on to another planet, another star, another galaxy. Not if they are clever enough to change themselves so that, when the changed conditions of the universe in which they exist no longer allow the lives of clever animals to continue, what the clever animals have achieved can be preserved in some other way, and they themselves can be preserved in another form.

. . . . .

stars-and-powerlines

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


scientific-metaphysics-small

Four Species of Big History

In Rational Reconstructions of Time I characterized Big History as the culmination, the natural teleology, as it were, of scientific historiography.

While in several posts I have attempted to analyze the positivistic outlook of much contemporary science, which views philosophy like a vampire views garlic and holy water, we all know that the absence of an explicit and acknowledged metaphysic virtually guarantees an implicit and hidden metaphysic. There is a considerable philosophical literature on the metaphysical presuppositions of science; I have written about this also, and in Reduction, Emergence, Supervenience I distinguished between four phases of scientific metaphysics: the eliminativist, the reductionist, the emergentist, and the supervenientist (although when I wrote that post I hadn’t yet fully distinguished eliminativism as a scientific metaphysic).

In so far as Big History constitutes the culmination of scientific historiography, Big History is history informed by the metaphysical presuppositions of natural science. If, then, we take my four divisions of scientific metaphysics as the possible forms that these metaphysical presuppositions can take, we have the four metaphysical forms that Big History can take: eliminativist big history, reductionist big history, emergentist big history, and supervenientist big history. I will consider each of these possibilities in turn.

Already in Reduction, Emergence, Supervenience, in a section titled “Reduction, emergence, and supervenience as philosophies of history,” I began an explicit outline of scientific historiography as founded on these scientific metaphysics:

● Eliminativist Historiography Human history is illusory and should be eliminated as a category of thought; everything history states that is true can be better and exhaustively expressed in a scientific language that makes no use of folk historiography. Therefore we can substitute scientific explanations for historical explanation without change in truth or loss of truth. It would be sufficient to provide a total description of the physics of the past without any overlay of human meanings or values.

● Reductionist Historiography Human history is nothing but natural history, or the history of the world as related by science (which is not necessarily the same thing as natural history). If human meanings and values seem to play a constitutive role in history (or even human consciousness, in the form of making conscious choices), this is merely illusory, an error the follows from human limitations.

● Emergentist Historiography Human history is a whole that emerges from natural history that possesses unique properties as a whole that are not attributable to natural historical processes.

● Supervenient Historiography Human history supervenes on natural history, or the history of the world as related by science. In other words, there can be no change in human history without there being a subvening change in natural history. The A-properties of history supervene upon the B-properties of scientifically delineated history.

The above is a modified version of what I wrote in my earlier post.

eliminativism

Eliminativist Big History

What would be eliminated in a eliminativist big history? Presumably the concepts and categories of folk historiography, as those positivist enthusiasts of eliminativism generally focused on eliminating “folk” concepts (cf. Folk Concepts and Scientific Progress). What are the folk concepts of historiography? Folk concepts of historiography would probably include all or most of the factors highlighted by personalism in history, i.e., concepts of individual human agency, which also might be identified with folk psychology: motivation, intention, purpose, meaning, value, and so on. A scientific historiography would also presumably seek to eliminate all the folk concepts still present in the special sciences made use of by scientific historiography.

How would this play out in Big History? Big History pursued as a form of metaphysical reductionism would resemble a spare and stripped-down scientific historiography more than any other metaphysical formulation under consideration here. The only novel element would be treating the whole history of the universe in these terms of scientific historiography, instead of restricting the scope of such a scientific historiographical enterprise.

Indeed, Otto Neurath, one of the movers and shakers of the Vienna Circle, already foresaw such a reductionist Big History, which he called “Cosmic History”:

“…we may look at all sciences as dovetailed to such a degree that we may regard them as parts of one science which deals with stars, Milky Ways, earth, plants, animals, human beings, forests, natural regions, tribes, and nations — in short, a comprehensive cosmic history would be the result of such an agglomeration… Cosmic history would, as far as we are using a Universal Jargon throughout all branches of research, contain the same statements as our unified science. The language of our Encyclopedia may, therefore, be regarded as a typical language of history. There is no conflict between physicalism and this program of cosmic history.”

Otto Neurath, Foundations of the Social Sciences, Chicago and London: The University of Chicago Press, 1970 (originally published 1944), p. 9

For Neurath to assert that, “There is no conflict between physicalism and this program of cosmic history,” is to say that history can be subsumed under the physicalism of the Encyclopedia of Unified Science in which the above-quoted monograph appeared, and this means that history could be reduced to protocol sentences of physics. While most historians would, I think, not find this to be congenial, it is remarkable that Neurath conceived this cosmic history as part of the program of unified science, and that it resembles so closely the ambition of Big History.

reductionism

Reductionist Big History

Reductionism usually takes the form of reducing some higher-level, more comprehensive (or more complex) state-of-affairs to a lower-level, less comprehensive (or less complex) state of affairs; without denying the reality of the higher-level state-of-affairs, but also denying the latter metaphysical primacy. A good example of this is Hilbert’s philosophy of mathematics, which sought to preserve Cantor’s set theory and transfinite numbers, but only by making a distinction between real and ideal mathematics, consigning Cantor to the latter and reserving the former for quasi-constructivist, proto-finitist mathematics. Hilbert “reduced” ideal mathematics to real mathematics, but without insisting upon the elimination of ideal mathematics, and in a similar way reductionist historiography would “reduce” human history to natural history (or to time itself), without insisting upon the elimination of human history.

Like the idealist doctrine of degrees of being, in reductionism there are degrees of reality. Without denying the reality of higher-level, more comprehensive states-of-affairs, these are said to be reducible to, or, “nothing but” the lower-level, less comprehensive states-of-affairs. If we understand history to be a higher-level, more comprehensive conception than time, the reductionist big history would take the form of asserting that history is reducible to time, or that history is nothing but time. But the reductionist does not take the additional step taken by the eliminativist, so that the reductionist does not assert either that history is unreal or time unreal, or that these are meaningless. Both are real, but each enjoys a different degree of reality. This interpretation of reductionism as a doctrine of degrees of reality could be given further exposition, but it opens up so many problems (and so many opportunities) that I will not consider it further at present.

It must be admitted that there are strong reductionist strains in scientific historiography, and many of these are retained in the movement of the ideas of scientific historiography into Big History. If it is argued that some major historical development is entirely due to climate change, or geography, or cosmological circumstances like the fact that Earth had only one moon, and so on, we are here approximating a purely reductionist Big History. This kind of reductionism is antithetical to personalism in history, in which human actors loom large, but while the eliminativist Big Historian might simply do without any reference to human actors in history, the reductivist Big Historian would retain human actors, but would ascribe their actions to larger forces, be those forces fundamental physics, cosmology, geography, or something else.

emergentism

Emergentist Big History

Emergentism, unlike eliminationism and reductionism, has a prominent and explicit place in Big History. Big Historians usually recognize eight thresholds of emergent complexity in the history of the universe — the big bang, stars, chemical elements, planets, life, human beings, argiculture, and modernity — at least, these are the thresholds made canonical by David Christian. There are alternative periodizations based on thresholds of emergent complexity, but most Big Historians recognize some sort of periodization of the history of the universe entire based on emergent complexity.

One of the similes employed by contemporary philosophers to explain the ambition of metaphysics is the idea of carving nature at the joints. This is precisely what Big Historians are trying to do in using emergent complexity as a basis for periodization. Historians have always employed periodizations; with Big History, these periodizations are now drawn not from human conventions, but from the actual history of nature itself, from the very structure of the universe, and thus are quantifiable and can be studied by science. Here scientific historiography is “cashed out” by making periodization subject to rigorous scientific research. It would be difficult to imagine a more perfect exemplification of a metaphysical synthesis of science and history.

While emergentism features prominently in Big History, the Big History version of emergent complexity has not yet been a focus of research by philosophers, and so it lacks the clarity and ambition to system that we would expect to find in a more philosophical account. In some accounts of Big History, emergentism is invoked rather than explained or exhibited, so there remains much work to be done. Big History employs emergentism, but it could not be said that Big History is as yet a thoroughly emergentist conception of history — we could apply the idea of emergence more systematically and exhaustively — nor could we say that the possibilities of emergentism in the philosophy of history have been even sketched out. I suspect that we will begin to see this in the coming decade.

supervenience

Supervenientist Big History

I know of no explicit formulation of supervenientist Big History, but as a more subtle and sophisticated philosophical doctrine than its predecessors eliminationism, reductionism, and emergentism, it is not difficult to imagine that someone will, sooner rather than later, employ the metaphysical tools of supervenience to the analysis of history. Supervenience could be interpreted in a way consistent with reductionism or emergentism, so these iterations of the metaphysics of Big History could be considered precursors that eventually lead to a more sophisticated formulation in terms of supervenience. (It should, however, be pointed out that the formulation of emergentism in the first section above, “Human history is a whole that emerges from natural history that possesses unique properties as a whole that are not attributable to natural historical processes,” is not consistent with supervenience, while implies that there could be formulations of emergentist historiography inconsistent with supervenientist historiography.)

Because supervenience is a sophisticated metaphysical doctrine, there are many different formulations with subtle differences. Thus there could be many different forms of supervenientist Big History (as noted above, some compatible with emergence, and some not, and the same could be said of elimination and reduction), depending upon the variety of supervenience one employs in demonstrating that historical properties supervene on some base properties. But what do we take to be the base properties upon which historical properties supervene? Are these base properties temporal properties, or human properties, or physical properties of the universe? One of the reasons I have been emphasizing the relationship between time and history is because in my recent post A Metaphysical Disconnect I argued that the fact that the philosophy of time is not tightly-coupled with the philosophy of history points to a major disconnect. Seen in the might of supervenience, that might have historical properties supervene on properties of human societies rather than properties of time, there is here the suggestion of an argument in favor of the disconnect that I noted.

A supervenientist Big History rapidly becomes so bogged down in technical details that I will have to save an attempt at a brief exposition for a later time, as I do not yet have a grasp of this that would allow me to summarize the issues with any degree of accuracy. Nevertheless, I will not the possibility of a supervenientist Big History as a direction that research into the metaphysics of Big History could take in the near future.

The Four Philosophers by Peter Paul Rubens -- presumably an eliminativist, a reductionist, an emergentist, and a supervenientist.

The Four Philosophers by Peter Paul Rubens — presumably an eliminativist, a reductionist, an emergentist, and a supervenientist.

The Future: Big History after Scientific Metaphysics

In the fullness of time, assuming our civilization does not falter and so continues in its development (i.e., assuming the failure condition), the contemporary paradigm of science will become so altered by revision and addition that it will no longer be recognizable as what we today think of as science. Science itself will be forced to expand and to change in order to encompass objects of knowledge not accessible by contemporary scientific methods (e.g., consciousness). This change will be both influenced by changes in our philosophical outlook, and will in turn influence the shaping of our philosophical outlook. As a consequence, the metaphysical presuppositions of science will evolve along with the evolution of scientific method. The quadripartite schema I have laid out above of eliminativist, reductionist, emergentist, and supervenientist scientific metaphysics will give way to other ways of conceptualizing the world.

Big History, as an expression of scientific historiography, and thus an expression of science and of scientific civilization, will change along with the changes in scientific method and metaphysical presuppositions of history. There will always be a division of history that takes as its remit the most comprehensive conception of history, and in this sense there will always be Big History, though eventually it will be Big History without the metaphysical presuppositions of science that now subtly inform scientific historiography.

Scientific metaphysics is the intellectual superstructure of scientific civilization. In the illustration below I suggest an overall tripartite distinction among pre-scientific metaphysics, scientific metaphysics (i.e., the metaphysics that facilitates science), and post-scientific metaphysics. There is almost certain further developments of scientific metaphysics to come, which will continue to illuminate the scientific civilization of which we are part. But at some point the accumulated differences will push us over a threshold beyond which the scientific paradigm no longer applies, and that post-scientific civilization will have to be illuminated by a post-scientific metaphysics.

. . . . .

scientific-metaphysics-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Monday


Darwin’s Thesis on the Origin of Civilization

Charles Darwin

Charles Darwin

and its extrapolation to exocivilizations


In the scientific study of civilization we are beginning at the beginning because there is no established body of scientific knowledge about civilization — much historical knowledge, to be sure, but no science of civilization, sensu stricto, and therefore no scientific knowledge sensu stricto — and this demands that we begin with the simplest and most obvious propositions about civilization. The simplest and most obvious propositions about civilization are such as most discussions of civilization would simply pass over in silence as necessary presuppositions, or which would be dismissed by hand-waving and the assertion, “It is obvious that…” We will take a different point of view. Only a mathematician would think that the Jordan curve theorem was an idea in need of proof, and only someone engaged in attempting to formulate a science of civilization would think asserting that civilization originates in a pre-civilized condition was a condition of civilization that requires discussion.

Our point of departure in this discussion will be what I call Darwin’s Thesis on the origins of civilization, or, more simply, Darwin’s Thesis. I call this Darwin’s Thesis (and called it such in my presentation “What kind of civilizations build starships?”) because of the following passage from Darwin about the origins of civilization:

“The arguments recently advanced… in favour of the belief that man came into the world as a civilised being and that all savages have since undergone degradation, seem to me weak in comparison with those advanced on the other side. Many nations, no doubt, have fallen away in civilisation, and some may have lapsed into utter barbarism, though on this latter head I have not met with any evidence… The evidence that all civilised nations are the descendants of barbarians, consists, on the one side, of clear traces of their former low condition in still-existing customs, beliefs, language, &c.; and on the other side, of proofs that savages are independently able to raise themselves a few steps in the scale of civilisation, and have actually thus risen.”

Charles Darwin, The Descent of Man, Chapter V (I have left Darwin’s spelling in its Anglicized form.)

Darwin was here taking the same naturalistic stance in regard to civilization that he had earlier taken in regard to biology. Darwin made biology scientific by making it a domain of research approached by way of methodological naturalism; prior to Darwin there was biology of a kind, but not any study of biology that could be reconciled with methodological naturalism. Darwin applied this same reasoning to civilization, and this is the reasoning we must apply to civilization if we are to formulate a science of civilization that can be reconciled with methodological naturalism.

As far as ideas about civilization go, this is extremely basic. However, I will again stress the need to begin a science of civilization with the most basic and rudimentary propositions possible. While this is a proposition so rudimentary as to be mundane, there can be no more interesting question for the science of civilization than that of the origin of civilization (the question of the end of civilization is equally interesting, but I wouldn’t say it is more interesting).

While the simplest theses on civilization seem so mundane as to be uninteresting, they can nevertheless be deductively powerful in their application. We can only address the longevity of a civilization, for example, once we have established a point in time at which civilization begins, and counting forward in whatever temporal units we care to employ up to its demise (which also must be defined, if the civilization in question has come to an end), or up to the present day (if the civilization in question is still in existence).

According to Darwin’s Thesis, then, civilization is descended from a prior savage or barbaric condition (not terms we would likely employ today, but certainly terms we still understand). How are we to characterize this pre-civilized condition of humanity? What constitutes the non-civilization that preceded civilization?

A somewhat discerning distinction, albeit one with moral overtones, was made between savagery, barbarism, and civilization. Like the “three age” system of prehistory — stone age, bronze age, iron age — we still find traces of these distinctions in contemporary thought. Here is how I described it previously:

“Edward Burnett Tylor proposed that human cultures developed through three basic stages consisting of savagery, barbarism, and civilization. The leading proponent of this savagery-barbarism-civilization scale came to be Lewis Henry Morgan, who gave a detailed exposition of it in his 1877 book Ancient Society… A quick sketch of the typology can be found at Anthropological Theories: Cross-Cultural Analysis. One of the interesting features of Morgan’s elaboration of Tylor’s idea is his concern to define his stages in terms of technology. From the ‘lower status of savagery’ with its initial use of fire, through a middle stage at which the bow and arrow is introduced, to the ‘upper status of savagery’ which includes pottery, each stage of human development is marked by a definite technological achievement. Similarly with barbarism, which moves through the domestication of animals, irrigation, metal working, and a phonetic alphabet.”

Elsewhere I suggested that the non-civilization prior to civilization could be called proto-civilization. I just re-read my post on proto-civilization and now I find it inadequate, but I still endorse at least this much of what I said there:

“In the case of civilization, a state-of-affairs existed long before the idea of civilization was made explicit. But in projecting the idea of civilization backward in history, we already have the idea suggested by a particular cultural milieu, and the question becomes whether this idea can be applied further than the context in which it was initially proposed.”

This would be one methodology to employ: take the concept of civilization as it has been elaborated and seek to apply it to past social structures; determining at what point this concept no longer applies gives a point in time for the origin of civilization. This could be called the “retroactive method.”

Given the far greater archaeological data we possess than we possessed at the time the concept of civilization was first formulated, this method has new information to work with that it did not have at the time of its formulation. This is one of the points that I attempted to make, however poorly I did so, in my post on proto-civilization: we have an enormous amount of archaeological data on the Upper Paleolithic and Early Neolithic in the Old World, which is usually described in terms of “cultures” rather than “civilizations.” But when European explorers of the Early Modern period came to the New World, they encountered peoples that had social institutions that we today call civilizations, though these civilizations were closer to the “Stone Age” of the Old World than to the early civilizations of Egypt and Mesopotamia (to take to paradigm cases of civilization).

An alternative to the retroactive method would be to study the artifacts of the past on their own merits, to construct a definition of civilization on the basis of the earliest known human societies (on the basis of their material culture), and then apply this conception of civilization forward in time (for lack of a better term I will call this the proactive method, simply to contrast it to the retroactive method). It is arguable that some archaeologists do in fact follow this method, but I don’t know of anyone who has explicitly advanced this procedure as desirable (much less as necessary), although it does bear some resemblance to the implicit formalism of the cultural processual school in archaeological thought.

Both retroactive and proactive methods incorporate obvious problems that derive from parachronic distortions of evidence (the most obvious parachronism is the familiar idea of an anachronism, i.e., a survival from the past preserved into the present, where it is obviously out of place; the contrary parachronic distortion is that of projecting the present into the past).

To pull back from the provincial considerations of civilization studied by archaeology to date — that is to say, exclusively terrestrial civilizations — we can further develop the idea of Darwin’s Thesis in a cosmological context. Once we do this, we immediately understand that we have been asking questions focused on a particular set of conditions that are characteristic of civilizations during the Stelliferous Era, and our ideas worked out for terrestrial civilization (civilizations of planetary endemism during the Stelliferous Era) may not apply more generally to the largest scales of civilization achieved (or which may yet be achieved) in the cosmos.

Civilizations during the Degenerate Era may possess a different character due to their need to derive energy flows from sources other than stellar flux, which latter defines the conditions of the origins of civilization from intelligent biological agents during the Stelliferous Era, which might also be called the Age of Planetary Endemism. If the Degenerate Era begins with the universe having been exhaustively settled or inhabited by life and civilization, this densely inhabited universe not only would prevent the emergence of new civilizations, but also would mean an end to this living cosmos of starlight. In this case the Degenerate Era begins with what I have called the End-Stelliferous Mass Extinction Event (ESMEE), when widely distributed life and civilization of the Stelliferous Era, primarily supported by energy flows from stellar flux (and concentrated on planetary surfaces), comes to an end as the stars wink out one by one.

The cohort of emergent complexity that survives this transition is likely to be a post-civilization successor institution that is (by this time in the evolution of the universe) further removed from the origins of civilization than we are today removed from the origin of the universe. At this point, the origins of emergent complexity will be a distant question, largely inapplicable to contemporaneous concerns, and the central question will be what of the Stelliferous Era can survive into the Degenerate Era, and how it can perpetuate itself in a universe converging on heat death.

Would these civilizations of the Degenerate Era be newly originating civilizations, or would they be derivative from civilizations of the Stelliferous Era? The obvious answer would seem to be that these civilizations would be derivative, except that over such cosmological spans of time the concept of civilization (and the threshold of what constitutes a civilization) is likely to evolve as much as, if not more than, civilization itself. As civilization develops, and a greater degree of science, technology, and intellectual achievement is believed to be indispensable to what constitutes civilization, civilization may be redefined as something close to prevailing conditions, and everything prior to this is redefined as proto-civilization. For example, civilization today might be considered unimaginable without the conveniences of modern life, and everything prior is consigned to barbarism. This reasoning can be extended to hold that civilization is unimaginable without fusion energy, without strong AI, without interstellar travel, and so on. All of this is entirely consistent with Darwin’s Thesis, which holds regardless of whether we consider the Upper Paleolithic to be utter savagery, or 2016 to be utter savagery.

If we consciously make an effort to formulate and to retain a comprehensive conception of civilization, that is not continually revised forward in time in the light of the later developments of civilization, we can avoid the above problem, and it is this approach that gives us longer ages for our civilization today. I have often mentioned that it was once commonplace, and perhaps still commonplace, to fix the origins of civilization with the origins of written languages (i.e., the origins of the “historical period” sensu stricto), but scientific historiography has been slowly chipping away at the distinction between history and prehistory until it is no longer tenable. Hence I identify the origins of civilization with the emergence of cities during or shortly after the Neolithic Agricultural Revolution, which makes our civilization about ten thousand years old, rather than five thousand years old.

As our archaeological knowledge of the past improves, we may be able to set quantifiable conditions for the origins of civilization (say, a number of cities with a given population size, or a particular degree of sophistication in metallurgy, which latter seems to me to mark the ultimate origins of technological civilization). Again, Darwin’s Thesis is entirely in accord with this method also. Moreover, I think that this method gives a greater degree of independence to the determination of the origins of civilization, as it would also give us metrics by which we could determine the independent origin of a new civilization, say, even in the Degenerate Era, if this were to prove possible (which we really don’t know at present).

Beyond these concerns, and beyond the immediate scope of this post, we may need to posit a condition for the continuity of civilization — say, e.g., that metallurgical technological never lapses below a certain threshold — so that once given Darwin’s Thesis and some definition of civilization, we can determine when a civilization has originated de novo, and when a civilization is an evolutionary mutation of an earlier civilization, or a developmental achievement of an earlier civilization, rather than something new in history. This applies whether we take the threshold of achievement to be the smelting of copper or the building of starships. For example, if a civilization can smelt copper (or better), and never loses this technological capacity, it retains a minimal degree of continuity with the first civilization capable of this achievement, when an unbroken continuity of this capacity can be shown from the origins of this technology forward to some arbitrary date in the future.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


many questions

For some philosophers, naturalism is simply an extension of physicalism, which was in turn an extension of materialism. Narrow conceptions of materialism had to be extended to account for physical phenomena not reducible to material objects (like theoretical terms in science), and we can similarly view naturalism as a broadening of physicalism in order to more adequately account for the world. (I have quoted definitions of materialism and physicalism in Materialism, Physicalism, and… What?.) But, coming from this perspective, naturalism is approached from a primarily reductivist or eliminativist point of view that places an emphasis upon economy rather than adequacy in the description of nature (on reductivism and eliminativism cf. my post Reduction, Emergence, Supervenience). Here the principle of parsimony is paramount.

One target of eliminativism and reductionism is a class of concepts sometimes called “folk” concepts. The identification of folk concepts in the exposition of philosophy of science can be traced to philosopher Daniel Dennett. Dennett introduced the term “folk psychology” in The Intentional Stance and thereafter employed the term throughout his books. Here is part of his original introduction of the idea:

“We learn to use folk psychology — as a vernacular social technology, a craft — but we don’t learn it self-consciously as a theory — we learn no meta-theory with the theory — and in this regard our knowledge of folk psychology is like our knowledge of the grammar of our native tongue. This fact does not make our knowledge of folk psychology entirely unlike human knowledge of explicit academic theories, however; one could probably be a good practising chemist and yet find it embarrassingly difficult to produce a satisfactory textbook definition of a metal or an ion.”

Daniel Dennett, The Intentional Stance, Chap. 3, “Three Kinds of Intentional Psychology”

Earlier (in the same chapter of the same book) Dennett had posited “folk physics”:

“In one sense people knew what magnets were — they were things that attracted iron — long before science told them what magnets were. A child learns what the word ‘magnet’ means not, typically, by learning an explicit definition, but by learning the ‘folk physics’ of magnets, in which the ordinary term ‘magnet’ is embedded or implicitly defined as a theoretical term.”

Daniel Dennett, The Intentional Stance, Chap. 3, “Three Kinds of Intentional Psychology”

Here is another characterization of folk psychology:

“Philosophers with a yen for conceptual reform are nowadays prone to describe our ordinary, common sense, Rylean description of the mind as ‘folk psychology,’ the implication being that when we ascribe intentions, beliefs, motives, and emotions to others we are offering explanations of those persons’ behaviour, explanations which belong to a sort of pre-scientific theory.”

Scott M. Christensen and Dale R. Turner, editors, Folk Psychology and the Philosophy of Mind, Chap. 10, “The Very Idea of a Folk Psychology” by Robert A. Sharpe, University of Wales, United Kingdom

There is now quite a considerable literature on folk psychology, and many positions in the philosophy of mind are defined by their relationship to folk psychology — eliminativism is largely the elimination of folk psychology; reductionism is largely the reduction of folk psychology to cognitive science or scientific psychology, and so on. Others have gone on to identify other folk concepts, as, for example, folk biology:

Folk biology is the cognitive study of how people classify and reason about the organic world. Humans everywhere classify animals and plants into species-like groups as obvious to a modern scientist as to a Maya Indian. Such groups are primary loci for thinking about biological causes and relations (Mayr 1969). Historically, they provided a transtheoretical base for scientific biology in that different theories — including evolutionary theory — have sought to account for the apparent constancy of “common species” and the organic processes centering on them. In addition, these preferred groups have “from the most remote period… been classed in groups under groups” (Darwin 1859: 431). This taxonomic array provides a natural framework for inference, and an inductive compendium of information, about organic categories and properties. It is not as conventional or arbitrary in structure and content, nor as variable across cultures, as the assembly of entities into cosmologies, materials, or social groups. From the vantage of EVOLUTIONARY PSYCHOLOGY, such natural systems are arguably routine “habits of mind,” in part a natural selection for grasping relevant and recurrent “habits of the world.”

Robert Andrew Wilson and Frank C. Keil, The MIT Encyclopedia of the Cognitive Sciences

We can easily see that the idea of folk concepts as pre-scientific concepts is applicable throughout all branches of knowledge. This has already been made explicit:

“…there is good evidence that we have or had folk physics, folk chemistry, folk biology, folk botany, and so on. What has happened to these folk endeavors? They seem to have given way to scientific accounts.”

William Andrew Rottschaefer, The Biology and Psychology of Moral Agency, 1998, p. 179.

The simplest reading of the above is that in a pre-scientific state we use pre-scientific concepts, and as the scientific revolution unfolds and begins to transform traditional bodies of knowledge, these pre-scientific folk concepts are replaced with scientific concepts and knowledge becomes scientific knowledge. Thereafter, folk concepts are abandoned (eliminated) or formalized so that they can be systematically located in a scientific body of knowledge. All of this is quite close to the 19th century positivist August Comte’s theory of the three stages of knowledge, according to which theological explanations gave way to metaphysical explanations, which in turn gave way to positive scientific explanations, which demonstrates the continuity of positivist thought — even that philosophical thought that does not recognize itself as being positivist. In each case, an earlier non-scientific mode of thought is gradually replaced by a mature scientific mode of thought.

While this simple replacement model of scientific knowledge has certain advantages, it has a crucial weakness, and this is a weakness shared by all theories that, implicitly or explicitly, assume that the mind and its concepts are static and stagnant. Allow me to once again quote one of my favorite passage from Kurt Gödel, the importance of which I cannot stress enough:

“Turing… gives an argument which is supposed to show that mental procedures cannot go beyond mechanical procedures. However, this argument is inconclusive. What Turing disregards completely is the fact that mind, in its use, is not static, but is constantly developing, i.e., that we understand abstract terms more and more precisely as we go on using them, and that more and more abstract terms enter the sphere of our understanding. There may exist systematic methods of actualizing this development, which could form part of the procedure. Therefore, although at each stage the number and precision of the abstract terms at our disposal may be finite, both (and, therefore, also Turing’s number of distinguishable states of mind) may converge toward infinity in the course of the application of the procedure.”

“Some remarks on the undecidability results” (Italics in original) in Gödel, Kurt, Collected Works, Volume II, Publications 1938-1974, New York and Oxford: Oxford University Press, 1990, p. 306.

Not only does the mind refine its concepts and arrive at more abstract formulations; the mind also introduces wholly new concepts in order to attempt to understand new or hitherto unknown phenomena. In this context, what this means is that we are always introducing new “folk” concepts as our experience expands and diversifies, so that there is not a one-time transition from unscientific folk concepts to scientific concepts, but a continual and ongoing evolution of scientific thought in which folk concepts are introduced, their want of rigor is felt, and more refined and scientific concepts are eventually introduced to address the problem of the folk concepts. But this process can result in the formulation of entirely new sciences, and we must then in turn hazard new “folk” concepts in the attempt to get a handle on this new discipline, however inadequate our first attempts may be to understand some unfamiliar body of knowledge.

For example, before the work of Georg Cantor and Richard Dedekind there was no science of set theory. In formulating set theory, 19th century mathematicians had to introduce a great many novel concepts (set, element, mapping) and mathematical procedures (one-to-one correspondence, diagonalization). These early concepts of set theory are now called “naïve set theory,” which have largely been replaced by (several distinct) axiomatizations of set theory, which have either formalized or eliminated the concepts of naïve set theory, which we might also call “folk” set theory. Nevertheless, many “folk” concepts of set theory persist, and Gödel spent much of his later career attempting to produce better formalizations of the concepts of set theory than those employed in now accepted axiomatizations of set theory.

As civilization has changed, and indeed as civilization emerged, we have had occasion to introduce new terms and concepts in order to describe and explain newly emergent forms of life. The domestication of plants and animals necessitated the introduction of concepts of plant and animal husbandry. The industrial revolution and the macroeconomic forces it loosed upon the world necessitated the introduction of terms and concepts of industry and economics. In each case, non-scientific folk concepts preceded the introduction of scientific concepts explained within a comprehensive theoretical framework. In many cases, our theoretical framework is not yet fully formulated and we are still in a stage of conceptual development that involves the overlapping of folk and scientific concepts.

Given the idea of folk concepts and their replacement by scientific concepts, a mature science could be defined as a science in which all folk concepts have been either formalized, transcended, or eliminated. The infinitistic nature of science mystery (which is discussed in Scientific Curiosity and Existential Need), however, suggests that there will always be sciences in an early and therefore immature stage of development. Our knowledge of the scientific method and the development of science means that we can anticipate scientific developments and understand when our intuitions are inadequate and therefore, in a sense, folk concepts. We have an advantage over the unscientific past that knew nothing of the coming scientific revolution and how it would transform knowledge. But we cannot entirely eliminate folk concepts from the early stages of scientific development, and in so far as our scientific civilization results in continuous scientific development, we will always have sciences in the early stages of development.

Scientific progress, then, does not eliminate folk concepts, but generates new and ever more folk concepts even as it eliminates old and outdated folk concepts.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Structure of Hope

20 February 2015

Friday


Kant on Hope

Kant famously summed up the concerns of his vast body of philosophical work in three questions:

1) What can I know?

2) What ought I to do? and…

3) What may I hope?

These three questions roughly correspond to his three great philosophical treatises, the Critique of Pure Reason, the Critique of Practical Reason, and the Critique of Judgment, which represent, respectively, rigorous inquiries into knowledge, ethics, and teleology. However much the world has changed since Kant, we can still feel the imperative behind his three questions, and they are still three questions that we can ask today with complete sincerity. This is important, because many men who deceive themselves as to their true motives, ask themselves questions and accept answers that they do not truly believe on a visceral level. I am saying that Kant’s questions are not like this.

In other contexts I have considered what we can know, and what we ought to do. (For example, I have just reviewed some aspects of what we can know in Personal Experience and Empirical Knowledge, and in posts like The Moral Imperative of Human Spaceflight I have looked at what we ought to do.) Here I will consider the third of Kant’s questions — what we are entitled to hope. There is no more important study toward understanding the morale of a people than to grasp the structure of hope that prevails in a given society. Kant’s third question — What may I hope? — is perhaps that imperative of human longing that was felt first, has been felt most strongly through the history of our species, and will be the last that continues to be felt even while others have faded. We have all heard that hope springs eternal in the human breast.

It is hope that gives historical viability both to individuals and their communities. In so far as the ideal of historical viability is permanence, and in so far as we agree with Kenneth Clark that a sense of permanence is central to civilization, then hope that aspires to permanence is the motive force that built the great monuments of civilization that Clark identified as such, and which are the concrete expressions of aspirations to permanence. Here hope is a primary source of civilization. More recent thought might call this concrete expression of aspirations to permanence the tendency of civilizations to raise works of monumental architecture (this is, for example, the terminology employed in Big History).

Four conceptions of history -- human nature and human condition

Hope and Conceptions of History

The structure of hope mirrors the conception of history prevalent within a given society. A particular species of historical consciousness gives rise to a particular conception of history, and a particular conception of history in turn defines the parameters of hope. That is to say, the hope that is possible within a given social context is a function of the conception of history; what hope is possible, what hope makes sense, is limited to those forms of hope that are both actualized by and delimited by a conception of history. The function of delimitation puts certain forms of hope out of consideration, while the function of actualization nurtures those possible forms of hope into life-sustaining structures that, under other conceptions of history, would remain stunted and deformed growths, if they were possible forms of hope at all.

In analyzing the structure of hope I will have recourse to the conceptions of history that I have been developing in this forum. Consequently, I will identify political hope, catastrophic hope, eschatological hope, and naturalistic hope. This proves to be a conceptually fertile way to approach hope, since hope is a reflection of human agency, and I have remarked in Cosmic War: An Eschatological Conception that the four conceptions of history I have been developing are based upon a schematic understanding of the possibilities of human agency in the world.

All of these structures of hope — political, catastrophic, eschatological, and naturalistic — have played important roles in human history. Often we find more than one form of hope within a given society, which tells us that no conception of history is total, that it admits of exceptions, and the societies can admit of pluralistic manifestations of historical consciousness.

Hope begins where human agency ends but human desire still presses forward. A man with political hope looks to a better and more just society in the future, as a function of his own agency and the agency of fellow citizens; a man with catastrophic hope believes that he may win the big one, that his ship will come in, that he will be the recipient of great good fortune; a man with eschatological hope believes that he will be rewarded in the hereafter for his sacrifices and sufferings in this world; a man with naturalistic hope looks to the good life for himself and a better life for his fellow man. Each of these personal forms of hope corresponds to a society that both grows out of such personal hopes and reinforces them in turn, transforming them into social norms.

Woman's Eye and World Globes

Structure and Scope

While a conception of history governs the structure of hope, the contingent circumstances that are the events of history — the specific details that fill in the general structure of history — govern the scope of hope. The lineaments of hope are drawn jointly by its structure and scope, so that we see the particular visage of hope when we understand the historical structure and scope of a civilization.

Like structure, scope is an expression of human agency. An individual — or a society — blessed with great resources possesses great power, and thus great freedom of action. An individual or a society possessed of impoverished resources has much more limited power and therefore is constrained in freedom of action. In so far as one can act — that is to say, in so far as one is an agent — one acts in accords with the possibilities and constraints defined by the scope of one’s world. The scope of human agency has changed over historical time, largely driven by technology; much of the human condition can be defined in terms of humanity as tool makers.

Technology is incremental and cumulative, and it generally describes an exponential growth curve. We labor at a very low level for very long periods of time, so that our posterity can enjoy the fruits of our efforts in a later age of abundance. Thus our hopes for the future are tied up in our posterity and their agency in turn. And it is technology that systematically extends human agency. To a surprising degree, then, the scope of civilization corresponds to the technology of a civilization. This technology can come in different forms. Early civilizations mastered the technology of bureaucratic organization, and managed to administer great empires even with a very low level of technical expertise in material culture. This has changed over time, and political entities have grown in size and increased in stability as increasing technical mastery makes the administration of the planet entire a realistic possibility.

The scope of civilization has expanded as our technologically-assisted agency has expanded, and today as we contemplate our emerging planetary civilization such organization is within our reach because our technologies have achieved a planetary scale. Our hopes have grown along the the expanding scope of our civilization, so that justice, luck, salvation, and the good life all reflect the planetary scope of human agency familiar to us today.

earth eye

Hope in Planetary Civilization

What may we hope in our planetary civilization of today, given its peculiar possibilities and constraints? How may be answer Kant’s third question today? Do we have any answers at all, or is ours an Age of Uncertainty that denies the possibility of any and all answers?

Those of a political frame of mind, hope for, “a thriving global civilization and, therefore… the greater well-being of humanity.” (Sam Harris, The Moral Landscape) Those with a catastrophic outlook hope for some great and miraculous event that will deliver us from the difficulties in which we find ourselves immersed. Those whose hope is primarily eschatological imagine the conversion of the world entire to their particular creed, and the consequent rule of the righteous on a planetary scale. And those of a naturalistic disposition look to what human beings can do for each other, without the intervention of fortune or otherworldly salvation.

How each of these attitudes is interpreted in the scope of our current planetary civilization is largely contingent upon how an individual or group of individuals with shared interests views the growth of technology over the past century, and this splits fairly neatly into the skeptics of technology and the enthusiasts of technology, with a few sitting on the fence and waiting to see what will happen next. Among those with the catastrophic outlook on history will be the fence sitters, because they will be waiting for some contingent event to occur which will tip us in one direction or the other, into technological catastrophe or technological bonanza. Those of an eschatological outlook tend to view technology in purely instrumental terms, and the efficacy of their grand vision of a spiritually unified and righteous planet will largely depend on the pragmatism of their instrumental conception of technology. The political cast of mind also views technological instrumentally, but primarily what it can do to advance the cause of large scale social organization (which in the eschatological conception is given over to otherworldly powers).

Perhaps the greatest dichotomy is to be found in the radically different visions of technology held by those of a naturalistic outlook. The naturalistic outlook today is much more common than it appears to be, despite much heated rhetoric to the contrary, since, as I wrote above, many of us deceive ourselves as to our true motives and our true beliefs. The rise of science since the scientific revolution has transformed the world, and many accept a scientific world view without even being aware that they hold such views. Rhetorically they may give pride of place to political ideology or religious faith, but when they act they act in accordance with reason and evidence, remaining open to change if their first interpretations of reason and evidence seem to be contradicted by circumstances and consequences.

The dichotomy of the naturalistic mind today is that between human agency that retreats from technology, as though it were a failed project, and human agency that embraces technology. Each tends to think of their relation to technology in terms of liberation. For the critics of technology, we have become enslaved to The Machine, and either by overthrowing the technological system, or simply by turning out backs on it, people can help each other by living modest lives, transitioning to a sustainable economy, cultivating community gardens, watching over their neighbors, and, generally speaking, living up to (or, as if you prefer, down to) the “small is beautiful” and “limits to growth” creed that had already emerged in the early 1970s.

The contrast could not be more stark between this naturalistic form of hope and the technology-embracing naturalistic form of hope. The technological humanist also sees people helping each other, but doing so on an ever grander scale, allowing human beings to realistically strive toward levels of self-actualization and fulfillment not even possible in earlier ages, perhaps not even conceivable. The human condition, for such naturalists, has enslaved us to a biological regime, and it is the efficacy of technology that is going to liberate us from the stunted and limited lives that have been our lot since the species emerged. Ultimately, technology embracing naturalists look toward transhumanism and all that it potentially promises to human hopes, which in this context can be literally unbounded.

uncertainty ahead

Hope in the Age of Naturalism

Given the state of the world today, with all its pessimism, and the violence of contesting power centers apparently motivated by unchanged and unchanging conceptions of the human condition, the reader may be surprised that I focus on naturalism and the naturalistic conception of history. If we do not destroy ourselves in the short term, the long term belongs to naturalism. Contemporary political hope, in so far as it is pragmatic is naturalistic, and insofar as it is not pragmatic, it will fail. The hysterical and bloody depredations of religious mania in our time is only as bad as it is because, as an ideology, it is under threat form the success of naturalistically-enabled science and technology. Once the break with the past is made, eschatological hope will no longer be the basis of large-scale social organization, and therefore its ability to cause harm will be greatly limited (though it will not disappear). The catastrophic viewpoint is always limited by its shoulder-shrugging attitude to human agency.

Most people cannot bear to leave their fate to fate, but will take their fate into their own hands if they can. How people take their fate into their hands in the future, and therefore the form of hope they entertain for what they do with the fate held in their hands, will largely be defined by naturalism. Perhaps this is ironic, as it has long been assumed that, of perennial conceptions of the human condition, naturalism had the least to say about hope (and eschatology the most). That is only because the age of naturalism had not yet arrived. But naturalistic despair is just as much a reality as naturalistic hope, so that the coming of the age of naturalism will not bring a Millennia of peace, justice, and happiness for all. Human leave-taking of the ideologies of the past is largely a matter of abandoning neurotic misery in favor of ordinary human unhappiness.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


Geocentric cosmology by Orance Fine (1494-1555)

Geocentric cosmology by Orance Fine (1494-1555)

Once upon a time it was believed that the world was eternal and unchanging. The inconvenient truth of life and death of Earth was accommodated by a distinction between the sublunary and the superlunary: in Ptolemaic astronomy, the “sublunary” was everything in the cosmos below the sphere of the moon, and this was subject to time and change and suffering; the superlunary was everything in the cosmos beyond the sphere of the moon, which was eternal, perfect, unchanging, and permanent. Thus it was a major problem when Galileo turned his telescope on the moon and saw craters, and when he looked at the sun he saw spots. This wasn’t supposed to happen.

As a result of Galileo and the scientific revolution, we are still re-thinking the world, and each time we think that we have the world caught in a net of concepts, it escapes once again. Up until 1999 it was widely believed that the universe was expanding at a decreasing rate, and the only question was whether there was enough mass for this expansion to eventually grind to a halt, and then perhaps the universe would contract again, or if the universe would just keep coasting along in its expansion. Now it seems that the expansion of the universe is speeding up, and it is widely thought that, in a very early stage of the universe’s existence, it underwent an extremely rapid phase of expansion (called inflation).

When the scientific revolution at long last came to biology, Darwin and evolution and natural selection exploded in the scientific imagination, and suddenly a human history that had seemed neat and compact and easily circumscribed became very old, large, and messy. We recognize today that all life on the planet evolved, and that in the short interval of human life, the human mind has evolved, language has evolved, social institutions have evolved, civilization has evolved, and technology has evolved perhaps more rapidly than anything else.

The evolution of human social institutions has meant the evolution of human meanings, values, and purposes: precisely those aspects of human life that were once invested with permanency and unchangeableness in an earlier paradigm of human knowledge. Human knowledge evolves also. Science as the systematic pursuit of knowledge (since the scientific revolution, and especially since the advent of industrial-technological civilization, which is driven forward by science) has pushed the evolution of human knowledge beyond all precedent and expectation. As I recently noted in The Moral Truth of Science, science is a method and not a body and knowledge, and even the method itself changes as it is refined over time and adapted to different fields of study.

Slowly, painfully slowly, we are becoming accustomed to an evolving world in which all things are subject to change. The process does not necessarily get easier, though one might easily suppose we get numbed by change. In fact, when all our previous assumptions are forced to huddle down in a single relict of archaic thought, it can be extraordinarily difficult to get past this last stubborn knot of human thought that has attached itself passionately to the past.

I think that it will be like this with our moral ideas, which are likely to be sheltered for some time to come, and in so far as they are sheltered, they will conceal more prejudices that we would like to admit. Even those among us who are considered progressive, if not radical, can take a position that essentially protects our moral prejudices of the past. John Stuart Mill was among the most reasonable of men, and it is difficult to disagree with his claims. While in his day utilitarianism was considered radical by some, now Mill is understood to be an early proponent of the political liberalism that is taken for granted today. But the quasi-logical form that Mill gave to his ultimate moral assumptions is entirely consistent with the fideism of radical Ockhamists or Kierkegaard.

Here is a classic passage from a classic work by Mill:

Questions of ultimate ends are not amenable to direct proof. Whatever can be proved to be good, must be so by being shown to be a means to something admitted to be good without proof. The medical art is proved to be good by its conducing to health; but how is it possible to prove that health is good? The art of music is good, for the reason, among others, that it produces pleasure; but what proof is it possible to give that pleasure is good? If, then, it is asserted that there is a comprehensive formula, including all things which are in themselves good, and that whatever else is good, is not so as an end, but as a mean, the formula may be accepted or rejected, but is not a subject of what is commonly understood by proof. We are not, however, to infer that its acceptance or rejection must depend on blind impulse, or arbitrary choice. There is a larger meaning of the word proof, in which this question is as amenable to it as any other of the disputed questions of philosophy. The subject is within the cognisance of the rational faculty; and neither does that faculty deal with it solely in the way of intuition. Considerations may be presented capable of determining the intellect either to give or withhold its assent to the doctrine; and this is equivalent to proof.

John Stuart Mill, Utilitarianism, Chapter 1

Formulating his moral thought in the context of proof, Mill appeals to the logical tradition of western philosophy, going back to Aristotle. We can already find this dilemma of logical thought explicitly formulated in classical antiquity. Commenting on a passage from Aristotle’s Physics (193a3) that reads: “…to try to prove the obvious from the unobvious is the mark of a man incapable of distinguishing what is self-evident and what is not,” Simplicius wrote:

“…the words ‘the mark of a man incapable of distinguishing between what is self-evident and what is not’ typify the who who is anxious to prove by means of other things that nature, which is self-evident, is not self-evident. And it is even worse if they are to be proved by means of what is less knowable, which is what must happen in the case of things that are all too obvious. The man who wants to employ proof for everything eventually destroys proof. For if the evident must be the starting point of proof, the man who thinks that the evident needs proof no longer agrees that anything is evident, not does he leave any basis of proof, and so he leaves no proof either.”

Simplicius: On Aristotle Physics 2, translated by Barrie Fleet, London and New York: Bloomsbury Academic, 1997, p. 25

The axiological equivalence of self-evidence is intrinsic value, that is to say, self-value. The tradition of intrinsic value in English moral thought arguably reaches its apogee in G. E. Moore’s Principia Ethica, in which intrinsic value is a theme that occurs throughout the work:

“We must know both what degree of intrinsic value different things have, and how these different things may be obtained. But the vast majority of questions which have actually been discussed in Ethics—all practical questions, indeed—involve this double knowledge; and they have been discussed without any clear separation of the two distinct questions involved. A great part of the vast disagreements prevalent in Ethics is to be attributed to this failure in analysis. By the use of conceptions which involve both that of intrinsic value and that of causal relation, as if they involved intrinsic value only, two different errors have been rendered almost universal. Either it is assumed that nothing has intrinsic value which is not possible, or else it is assumed that what is necessary must have intrinsic value. Hence the primary and peculiar business of Ethics, the determination of what things have intrinsic value and in what degrees, has received no adequate treatment at all.”

G. E. Moore, Principia Ethica, section 17

The English, for the most part, had little affinity for Bergson, but it was Bergson who opened up moral philosophy to its temporal reality embedded in changing human experience. In several posts — Epistemic Space: Mapping Time and Object Disoriented Axiology among them — I have discussed Bertrand Russell’s antipathy to Bergson, even though Russell himself was once of the most powerful and passionate advocates of science, and it has been science that has forced us to put aside our equilibrium assumptions and to engage with a dynamic world that forces change upon us even if we would deny it.

The world as we understand it today, from the smallest quantum fluctuations to the evolution of the universe entire, is a dynamic world in which change is the only constant. In such a world, which our traditional eschatologies have invested with eternal moral significance, we would be better served by also abandoning equilibrium assumptions in ethics. There are trivial ways in which this occurs, as when we recognize that different objects have different moral values at different times; there are also more radical ways to think of a morally dynamic world, such as a world in which moral principles themselves must change.

Qualitative risk categories, Figure 2 from 'Existential Risk Prevention as Global Priority' (2012) Nick Bostrom

Qualitative risk categories, Figure 2 from ‘Existential Risk Prevention as Global Priority’ (2012) Nick Bostrom

In Bostrom’s qualitative categories of risk, the risks of greatest scope are identified as trans-generational and pan-generational (with the possibility of a risks of cosmic scope also noted). Both the idea of the trans-generational and the pan-generational are essentially categories of intrinsic value over time. when existential risks of smaller scope are considered, they are limited to personal, local, or global circumstances. These smaller, local risks when understood in contradistinction to trans-generational and the pan-generational can also be seen as instances of intrinsic value over time, through shorter periods of time appropriate to personal time, social time, or global time.

While it is gratifying to see this recognition of intrinsic value over time, we can go farther by considering the natural history of value. The simple and fundamental lesson of the natural history of value is that value changes over time, and that particular objects may be the bearers of intrinsic value for a temporary period of time, taking on this value and then ultimately surrendering it. Moreover, intrinsic value itself changes over time, as do the forms in which it is manifested and embodied.

When Sartre gave his famous lecture “Existentialism is a Humanism,” he took the bull by the horns and faced straight on the claims that had been made that existentialism was a gloomy philosophy of despair, quietism, and pessimism. Of his critics Sartre said, “what is annoying them is not so much our pessimism, but, much more likely, our optimism. For at bottom, what is alarming in the doctrine that I am about to try to explain to you is — is it not? — that it confronts man with a possibility of choice.” For Sartre, existentialism is, at bottom, an optimistic philosophy because it affirms the reality of choice and human agency. And so, too, the recognition of the natural history of value — that value is not a fixed and unchanging feature of the world — is an optimistic doctrine preferable to any and all false hopes.

Questioning ancient moral prejudices, as Sartre often did, almost always results in claims on behalf of traditionalists that the sky is falling, and that by opening Pandora’s Box we have unleashed evils into the world that cannot be contained. But to observe that intrinsic value changes over time is no counsel of despair, as when Bertrand Russell (as I recently quoted in Developing an Existential Perspective) said that, “…only on the firm foundation of unyielding despair, can the soul’s habitation henceforth be safely built.” That intrinsic value is subject to change means that the intrinsic value of the world may increase or decrease, and if it may increase, we ourselves may be the agents of this change.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

Third Time’s a Charm

8 February 2014

Saturday


geological eras of life

The Three Eras of Life on Earth

The Earth, it would seem, has been regularly reduced to biological penury throughout its long history, which has been punctuated by mass extinctions that have very nearly reduced biodiversity to zero. It is possible that, in the earliest history of life on Earth, when our planet was regularly bombarded by objects from space, and exposed to especially harsh conditions, life may have emerged multiple times, only to be wiped out again in short order. There would have been plenty of time for this to occur during the 550 million years prior to the emergence of the earliest life known to be continuous with our own.

The repeated denudation of the planet by mass extinctions constituted a kind of ecological succession on a grand scale. Each time life had to recover anew, and, in recovering, the surviving species (the “weeds” that were the most robust and which went on to colonize the denuded landscape and seascape) underwent dramatic periods of adaptive radiation until, in the global climax ecosystems prior to a mass extinction event, almost every niche for life has been filled — possibly several times over, leading to contested niches where multiple species compete for the same limited resources.

The history of life is such a reliable indicator of geological time that there is an entire discipline — biostratigraphy — given over to the dating of rocks by the fossils they contain. Once life becomes sufficiently complex to leave a record of itself in the rocks of our planet, the development of life is a sure guide to the age of the rocks that contain traces of this past life. Contemporary scientific geology largely got its start through biostratigraphy in the work of William Smith (called “strata Smith” by his contemporaries), whom I have previously mentioned in The Transplanetary Perspective.

Three of the major divisions of geological time are named for the eras of life that they comprise: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (common, or recent, life). These divisions of geological time give a “big picture” view of the history of life on Earth. The mass extinction events at the end of the Permian and at the K-T boundary were so catastrophic that the Earth in the case of the end Permian extinction came perilously close to being sterilized, and while the K-T event (now known as the Cretaceous–Paleogene or K–Pg extinction event) was not as disastrous, it ended the dominion of the dinosaurs over most ecological niches and thereby gave mammals the opportunity to experience an explosive adaptive radiation.

cosmos 06

Million Year Old Civilizations

We know that intelligent life on Earth arose in the late Cenozoic era, but how clement were these earlier eras of life on Earth to intelligent life? If intelligent life had arisen in the Paleozoic, founded a civilization, and survived to the present, that civilization would be in excess of 250 million years old. If, again, intelligent life had arisen in the Mesozoic, founded a civilization, and survived to the present, that civilization would be in excess of 65 million years old. However, both of these counterfactual civilizations that did not happen would have almost certainly have been destroyed by the catastrophic mass extinctions that separated these eras of terrestrial life (unless they had taken adequate measures to mitigate existential risk, which would seem to be a necessary condition for any truly long-lived civilization).

The idea of a civilization a million or more years old was a theme discussed by Carl Sagan on several occasions. Here is an explicit formulation of the million-year-old civilization theme from Chapter XII, “Encyclopedia Galacitca,” from Sagan’s book Cosmos:

“What does it mean for a civilization to be a million years old? We have had radio telescopes and spaceships for a few decades; our technical civilization is a few hundred years old, scientific ideas of a modern cast a few thousand, civilization in general a few tens of thousands of years; human beings evolved on this planet only a few million years ago. At anything like our present rate of technical progress, an advanced civilization millions of years old is as much beyond us as we are beyond a bush baby or a macaque. Would we even recognize its presence? Would a society a million years in advance of us be interested in colonization or interstellar spaceflight? People have a finite lifespan for a reason. Enormous progress in the biological and medical sciences might uncover that reason and lead to suitable remedies. Could it be that we are so interested in spaceflight because it is a way of perpetuating ourselves beyond our own lifetimes? Might a civilization composed of essentially immortal beings consider interstellar exploration fundamentally childish?”

Carl Sagan, Cosmos, Chapter XII, “Encyclopaedia Galactica”

Human civilization could be considered as being more than ten thousand years old if we date the advent of civilization to the Neolithic Agricultural Revolution. This is an atypical way to think about civilization, but I have seen it in a few sources (Jacob Bronowski, I think, takes this view, more or less), and it is how I myself think about civilization. A civilization ten thousand years old or more is nothing to dismiss; persisting for ten thousand years is a non-trivial accomplishment. Yet the history of terrestrial civilization may be compared to the history of terrestrial life: there is a long period that is nearly stagnant, with painfully slow innovations, and then an event occurs — the Cambrian explosion for life, the industrial revolution for civilization — and what it means to be “alive” or “civilized” is radically altered.

Dating to the Neolithic Agricultural revolution is consistent with my recent suggestion in From Biocentric Civilization to Post-biological Post-Civilization that civilization could be minimally defined as a coevolutionary cohort of species. However, our industrial-technological civilization is barely more than two hundred years old. To consider the geologically insignificant period of time of one hundred years is to contemplate a period of time half again as long as the entire history of industrial-technological civilization. The kind of technological gains that industrial-technological civilization could experience over a period of a hundred years can be quite remarkable, as our experience of the past hundred years suggests.

This year, 2014, we experience the one hundred year anniversary of global industrialized warfare. Not long after, we will experience the hundred year anniversaries of digital computers, jet propulsion, rocketry, and nuclear technology. Some of these technologies have improved by orders of magnitude. Some have improved very little. If the coming century brings commensurate technological innovations (not to mention innovations in science that would drive these technological innovations), even if not all these developments experience exponential development, and many languish in a state of stagnation, our world and our understanding of the world will nevertheless be repeatedly revolutionized.

Given what we know about the rapidity of technological change — bequeathed to our industrial-technological civilization as a consequence of the STEM cycle — we ought to conclude that we can know almost nothing about what a million year civilization would be like, except in so far as we might be able to imagine only the most stagnant aspects of such a civilization. It would be beyond our ability to understand advanced technologies ten thousand years hence, just as our ancestors, only beginning to lay the foundations of agrarian-ecclesiastical civilization ten thousand years ago, could have understood our advanced technologies today. Understanding across these orders of developmental magnitude lie beyond the human zone of proximal development.

Octopus evolution

Counterfactual Civilizations

I have written previously that there is an earliest bound in the history of our universe for life, for intelligent life, and for civilization. It would not be possible to produce an industrial-technological civilization as we know it (i.e., a peer civilization) without heavier metallic elements, so that the emergence of industrial-technological civilization must minimally wait for the formation of Population I stars and their planetary systems. That being said, many population I stars have been around for billions of years, and there have consequently been billions of years for industrial-technological civilizations to emerge and to attain great age.

Are there other constraints upon the emergence of life, intelligence, and civilization that move the boundary for the earliest possible emergence of these phenomena nearer to the present? Is there any reason to suppose, from our knowledge of the natural history of Earth and the complexity of the human brain, that intelligent life and civilization could not have arisen in earlier eras of life — Paleozoic intelligent life or Mesozoic intelligent life, which would, in turn, according to Civilization-Intelligence Covariance, give rise to Paleozoic civilization or Mesozoic civilization? Or, if not here on Earth, why not some other planet orbiting a population I star where life begins 550 million years after the formation of the planet?

Octopi, cuttlefish, and other cephalopods with large brains and highly sophisticated nervous systems — it takes a lot of raw neural processing power to do what some cephalopods do with their skin color — would seem to be ideal candidates for early terrestrial intelligent life. Octopi date back to the Devonian Period, more than 360 million years ago, during the Paleolithic Era, so that ancestors of this life form survived both the End Permian extinction and the K-T extinction (cf. Fossil Octopuses). Why didn’t cephalopods establish a counterfactual civilization during the Permian? There was certainly time enough to do so before the End Permian extinction.

Is a backbone, or something that can serve a similar function like an exoskeleton, a necessary condition for intelligence to issue in the production of civilization? Multicellular life forms without a backbone, or confined to an aquatic environment, might well develop intelligence, but would have a difficult time building a technological civilization — difficult, but not impossible. This is a question I considered previously in The Place of Bilaterial Symmetry in the History of Life and Counterfactuals Implicit in Naturalism.

If we should find life in the oceans below the icy surface of Europa, or any of the other moons in our solar system internally heated by gravitational forces, it would consist of life forms peculiarly constrained by their environment, i.e., possibly more constrained than terrestrial conditions, and therefore more likely to favor extremophiles. Oceanic lifeforms beneath a crust of ice many kilometers thick would not only have the technological disadvantage faced by any intelligent aquatic species, but would face the additional disadvantage of being cut off from the stars. Unable to physically see their place in the universe, such lifeforms might have an even more difficult time that we had in coming to understand the world. The mythology of such a life form would have to be very different from the mythologies created by early human societies, in which the stars typically played a prominent role. Any civilization that might be conjoined with such a mythology might constitute an extremophile civilization.

vitruvian_man

Inside the Charmed Circle

Many of the questions that I have posed above are variations on ancient themes of anthropocentrism, and from within the charmed circle of anthropocentrism it is difficult for us to see outside that circle. Our minds are quite literally defined by that circle, being the product of human biology, and our imagination is largely circumscribed by the limitations of our minds. But our minds are also capable, with effort, of passing beyond the charmed circle of anthropocentrism, identifying anthropic bias as such and transcending it.

For us, the third time life got a chance on Earth was the charm. Paleozoic life came and (largely) went without producing intelligence or civilization, as did Mesozoic life. It was not until Cenozoic life that intelligence and civilization emerged. But was this the result of mere contingency, or a function of some operative constraint — possibly even a constraint no one has even noticed because of its pervasive presence — that prevented intelligence and civilization from arising in earlier geological eras?

While there might be reason to believe that other forms of life will have something like a DNA structure, or that something like the transition from prokaryotic cells to eukaryotic cells will have taken place, but there is no particular reason to believe that the large scale structure of life on other worlds would have the terrestrial tripartite structure, since this big picture view of life on Earth was a result of particular mass extinction events that seem too contingent to characterize any possible emergence of life. However, there is reason to believe that there will be some mass extinction events afflicting life on other worlds, and at least some of these mass extinction events will result from large scale cosmological events. If solar systems form elsewhere in a process like the formation of our solar system, life elsewhere would also be exposed to asteroid impacts, comets, solar flares, and the like. This is one of the lessons of astrobiology.

That there will be constraints and contingencies that bear upon life we can be certain; but we cannot (yet) know exactly what these constraints and contingencies will be. This is a non-constructive observation: invoking the existence of constraints and contingencies without saying what they will be. What would a constructive approach to life’s constraints and contingencies look like? Is it necessary to adopt a non-constructive perspective where our knowledge is so lacking? As knowledge of the conditions of astrobiology and astrocivilization grows, may we yet adopt a constructive conception of them?

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .