Wednesday


The Thomas Digges chart of a Copernican solar system from 1576.

The Thomas Digges chart of a Copernican solar system from 1576.

The full awareness of our sun being a star, and the stars being suns in their own right, was a development nearly coextensive with the entire history of science, from its earliest stirrings in ancient Greece to its modern form at the present time. During the Enlightenment there was already a growing realization of this, as can be seen in a number of scientific works of the period, but scientific proof had to wait for a few generations more until new technologies made available by the industrial revolution produced scientific instruments equal to the task.

bessel-and-parallax

The scientific confirmation of this understanding of cosmology, which is, in a sense, the affirmation of Copernicanism (as distinct from heliocentrism) came with two scientific discoveries of the nineteenth century: the parallax of 61 Cygni, measured by Friedrich Wilhelm Bessel and published in 1838, which was the first accurate distance measured to a star other than the sun, and the spectroscopy work of several scientists — Fraunhofer, Bunsen, Kirchhoff, Huggins, and Secchi, inter alia (cf. Spectroscopy and the Birth of Astrophysics) — which demonstrated the precise chemical composition of the stars, and therefore showed them to be made of the same chemical elements found on Earth. The stars were no longer immeasurable or unknowable; they were now open to scientific study.

Joseph von Fraunhofer invented the spectroscope, and first observed what are now called Fraunhofer lines.

Joseph von Fraunhofer invented the spectroscope, and first observed what are now called Fraunhofer lines.

The Ptolemaic conception of the universe that preceded this Copernican conception painted a very different picture of the universe, and of the place of human beings within that universe. According to the Ptolemaic cosmology, the heavens were made of a different material than the Earth and its denizens (viz. quintessence — the fifth element, i.e., the element other than earth, air, fire, and water). Everything below the sphere of the moon — sublunary — was ephemeral and subject to decay. Everything beyond the sphere of the moon — superlunary — was imperishable and perfect. Astronomical bodies were perfectly spherical, and moved in perfectly circular lines (except for the epicycles). Comets were a problem (i.e., an anomaly), because their elliptical orbits ought to send them crashing through the perfect celestial spheres.

Geocentric Ptolemaic cosmology by Orance Fine (1494-1555)

Geocentric Ptolemaic cosmology by Orance Fine (1494-1555)

This Ptolemaic cosmology largely satisfied the scientific, philosophical, moral, and spiritual needs of western thought from classical antiquity to the end of the Middle Ages, and this satisfaction presumably follows from a deep consonance between this conception of the cosmos and a metaphysical vision of what the world ought to be. Ptolemaic cosmology is the intellectual fulfillment of a certain kind of heart’s desire. But this was not the only metaphysical vision of the world having its origins (or, at least, its initial expression) in classical antiquity. Another intellectual tradition that pointed in a different direction was mathematics.

The imaginative background of Ptolemaic cosmology; an image of God as architect from a Moralized Bible, folio 1 verso, Österreichische Nationalbibliothek, Vienna.

The imaginative background of Ptolemaic cosmology; an image of God as architect from a Moralized Bible, folio 1 verso, Österreichische Nationalbibliothek, Vienna.

Mathematics was the first science to attain anything like the rigor that we demand of science today. It remains an open question to this day — an open philosophical question — whether mathematics is a science, one of the sciences (a science among sciences), or whether it is something else entirely, which happens to be useful in the sciences, as, for example, the formal propaedeutic to the empirical sciences, in need of formal structure in order to organize their empirical content. The sciences, in fact, get their rigor from mathematics, so that if there were no mathematical rigor, there would be no possibility of scientific rigor.

Euclid provided the model of formal thought with his axiomatization of geometry. Legend has it that there was a sign over the door of Plato's Academy stating, 'Let no one enter here who has not studied geometry.'

Euclid provided the model of formal thought with his axiomatization of geometry. Legend has it that there was a sign over the door of Plato’s Academy stating, ‘Let no one enter here who has not studied geometry.’

Mathematics has been known since antiquity as the paradigm of exact thought, of precision, the model for all sciences to follow (remembering what science meant to the ancients, which is not what it means today: a demonstrative science based on first principles), and this precision has been seen as a function of its formalism, which is to say its definiteness, it boundedness, its participation in the peras. Despite this there was yet a recognition of the infinite (apeiron) in mathematics. I would go further, and assert that, while mathematics as a rigorous science has its origins in the peras, it has its telos in the apeiron. This is a dialectical development, as we will see below in Proclus.

An early copy of Euclid's Elements, which axiomatically systematized geometry.

An early copy of Euclid’s Elements, which axiomatically systematized geometry.

Proclus expresses the negative character of the infinite in his commentary on Euclid’s Elements:

“…the infinite is altogether incomprehensible to knowledge; rather it takes it hypothetically and uses only the finite for demonstration; that is, it assumes the infinite not for the sake of the infinite, but for the sake the infinite.”

Proclus, A Commentary on the First Book of Euclid’s Elements, translated, with an introduction and notes, by Glenn R. Morrow, Princeton: Princeton University Press, 1992, Propositions: Part One, XII, p. 223. This whole section is relevant, but I have quoted only a brief portion.

There is no question that the apeiron appeared on the inferior side of the Pythagorean table of opposites, but it is also interesting to note what Proclus says earlier on:

“The objects of Nous, by virtue of their inherent simplicity, are the first partakers of the Limit (περας) and the Unlimited (ἄπειρον). Their unity, their identity, and their stable and abiding existence they derive from the Limit; but for their variety, their generative fertility, and their divine otherness and progression they draw upon the Unlimited. Mathematicals are the offspring of the Limit and the Unlimited…”

Proclus, Commentary on the First Book of Euclid, Prologue: Part One, Chap. II

Here the apeiron appears on an equal footing with the peras, both being necessary to mathematical being. “Mathematicals” are born of the dialectic of the finite and the infinite. Both of these elements are also found (hundreds of years earlier) in the foundations of geometry. As the philosophers produced proofs that there could be no infinite number or infinite space, Euclid spoke of lines and planes extended “indefinitely” (as “apeiron” is usually translated in Euclid). Even later when the Stoics held that the material world was surrounded by an infinite void, this void had special properties which distinguished it from the material world, and indeed which kept the material world from having any relation with the void. The use of infinities in geometry, however, even though in an abstract context, force one to maintain that space locally, directly before one, is essentially of the same kind as space anywhere else along the infinite extent of a line, and indeed the same as space infinitely distant. All spaces are of the same kind, and all are related to each other. This constitutes a purely formal conception of the uniformity and continuity of nature. One might interpret the subsequent history of science as redeeming, through empirical evidence, this formal insight.

proclus-on-euclid

The infinite is the “internal horizon” (to use a Husserlian phrase) and the telos of mathematical objects. Given this conception of mathematics, the question that I find myself asking is this: what was the mathematical horizon of the Greeks? Did the idea of a line or a plane immediately suggest to them an infinite extension, and did the idea of number immediately suggest the infinite progression of the series, or were the Greeks able to contain these conceptions within the peras, using them not unlike we use them, but allowing them to remain limited? Did ancient mathematical imagination encompass the infinite, or must such a conception of mathematical objects (as embedded in the infinite) wait for the infinite to be disassociated from the apeiron?

husserl-quote

The wait was not long. While the explicit formulation of the mathematical infinite had to wait until Cantor in the nineteenth century, Greek thought was dialectical, so regardless of the nature of mathematical concepts as initially conceived, these concepts inevitably passed into their opposite numbers and grew in depth and comprehensiveness as a result of the development of this dialectic. Greek thought may have begun with an intellectual commitment to the peras, and a desire to contain mathematics within the peras, consequently an almost ideological effort to avoid the mathematical infinite, but a commitment to dialectic confounds the demand for limitation. It is, then, this dialectical character of Greek thought that gives us the transition from purely local concepts to a formal concept of the uniformity of nature, and then the transition from a formal conception of uniformity to an empirical conception of uniformity, and this latter is the cosmological principle that is central to contemporary cosmology.

Geometry as represented by Raphael in The School of Athens.

Geometry as represented by Raphael in The School of Athens.

The cosmological principle brings us back to where we started: To say that the sun is a star, and every star a sun, is to say that the sun is a star among stars. Earth is a planet among planets. The Milky Way is a galaxy among galaxies. This is not only a Copernican idea, it is also a formal idea, like the formal conception of the uniformity of nature. (In A Being Among Beings I made a similar about biological beings.) To be one among others of the same kind is to be a member of a class, and to be a member of a class is to be the value of a variable. Quine, we recall, said that to be is to be the value of a variable. This is a highly abstract and formal conception of ontology, and that is precisely the importance of the formulation. This is the point beyond which we can begin to reason rigorously about our place in the universe.

The sun in its local stellar neighborhood as a star among stars.

The sun in its local stellar neighborhood as a star among stars.

We require a class of instances before we can draw inductive inferences, generalize from all members of this class, or formalize the concept represented by any individual member of that class. This is one of the formal presuppositions of scientific thought never made explicit in the methodology of science. We could not formulate the cosmological principle if we did not have a concept of “essentially the same,” because the “same” view that we see looking in any direction in the universe is not identically the same, but rather essentially the same. Of any two views of the universe, every detail is different, but the overview is the same. The cosmological principle is not a generalization, not an inductive inference from empirical evidence; it is a formal idea, a regulative idea that makes a certain kind of cosmological thought possible.

cosmological-principle

Formal principles like this are present throughout the sciences, though not often recognized for what they are. Bessel’s observations of 61 Cygni not only required industrialized technology to produce the appropriate scientific instruments, these observations also presupposed the mathematics originating in classical antiquity, so that the nineteenth century scientific work that proved the stars to be like our sun (and vice versa) was predicated upon parallel formal conceptions of universality structured into mathematical thought since its inception as a theoretical discipline (in contradistinction to the practical use of mathematics as a tool of engineering). Formal Copernicanism preceded empirical Copernicanism. Without that formal component of scientific knowledge, that scientific knowledge would never have come into being.

. . . . .

sun-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


dominance-hierarchy

An Explanatory Mechanism for Aggressively Expanding Civilizations

Any emergent complexity that adds itself to the ultimate furniture of the universe can be, on the one hand, the basis of further emergent complexities, while on the other hand it can function as a selection pressure upon the other furniture of the universe, including earlier and later iterations of emergent complexity. Now, that sounds very abstract — indeed, I could express this idea even more abstractly in the language of ontology — so let me attempt to provide some illustrative examples. When biology emerged from the geochemical complexity of Earth, biology eventually gave rise to further emergent complexities (consciousness, technology, civilization), but biology also began to shape the geochemical context of its own emergence. Biochemistry emerged from geochemistry, thus biochemistry has always been, ab initio, in coevolution with the geochemistry upon which it supervenes.

Life, then, coevolved with geology, as life now coevolves with later emergent complexities, which means that, in the case of human beings, human life coevolves with the habitat it has made for itself — Earth of the anthropocene and our civilization (cf. Intellectual Niche Construction). This point has been made by Wilson and Lumsden:

“[The] high level of human mental activity creates culture, which has achieved a life of its own beyond the ordinary limits of biology. The principal habitat of the human mind is the very culture that it creates.”

Edward O. Wilson and Charles J. Lumsden, Promethean Fire: Reflections on the Origin of Mind, Cambridge and London: Harvard University Press, 1983, p.

We might distinguish between relationships of tightly-coupled coevolution and loosely-coupled coevolution, with the familiar instances of coevolution — such as pollinating bees and flowers — qualifying as tightly-coupled, while those evolutionary relationships not usually recognized as coevolutionary qualify as loosely-coupled — for example, geochemistry and biochemistry, although the scale at which we make our comparison will be crucial to determining whether the coupling is tight or loose. “Coevolution” is another way of saying that each party to the coevolutionary relationship acts as a selection pressure on the other, so we make the distinction between tightly-coupled coevolution and loosely-coupled coevolution in order to differentiate between selection pressures, some of which are immediate and enduring (tightly-coupled), and some of which are distant and only sporadically influential (loosely-coupled).

Now that civilization has established itself as an emergent complexity on Earth, civilization may serve as the springboard for further emergent complexities, but it also has emerged as a new selection pressure upon the life that gave rise to civilization, while the geology of Earth and the terrestrial biosphere are, in turn, a selection pressure on civilization. Terrestrial (planetary) civilization may come to act as a selection pressure upon other emergent complexities yet to appear, which will also act as a selection pressure on terrestrial civilization, and these emergent complexities are likely to be emergent from civilization. A spacefaring civilization that encompasses (at first) multiple worlds of a planetary system, multiple planetary systems of multiple stars, or multiple galaxies, would be one form of emergent complexity that could arise from planetary civilization.

Among the immediate and enduring selection pressures on spacefaring civilizations will be the distribution of exploitable resources in space, as well as the other spacefaring civilizations with which such a civilization is in competition for these resources (these other spacefaring civilization themselves being an emergent complexity originating from other planetary civilizations derived from other biospheres). There may also be selection pressures from emergent complexities that we do not yet understand, and which we have not yet identified. These two selection pressures — distribution of resources and competition with other spacefaring civilizations — will shape (perhaps have shaped) the origins, evolution, distribution, and fate of spacefaring civilizations. Spacefaring civilizations will be in a tightly-coupled coevolutionary relationship with the cosmological distribution of resources (matter and energy) and the efforts of other spacefaring civilizations to also dominate these resources. Let us consider this more carefully.

When I wrote my post on Social Stratification and the Dominance Hierarchy I included a diagram (reproduced above; also see Group Dynamics) illustrating the selection pressures that lead to a dominance hierarchy in social animals. The diagram distinguished among scarce, limited, and abundant resources. Scarce resources lead to cooperation; sufficiently abundant resources can eliminate competition. In the case of limited resources, these resources can be scattered or concentrated. Scattered resources lead to competition in speed, while concentrated resources lead to competition in aggressiveness, and thence to a dominance hierarchy. The dominance hierarchy among human beings, which in civilization we call social stratification, implies that the resources significant to human beings have been scarce and concentrated.

If we confine our interest in human access to resources only to Earth, we can readily distinguish between regions where resources are sufficiently concentrated that they can be defended, and regions where resources are scattered, cannot be defended, and are therefore the object of competition in speed rather than aggressiveness. (We can also distinguish different social systems that have arisen shaped by the differential distribution of resources.) If we pull back from this geographical scale and consider the question from the perspective of a spacefaring civilization, the whole of Earth, our homeworld, is a concentrated and defensible locus of resources, but the cosmos on the whole represents an extreme scattering, over interstellar and intergalactic distances, of limited or scarce resources. This scattering of limited resources, in contradistinction to the concentrated and defensible resources of the homeworld of any intelligence species, ought to have the result of spacefaring civilizations defending their homeworld while competing for resources with other spacefaring civilizations, not through competition in aggressiveness, but through competition in speed.

Competition in aggressiveness for the resources of spacefaring civilization may be excluded by the scattering of these resources, so that we are not likely to see the emergence of a galactic empire, crushing under the boot heels of its storm troopers the aspirations to freedom, dignity, and equality of intelligent species throughout the galaxy. However, competition in speed for limited resources distributed on a cosmological scale may well be the primary selection pressure on spacefaring civilizations, and competition in speed ought to entail the rapid cosmological expansion of these civilizations.

Elsewhere I have mentioned the papers of S. Jay Olson (cf. Big Time, The Genesis Project as Central Project, and Second Addendum on the Genesis Project as Central Project: Invasive Species) concerning what Olson calls “aggressively expanding civilizations,” which embody rapid expansion on a cosmological scale. Here is Olson’s characterization of such as scenario:

“An ‘aggressive expansion scenario’ is a proposed cosmological phenomenon… whereby a subset of advanced life appears at random throughout the universe and expands in all directions, saturating galaxies and utilizing resources as they go… We also assume that all aggressive expanders will be of the same behaviour type, i.e. they all expand with the same velocity v in the local comoving frame, and the expanding spherical front of galaxy colonization leads to observable changes a fixed time T after the front has passed by.”

“Estimates for the number of visible galaxy-spanning civilizations and the cosmological expansion of life,” S. Jay Olson, International Journal of Astrobiology, Cambridge University Press, 2016, pp. 2-3, doi:10.1017/S1473550416000082

Competition in speed among spacefaring civilization would mean a focus on maximizing v for the expanding spherical front of galaxy colonization.

Citing Bostrom and Omohundro on the nature of superintelligent AI (presumptively the heir of our technological civilization, but see the final sentence below quoted from Olson, as he addresses this as well), Olson writes:

“From an independent field of study, it has been argued that resource acquisition is one of the ‘basic drives’ of a generic superintelligent AI. This means, in essence, that a sufficiently powerful AI will tend to use extreme expansion and resource acquisition as a means of maximizing its utility function, unless it is explicitly and carefully designed to avoid such behavior… even if advanced alien species tend to be monks who have forsaken all worldly gain, the accidents involving insufficiently careful design of an artificial superintelligence are potentially one of the largest observable phenomena in the universe, when they occur. The word ‘civilization’ is not really the best description of such a thing, but we will use it for the sake of historical continuity.”

“Long-term consequences of observing an expanding cosmological civilization”, S. Jay Olson

We can see that competition in speed for limited resources provides an explanatory mechanism for the existence and expansion of aggressively expanding civilizations. Spacefaring civilizations that successfully compete for resources on a cosmological scale endure over cosmological scales of time, and perhaps leave a legacy in the form of a universe transformed sub specie civilizationis. Spacefaring civilizations that fail to expand go extinct, and leave no observable legacy. Whether there is room for more than one aggressively expanding civilization in any one universe, or whether this expansion takes place on scale of time sufficient to foreclose the opportunity of expansion to any rival civilizations, remains an open question. Once a universe is saturated with life, no other life, and no other civilization emergent from other life, would have an opportunity to appear, unless or until a cosmological scale extinction event created such an opportunity (which could be furnished by sufficiently violent gamma ray bursts).

The above considerations pose other interesting questions that could be taken up as research questions in the study of spacefaring civilization. How are we to distinguish between scarce and limited resources on a cosmological scale? Might the closely packed stars of globular clusters and galactic centers constitute limited resources, while diffuse spiral arms and the outer portions of elliptical galaxies constitute scarce resources? At what threshold of availability should we distinguish between matter and energy being scarce or limited? This may be a problem contingently decided by the technologies of spacefaring not yet known to us. That is to say, if technologically mature civilizations find interstellar travel (or intergalactic travel) somewhat routine, then we may regard cosmological resources as scattered and limited, and more concentrated areas such as mentioned (globular clusters and galactic centers) might pass over a threshold such that they would be considered concentrated — thus there would be the possibility of galactic empires competing on aggressiveness for defensible resources. If, on the other hand, interstellar (or intergalactic) travel is always difficult, then the universe presents, at best, limited resources, and perhaps scarce resources. In the case of scarce resources, there would be a window of opportunity for cooperation among spacefaring civilization for the effective and efficient exploitation of these resources.

If, as on the surface of Earth (and relative to a planetary civilization), cosmological resources are distributed unevenly, then the distribution of civilizations will mirror the distribution of resources — not only in extent, but also in character, with concentrated regions producing civilizations competing on aggression, and diffuse regions producing civilizations competing on speed. On a sufficiently large scale, uneven distribution of cosmological resources would violate the cosmological principle, which is a cornerstone of contemporary cosmology. However, on the smaller scales (especially galactic scales) that would confront early spacefaring civilizations, the differential of resources between concentrated stellar regions and diffuse steller regions may be sufficient to differentiate regions of a galaxy given over to competition on speed for cosmological resources and regions of the same galaxy given over to competition on aggressiveness for cosmological resources. With the position of Earth in a spiral arm of the Milky Way, we inhabit a region of relatively diffuse distribution of stars, so that any nascent spacefaring civilizations with which we would be in competition would be competition in speed. It is therefore in our interest to reach the stars as soon as possible, or, by declining competition, reconcile ourselves to the existential risk of being shut out of the possibility of being a civilization relevant to the galaxy.

It may be that civilizations in regions of diffuse and therefore limited resources naturally understand their dilemma and consequently focus upon spacecraft speed (which has always been a preoccupation of those engaged in the speculative engineering of interstellar capable spacecraft), while civilizations in regions of more concentrated and therefore defensible resources intuit their relative ease of travel and focus instead on aggressive domination of their region of space, and the technology that would make such aggressive domination possible. Thus a civilization may already begin to be shaped by the selection pressures of its galactic neighborhood even as a nascent spacefaring civilization. An obvious instantiation of this phenomenon would be a single planetary system in which more than one planet produced life and civilization. These multiple civilizations expanding into a single planetary system would immediately be in conflict over the resources of that planetary system. In our exploration of our own planetary system, we have not had to compete with another civilization, and so our earliest spacecraft have gone into space without armor or armaments. We have a free hand in expanding into our planetary system; that may not be true for all nascent spacefaring civilizations, and it may not be true for us at spacefaring orders of magnitude beyond our planetary system.

. . . . .

amoeba_fleet

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


Illustrations from the early scientific revolution bear the stamp of an earlier and other civilization, as in this image, in which as much time has been spent on the trees and the clouds as the scientific experiment itself.

Illustrations from the early scientific revolution bear the stamp of an earlier and other civilization, as in this image, in which as much time has been spent on the trees and the clouds as the scientific experiment itself.

It is a convention of historiography to refer to the formative period of early modern science as “the scientific revolution” (with the definite article), and this is justified in so far as the definitive features of experimental science began to take shape in the period from Copernicus and Galileo to Newton. But in addition to the scientific revolution understood in this sense as a one-time historical process that would not be repeated, there is also the sense of revolutions in science, and there are many such revolutions in science. This sense of a revolution in scientific knowledge has become familiar through the influence of Thomas Kuhn’s book, The Structure of Scientific Revolutions. Kuhn made a now-famous distinction between normal science, which involves the patient elaboration of a scientific research program, and revolutionary science, which involves the shift (a paradigm shift) from an established scientific research program to a new and often unprecedented scientific research program.

Thomas Kuhn changed the way that we think about scientific revolutions.

Thomas Kuhn changed the way that we think about scientific revolutions.

Some revolutions in science happen rather rapidly, and some unfold over decades or even centuries. The revolution in earth science represented by geomorphology and plate tectonics was a slow-moving scientific revolution. As long as we have had accurate maps, many have noticed how the coastlines of Africa and South America fit together (a sea captain pointed this out to my maternal grandmother when she was a young girl). When Alfred Wegener put first put forth his theory of plate tectonics in 1912 he had a great deal of evidence demonstrating the geological relationship between the west coast of Africa and the east coast of South America, but he had no mechanism by which to explain the movement of continental plates. The theory was widely dismissed among geologists, but in the second half of the twentieth century more evidence and a plausible mechanism made plate tectonics the central scientific research program in the earth sciences. I have observed elsewhere that Benjamin Franklin anticipated plate tectonics, and he did so for the right reasons, so if we push the origins of the idea of plate tectonics back into the Enlightenment, this is a scientific revolution that unfolded over hundreds of years.

Alfred Wegener recognized fossil patterns over now-separated continents, which suggested a different arrangement of continents in the past, but Wegener had no causal mechanism to explain the movement (map by jmwatsonusgs.gov - United States Geological Survey - http://pubs.usgs.gov/gip/dynamic/continents.htmlen:Image:Snider-Pellegrini_Wegener_fossil_map.gif)

Alfred Wegener recognized fossil patterns over now-separated continents, which suggested a different arrangement of continents in the past, but Wegener had no causal mechanism to explain the movement (map by jmwatsonusgs.gov – United States Geological Survey – http://pubs.usgs.gov/gip/dynamic/continents.htmlen:Image:Snider-Pellegrini_Wegener_fossil_map.gif)

In the past, when knowledge was disseminated much more slowly than it is today, we are not surprised to learn that the full impact of the Copernican revolution unfolded over centuries, while today we expect the dissemination of major scientific paradigm shifts to occur much more rapidly. Indeed, we have the recent example of the discovery of the accelerating expansion of the universe as a perfect instance of a major and unexpected scientific discovery that was disseminated and accepted by most cosmologists within a year or so.

'The data summarized in the illustration above involve the measurement of the redshifts of the distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 km/s/mpc is a distance of about 5 billion light years.' (quoted from 'Evidence for an accelerating universe' at http://hyperphysics.phy-astr.gsu.edu/hbase/astro/univacc.html)

‘The data summarized in the illustration above involve the measurement of the redshifts of the distant supernovae. The observed magnitudes are plotted against the redshift parameter z. Note that there are a number of Type 1a supernovae around z=.6, which with a Hubble constant of 71 km/s/mpc is a distance of about 5 billion light years.’ (quoted from ‘Evidence for an accelerating universe’ at http://hyperphysics.phy-astr.gsu.edu/hbase/astro/univacc.html)

The facility with which the accelerating expansion of the universe was assimilated into contemporary cosmology could be used to argue that this was no revolution in science (or it could be said that it was not a “true” revolution in science, which would suggest an application of the “no true Scotsman” fallacy — what Imre Lakatos called “monster barring” — to scientific revolutions). The discovery of the accelerating expansion of the universe may be understood as an extension of the revolution precipitated by Hubble, who demonstrated by observational astronomy that the universe is expanding. Since Hubble’s discovery of the expansion of the universe it has assumed that the expansion of the universe was slowing down (a rate of deceleration already given the name of the “Hubble constant” even before the value of that constant had been determined). Hubble’s work was rapidly accepted, but its acceptance was the culmination of decades of debate over the size of the universe, including the Shapley–Curtis Debate, so we can treat this as a slow revolution or as a rapid revolution, depending upon the historical perspective we bring to science.

Harlow Shapley (left) and Heber Curtis (right) debated the structure and size of the universe in a famous confrontation in 1920.

Harlow Shapley (left) and Heber Curtis (right) debated the structure and size of the universe in a famous confrontation in 1920.

While general relatively came to be widely and rapidly adopted by the scientific community after the 1919 eclipse observed by Sir Arthur Eddington, I have noted in Radical Theories, Modest Formulations that Einstein presented general relativity in a fairly conservative form, and even in this conservative form the theory remained radical and difficult to accept, due to ideas such as the curvature of space and time dilation. After the initial acceptance of general relativity as a scientific research program, the subsequent century has seen a slow and gradual unfolding of some of the more radical consequences of general relativity, which became easier to accept once the essential core of the theory had been accepted.

Einstein formulated his field equations for general relativity in 1915, and we are still deducing the consequences of the theory.

Einstein formulated his field equations for general relativity in 1915, and we are still deducing the consequences of the theory.

It might be hypothesized that radical theories are accepted more rapidly when a crucial experiment fails to falsify the theory, and the more radical consequences of the theory are fudged a bit so that they do not play a role in galvanizing initial resistance to the theory. If Einstein had been talking about black holes and the expansion of the universe in 1915 he probably would have been dismissed as a crackpot. Another way to think about this is that general relativity appeared as a rigorous, mathematically formalized theory with specific predictions that admitted of crucial experiments within the scope of science at that time. But such a fundamental theory as general relativity was bound to continue to revolutionize cosmology as long as later theoreticians could elaborate the theory initially formulated by Einstein.

Jan Hendrik Oort, for whom the Oort Cloud is named, and an early discoverer of the influence of dark matter on cosmology.

Jan Hendrik Oort, for whom the Oort Cloud is named, and an early discoverer of the influence of dark matter on cosmology.

This discussion of slow-moving revolutions in cosmology brings us to the slow moving revolution that is coming to a head in our time. The recognition of dark matter, i.e., of something that accounts for the gravitational anomalies brought to attention by observational astronomy, has been slow to unfold over the last several decades. Two Dutch astronomers, Jacobus Kapteyn and Jan Oort (known for the eponymously-named Oort Cloud, suggested the possibility of dark matter in the early part of the twentieth century. Fritz Zwicky may have been the first person to use the term “dark matter” (“dunkle Materie“) in 1933. Further observations confirmed and extended these earlier observations, but it was not until the 1980s that the “missing” dark matter came to be widely recognized as a major unsolved problem in astrophysics. It remains an unsolved problem, with the best guess for its resolution being the theoretically conservative idea of an as-yet unobserved subatomic particle or particles that can be located within the standard model of particle physics with a minimum of disturbance to contemporary scientific theory.

An elegantly simple demonstration of how dark matter shapes the universe: the rotation curve of spiral galaxies cannot be accounted for by the luminous matter in the galaxy.

An elegantly simple demonstration of how dark matter shapes the universe: the rotation curve of spiral galaxies cannot be accounted for by the luminous matter in the galaxy.

There are two interesting observations to be made about this brief narrative of dark matter:

1) The idea of dark matter emerged from observational astronomy, and not as a matter of a theoretical innovation. Established theoretical ideas were applied to observations, and these ideas failed to explain the phenomena. The discovery of the expansion of the universe was also a product of observational astronomy, but it was preceded by Einstein’s theoretical work, which was already accepted at that time. Thus a number of diverse elements of scientific thought came together in a scientific research program for cosmology — a program the pursuit of which has revealed the anomaly of dark matter. There is, at present, no widely accepted physical theory that can account for dark matter, so that what we know of dark matter to date is what we know from observational astronomy.

2) No one has a strong desire to shake up the established theoretical framework either for cosmology or for fundamental physics. In other words, a radical theoretical breakthrough would upset the applecart of contemporary science, and this is not a desired outcome. The focus on dark matter as an undiscovered fundamental particle banks on the retention of the standard model in physics. Much as been invested in the standard model, and science would be more than a little out to sea if major changes had to be made to this model, so the hope is that the model can be tweaked and revised without greatly changing it. One approach to such change would be via what Quine called the “web of belief,” according to which we prefer to revise the outer edges of the web, since changing the center of the web ripples outward and changes everything else. The scientific research program at stake — which is practically the whole of big science today, with fundamental physics just as significant to astrophysics as observational astronomy — is an enormous web of belief, and if you got down to a fine-grained account of it, you would probably find that scientists would disagree as to what is the center of the web of belief and what is the periphery.

I suspect that it may be the case that, the more mature science becomes, the more difficult it will be for a major scientific revolution to occur. Any new theory to replace an old theory must not only explain observations that cannot be explained by the old theory, but the new theory must also fully account for all of the experiments and observations explained by the established theory. Quantum theory and general relativity are the best-confirmed theories in the history of physical science, and for any replacement theory to supplant them, it would have to be similarly precise and well confirmed, as well as being more comprehensive. This is a tall order. Early science picked the low-hanging fruit of scientific knowledge; the more we accumulate scientific knowledge, the more difficult it is to obtain more distant and elusive scientific knowledge. Today we have to build enormous and expensive instruments like the LHC in order to obtain new observations, so each round of expansion of scientific knowledge must wait for the newest scientific instrument to come on line, and building such instruments is becoming extremely expensive and can take decades to complete.

The particle zoo of the standard model of particle physics: where is dark matter?

The particle zoo of the standard model of particle physics: where is dark matter?

Partly in response to this slowing of the discovery of fundamental scientific principles as science matures, we can seen a parallel change in the use of the term “revolutionary” to identify changes in science. It is somewhat predictable that if a new particle is discovered that can account for dark matter observations, this discovery will be called “revolutionary” even if it can be formulated within the overall theoretical context of the standard model, rather than overturning the standard model. In other words, less is required today for a discovery to be perceived as revolutionary, but, at the same time, it is becoming ever more difficult even to achieve this lower standard of revolutionary change in science. It is extremely unlikely that the macroscopic features of the contemporary astrophysical research program will change, even if the standard model were overturned by a discovery related to dark matter. We will continue to use telescopes and colliders to observe the universe and use computers to run through simulations of incredibly complex models of the universe, so that both observational and theoretical astrophysicists will have a job for the foreseeable future.

. . . . .

Perhaps the most studied avenue to augment the standard model to account for dark matter is the supersymmetry (SUSY) approach, which posits a massive shadow particle for every known particle of the standard model.

Perhaps the most studied avenue to augment the standard model to account for dark matter is the supersymmetry (SUSY) approach, which posits a massive shadow particle for every known particle of the standard model.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Friday


'This is an artist's impression of innumerable Earth-like planets that have yet to be born over the next trillion years in the evolving universe.' Credits for image and text: NASA, ESA, and G. Bacon (STScI)

‘This is an artist’s impression of innumerable Earth-like planets that have yet to be born over the next trillion years in the evolving universe.’
Credits for image and text: NASA, ESA, and G. Bacon (STScI)

Review of Planetary Endemism

So that the reader doesn’t lose the thread of this series on planetary endemism (and to remind myself as well), I began by attempting to formulate a “big picture” taxonomy of planetary civilizations (Part I), but realized that this taxonomy ought to acknowledge the differences in civilization that would follow from civilizations emerging on different kinds of planets (Part II). Then I focused on the question, “What physical gradient is, or would be, correlated with the greatest qualitative gradient in the civilization supervening upon that physical gradient?” (Part III), and next considered how fundamentally different forms of energy flow would beget different kinds of biospheres, which would in turn result in different kinds of civilizations supervening upon these biospheres (Part IV).

This discussion of planetary civilization in terms of planetary endemism provides a new perspective on how we are to understand a civilization that has expanded to the limits dictated by planetary constraints. I have learned that most attempts to discuss planetary civilization get hung up on assumptions of global political and legal unification, which then inevitably gets hung up on utopianism, because nothing like global political and legal unification is on the horizon so this can only be discussed in utopian terms. Thinking about civilization, then, in terms of planetary endemism allows us to get to the substance of planetary civilization without getting distracted by utopian proposals for world government. And what I find to be the substance of planetary civilization is the relationship of a civilization to the intelligent species that produces a civilization, and the relation of an intelligent species to the biosphere from which it emerges.

biosphere

Thinking about biospheres

How can we scientifically discuss biospheres when we have only the single instance of the terrestrial biosphere as a reference? In order to discuss planetary civilizations scientifically we need to be able to scientifically discuss the biospheres upon which these civilizations supervene. We need a purely formal and general conception of a biosphere not tied to the specifics of the terrestrial biosphere. Ecology is not yet at the stage of development at which it can make this leap to full formalization, but we can make some general remarks about biospheres, continuous with previous observations in this series.

In the Immediately previous post in this series, Part IV, I considered the possibilities of biospheres that fall short of expanding to cover the entire surface of a planet, and so are not quite a biosphere, but constitute what we might call a partial biosphere. In that post I mentioned the terminological difficulties of finding an appropriate word for this and suggested that topology might provide some insight.

spherical shell

Biospheres and Partial Biospheres

In topology, a biosphere would be what is called a spherical shell, which is bounded by two concentric spheres of different radii. This is the three dimensional extrapolation of what mathematicians call an annulus, which is the area bounded by two concentric circles of different radii. Understanding the biosphere as a spherical shell is a good way to come to an appreciation of the “thickness” of the biosphere. The Terrestrial biosphere may be understood as that spherical shell bounded by the deepest living microbes as the shorter radius and the upper atmosphere as the longer radius. The entry on Deep Subsurface Microbes at MicrobeWiki states: “In oceanic crusts, the temperature of the subsurface increases at a rate of about 15 degrees C per kilometer of depth, giving a maximum livable depth of about 7 kilometers.” The convention establishing the distinction between the upper atmosphere and extraterrestrial space is the Kármán line, 100 km above Earth’s surface. Taking these as the deepest and highest figures, the terrestrial biosphere is a spherical shell approximately 107 km thick, though more conservative numbers could also be employed (as in the illustration above).

A partial biosphere that failed to expand across an entire planetary surface would in topological terms be a punctured spherical shell. Now, a punctured spherical shell is continuously deformable into a sphere, making the two topologically equivalent. This may sound a bit strange, but there is an old joke that a topologist is someone who can’t tell the difference between a doughnut and a coffee cup: each is continually deformable into the other (i.e., both are topologically equivalent to a torus, which is what topologists call a genus 1 surface). In topological terms, then, there is little difference between a biosphere and a partial biosphere (I will discuss a prominent exception in the next installment of this series).

While there is no topological difference between a biosphere and a partial biosphere, there could be a dramatic ecological difference, as a partial biosphere that covered too small of a proportion of a planetary surface would at some point fall below the threshold of viability, while, at the other end of the scale, if it becomes sufficiently extensive it passes the threshold beyond which it can support the evolution of complex life forms. And since only complex life forms produce civilizations, there may be a threshold below which a partial biosphere cannot be associated with a biota of sufficient complexity to allow for the emergence of an intelligent species and hence a civilization.

The extent of a biosphere may place a constraint upon life and civilization emerging from smaller celestial bodies, such as exomoons. So it is not only the possibility of a partial biosphere that may limit the development of complexity in a biota. On the other hand, a system of exomoons, i.e., several inhabitable exomoons orbiting an exoplanet, may have the opposite effect, serving as a speciation pump, leading to higher biodiversity and the emergence of higher forms of emergent complexity. Earlier I suggested that astrobiology is island biogeograpy writ large; a system of inhabitable exomoons, each with its own biosphere, orbiting an exoplanet would offer a particular elegant test of this idea, should we ever discover such a system (and in the immensity of the universe it seems likely that something like this would have happened at least once).

The topology of the biology of a system of exomoons no longer even approximates a biosphere, and this points to the limitation of the concept of a biosphere, and the need for a formalized science of inhabitability that is applicable to any inhabitable region whatever. However, this still is not sufficient for our needs. We must recognize the degree of biological relatedness or difference among separate but biologically related worlds as in the example above.

'This artist's concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar's torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.' (Image and text: NASA/ESA)

“This artist’s concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below. X-rays emerge from the very central region, while thermal infrared radiation is emitted by dust throughout most of the torus. While this figure shows the quasar’s torus approximately edge-on, the torus around APM 08279+5255 is likely positioned face-on from our point of view.” (Image and text: NASA/ESA)

The long tail of planetary habitability

However exotic the topology of biospheres to be found in the universe, the biochemistry that populates these biologically connected regions is likely to be constrained by the chemical makeup of the universe. This chemical makeup seems to point to vaguely anthropocentric conditions for life in the universe, but this should not surprise us, as it would be a confirmation of the principle of mediocrity in biology. Water and carbon-based biochemistry is the basis of life on Earth, and the prevalence of these elements in the cosmos at large suggests this as the most common basis of life elsewhere.

Not only are there likely to be liquid subsurface oceans on Europa, Enceladus, and other moons of the outer solar system, possibly with a greater total amount of water on some of these small moons than in all the oceans of Earth, so that we know our solar system possesses enormous resources of water, but we now also know that the universe beyond our solar system possesses significant water resources. The discovery of water vapor at the quasar APM 08279+5255 (described in Astronomers Find Largest, Most Distant Reservoir of Water) represents the presence of vast amounts of water 12 billion light years away — so also 12 billion years in the past — demonstrating both the pervasive spatial and temporal distribution of water in the universe. Astrobiologists have been saying, “To find life, follow the water,” but we now know that following the water would take us far afield.

In additional to water being common in the universe, carbon-based organic chemistry is also known to be common in the universe:

“Astronomers who study the interstellar medium… have found roughly 150 different molecules floating in space… The list boasts many organic (which is to say, carbon-containing) molecules, including some sugars and a still controversial detection of the simplest amino acid, glycine…”

Seth Shostak, Confessions of an Alien Hunter: A Scientist’s Search for Extraterrestrial Intelligence, Washington, DC: National Geographic, 2009, p. 260

Thus, not only is water pervasively present in the universe, but so also are the basic molecules of organic chemistry. I had something like this in mind when in previous post (and elaborated in Not Terraforming, but Something Else…) I tried to outline what might be called variations on the theme of carbon-based life:

“…if life in the outer solar system is to be found, and it is significantly different from life of the inner solar system, how do we recognize it as life? How different is different? It is easy to imagine life that is different in detail from terrestrial life, but, for all intents and purposes, the same thing. What do I mean by this? Think of terrestrial DNA and its base paring of adenine with thymine, and cytosine with guanine: the related but distinct RNA molecule uses uracil instead of thymine for a slightly different biochemistry. Could something like DNA form with G-U-A-C instead of G-T-A-C? Well, if we can consider RNA as being ‘something like’ DNA, then the answer is yes, but beyond that I know too little of biochemistry to elaborate. As several theories of the origins of life on Earth posit the appearance of RNA before DNA, the question becomes whether the ‘RNA world’ of early life on Earth might have also been the origin of life elsewhere, and whether that RNA world matured into something other than the DNA world of terrestrial life.”

I think this is similar to some of the points made by Peter Ward in his book Life as We Do Not Know It, in which Ward wrote:

“…the simplest way to make an alien would be to change DNA slightly. Our familiar DNA is a double helix made up of two on strands of sugar, with the steps of this twisted ladder made up of four different bases. The code is based on triplet sequences, with each triplet either an order to go fetch a specific amino acid or a punctuation mark like ‘stop here.’ Within this elaborate system there are many specific changes that could be made — at least theoretically — that would be ‘alien’ yet might still work.”

Peter Ward, Life as We Do Not Know It: The NASA Search for (and Synthesis of) Alien Life, New York et al.: Penguin, 2005, p. 66-67

Ward considers variations such as changing the backbone of RNA, changing or adding proteins, changing chirality (the direction of the DNA spiral), changing solvents (i.e., a medium for biochemistry other than water), and substituting proteins for nucleic acids. All of these, I think, count as variations on the theme of carbon-based life, which is what we are to expect in the universe rich in carbon-based organic molecules.

Alternative biochemistries with methane-metabolizing microorganisms as described in the recent paper Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics might also be consistent with the dominant chemistry observed in the universe, and would constitute slightly more exotic variations on the theme of carbon-based life. Just as we will have investigated the subsurface oceans of the moons of the outer planets and will know how readily biochemistry emerges in these environments before we even pass the threshold of our own solar system to become an interstellar civilization, so too we will have the opportunity within our own solar system to investigate alternative biochemistries in environments such as Saturn’s moon Titan.

Both water and carbon-based organic chemistry are common in the universe during the Stelliferous Era in the same way that planetary surfaces are common loci of energy flows during the Stelliferous Era; indeed, planetary surfaces provide the vehicle upon which water and carbon-based organic chemistry can produce emergent complexity from energy flows.

The observable universe, then, is rich in planets, in water, and in organic molecules — everything for which one might hope in a search for life. There is no reason for our universe not to be a living universe, in which biochemistry is as common — or will be as common — as as there are planetary surfaces providing energy flows consistent with life as we know it. However, these multitudinous opportunities for life will be constrained by the prevalent organic chemistry of the universe, and this points to variations on the theme of carbon-based like. Other forms of life may exist as outliers, just as biospheres may be driven by energy flows other than insolation, but these will be unusual.

insolation

Provisional conclusions

As a provisional conclusion we assert that the same reasoning that leads us to planetary surfaces as the “Goldilocks” zone for energy flows during the Stelliferous Era also leads us to carbon-based life forms employing liquid water as a solvent during the same period of cosmological natural history.

Having thought a bit about the different kind of biospheres that might be possible given different forms of energy flow (Part IV), I have realized that these are probably outliers, and, if we remain focused on civilizations of the Stelliferous Era, insolation of planetary surfaces will be the primary source of energy flows, hence the primary basis of biospheres during the Stelliferous Era, hence the primary basis of civilization up to the point of development when biocentric civilization transitions into technocentric civilization and is no longer exclusively dependent upon a biosphere.

That being said, other sources of energy flow may play a significant role. Radioactive decay has played a significant role in the temperature of Earth (not taking account of radioactive decay, which was not then known, was the reason for Lord Kelvin’s attack on Darwinian time scales). Extrapolating from our own biosphere, we would expect to see a variety of biospheres in which stellar insolation is supplemented by other drivers of energy flow.

Later in the Stelliferous Era, when planetary systems have a greater proportion of heavy elements (due to the process of chemical enrichment), the habitable zone may move further out from parent stars because of the increased availability radioactive decay and natural fission reactors contributing relatively more to the energy flows of biospheres. The increased availability of heavier elements may also eventually impact biochemisty, as forms of life as we do not know it become more likely as the overall mixture of chemicals in the universe matures. The farther we depart in time from the present moment of cosmological natural history, the farther we depart from likely energy flows and biota depending upon these energy flows, until we reach the end of the Stelliferous Era. All that I have written above concerning the Stelliferous Era will cease to be true in the Degenerate Era, when stellar insolation ceases to be a source of energy flows.

For the time being, however, throughout the Stelliferous Era we can count on certain predictable features of life and civilization. Civilization follows intelligence, intelligence follows complex life, and complex life follows from habitability that passes beyond the kind of thresholds described above. Thus the cohort of emergent complexities found in the Stelliferous Era can be traced to the same root.

We may even discover that planetary biospheres exhibit a kind of convergent evolution, not in terms of specific species, but in terms of the kind of biomes and niches available, hence ecological structures to be found, and even the kinds of civilizations supervening upon these ecological structures. For example, I wrote a post on Civilizations of the Tropical Rainforest Biome: on another world with a peer biosphere and an intelligent species, any civilizations we found emergent in the equivalent of a tropical rainforest biome (high temperatures and high rainfall year round) would probably share certain structural features with civilizations of the tropical rainforest biome found on Earth.

The civilizations of planetary endemism, then, include all those classes of sub-planetary civilizations defined by regional biomes, prior to the emergence of a planetary civilization. Each regional (sub-planetary) civilization is consistent with its biome (i.e., it can supply the needs of its agents with the resources available within the biome in question), and in so far as the resources in a given biome govern what is possible for a biocentric civilization emergent within that biome, each such civilization is forced into a kind of uniformity that the institutions of civilization then take up in a spirit of iteration and refinement of a model (i.e., the iterative conception of civilization). When civilization expands until civilizations emergent in distinct biomes are forced into contact, resulting in communication, commerce, and conflict, new forms of planetary scale uniformity emerge in order to facilitate interchanges on a planetary scale.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

Civilizations of Planetary Endemism: Part IV

● Civilizations of Planetary Endemism: Part V

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


'Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.' (NASA)

“Io is the most volcanically active body in the solar system. At 2,263 miles in diameter, it is slightly larger than Earth’s moon.” (NASA)

In earlier posts of this series on Civilizations of Planetary Endemism we saw that planets not only constitute a “Goldilocks” zone for liquid water, but also for energy flows consistent with life as we know it. I would like to go into this in a little more detail, as there is much to be said on this. It is entirely possible that energy flows on a planet or moon outside the circumstellar habitable zone (CHZ) could produce sufficient heat to allow for the presence of liquid water in the outer reaches of a planetary system. Indeed, it may be misleading to think of habitable zones (for life as we know it) primarily in terms of the availability of liquid water; it might be preferable to conceive a habitable zone primarily in terms of regions of optimal energy flow (i.e., optimal for life as we know it), and to understand the availability of liquid water as a consequence of optimal energy flow.

Our conception of habitability, despite what we already know, and what we can derive from plausible projections of scientific knowledge, is being boxed in by the common conceptions (and misconceptions) of biospheres and CHZs. We can posit the possibility of “oasis” civilizations on worlds where only a limited portion of the surface is inhabitable and no “biosphere” develops, although enough of a fragment of a biosphere develops in order for complex life, intelligence, and civilization to emerge. We do not yet have an accurate term for the living envelope that can emerge on a planetary surface, but which does not necessary cover the entire planetary surface. I have experimented with a variety of terms to describe this previously. For example, I used “biospace” in my 2011 presentation “The Moral Imperative of Human Spaceflight,” but this is still dissatisfying.

As is so often the case, we run into problems when we attempt to extrapolate Earth sciences formulated for the explicit purpose of accounting for contingent terrestrial facts, and never conceived as a purely general scientific exercise applicable to any comparable phenomena anywhere in the universe. This is especially true of ecology, and since I find myself employing ecological concepts so frequently, I often feel the want of such formulations. Ecology as a science is theoretically weak (it is much stronger on its observational side, which goes back to traditional nature studies that predate ecology), and its chaos of criss-crossing classification systems reflects this.

There are a great many terms for subdivisions of the biosphere — ecozone, bioregion, ecoregion, life zone, biome, ecotope — which are sometimes organized serially from more comprehensive to less comprehensive. None of these subdivisions of a biosphere, however, would accurately describe the inhabited portion of a world on which biology does not culminate in a biosphere. Perhaps we will require recourse to the language and concepts of topology, since a biosphere, as a sphere, is simply connected. The bioring of a tidally locked M dwarf planet would not be simply connected in this topological sense.

If we conceptualize habitable zones not in terms of a celestial body being the right temperature to have liquid water on its surface, or perhaps in a subsurface ocean, but rather view this availability of liquid water as a consequence of habitable zones defined in terms of the presence of energy flows consistent with life as we know it, then we will need to investigate alternative sources of energy flow, i.e., distinct from the patterns of energy flow that we understand from our homeworld. Energy flows consistent with life as we know it are consistent with conditions that allow for the presence of liquid water on a celestial body, but this also means energy flows that would not overwhelm biochemistry and energy flows that are not insufficient for biochemistry and the origins and maintenance of metabolism.

Energy flows might be derived from stellar output (thus a consequence of gravitational confinement fusion), from radioactivity, which could take the form of radioactive decay or even a naturally-occurring nuclear reactor, as as Oklo in Gabon (thus a consequence of fission), from gravitational tidal forces, or from the kinetic energy of impacts. All of these sources of energy flows have been considered in another connection: suggested ways to resolve the faint young sun paradox (the problem that the sun was significantly dimmer earlier in its life cycle, while there still seems to have been liquid water on Earth) are the contributions of other energy sources to maintaining a temperature on Earth similar to that of today, including greater tidal heating from a closer moon, more heating from radioactive decay, and naturally occurring nuclear fission.

It would be possible in a series of thought experiments to consider counterfactual worlds in which each of these sources of energy flow are the primary source of energy for a biosphere (or a subspherical biological region of a planetary surface). The Jovian moon Io, for example, is the most volcanically active body in our solar system; while Io seems to barren, one could imagine an Io of more clement conditions for biology in which the tidal heating of a moon with an atmosphere was the basis of the energy flow for an ecosystem. A world with more fissionables in its crust than Earth (the kind of worlds likely to be found during the late Stelliferous Era under conditions of high metallicity) might be heated by radioactive decay or natural fission reactors (or some combination of the two) sufficient to generate energy flows for a biosphere, even at a great distance from its parent star. It seems unlikely that kinetic impacts from collisions could provide a sufficiently consistent flow of energy without a biosphere suffering mass extinctions from the same impacts, but this could merely be a failure of imagination. Perhaps a steady rain of smaller impacts without major impacts could contribute to energy flows without passing over the threshold of triggering an extinction event.

Each of these exotic counterfactual biospheres suggests the possibility of a living world very different from our own. The source of an energy flow might be inconsistent, that is to say, consistent up to the point of making life possible, but not sufficiently consistent for civilization, or the development of civilization. That is to say, it is possible that a planetary biosphere or subspheric biological region might possess sufficient energy flows for the emergence of life, but insufficient energy flows (or excessive energy flows) for the emergence of complex life or civilization. Once can easily imagine this being the case with extremophile life. And it is possible that a bioregion might possess sufficient energy flows for the emergence of a rudimentary civilization, but insufficient for the development of industrial-technological civilization that can make the transition to spacefaring civilization and thus ensure its longevity.

Civlizations of planetary endemism on these exotic worlds would be radically different from our own civilization due to differences in the structure and distribution of energy flow. Civilizations of planetary endemism are continuous with the biosphere upon which they supervene, so that a distinct biosphere supervening upon a distinct energy flow would produce a distinct civilization. Ultimately and ideally, these distinct forms of energy flow could be given an exhaustive taxonomy, which would, at the same time, be a taxonomy of civilizations supervening upon these energy flows.

However, the supervenience of civilization upon biosheres and biospheres upon energy flows is not exhaustive. Civilizations consciously harness energy flows to the benefit of the intelligent agent engaged in the civilizing process. The first stage of terrestrial civilization, that of agricuturalism and pastoralism, was a natural extension of energy flows already present in the bioshere, but once the breakthrough to industrialization occurred, energy sources became more distant from terrestrial energy flows. Fossil fuels are, in a sense, stored solar energy, and derive from the past biology of our planet, but this is the use of biological resources at one or more remove. As technologies became more sophisticated, in became possible to harness energy sources of a more elemental nature that were not contingent upon extant energy flows on a planet.

It may be, then, that biocentric civilizations are rightly said to supervene upon biospheres. However, with the breakthrough to industrialization, and the beginning of the transition to a technocentric civilization, this supervenience begins to fail and a discontinuity is interpolated between a civilization and its homeworld. According to this account, the transition from biocentric to technocentric civilization is the end point of civilizations of planetary endemism, and the emergence of a spacefaring civilization as the consequence of technologies enabled by technocentric civilization is a mere contingent epiphenomenon of a deeper civilizational process. This in itself provides a deeper and more fundamental perspective on civilization.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

Civilizations of Planetary Endemism: Part III

● Civilizations of Planetary Endemism: Part IV

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


There are a lot of Earth-like planets out there, and they vary from Earth according to physical gradients.

There are a lot of Earth-like planets out there, and they vary from Earth according to physical gradients.

In my previous posts on planetary endemism (see links below) I started to explore the ideas of how civilization is shaped by the planet upon which a given civilization arises. I began to sketch a taxonomy based on developmental factors arising from planetary endemism, but I have realized the inadequacy of this. As I have no systematic idea for a taxonomy based on a more comprehensive understanding of planetary types, I must undertake a series of thought experiments to explore the relevant ideas in more detail. This I intend to do.

I should point out that taxonomy I began to sketch in my 2015 Starship Congress talk, “What kind of civilizations build starships?” — a taxonomy employing a binomial nomenclature based on a distinction between economic infrastructure and intellectual superstructure — still remains valid to make fine-grained distinctions among terrestrial civilizations, or indeed within the history of any civilization of planetary endemism. What I am seeking to do now to arrive at a more comprehensive taxonomy under which this more fine-grained taxonomy can be subsumed, and which, as a large-scale conception of civilization, is consistent with and integrated into our knowledge of cosmology and planetology.

While I have no systematic idea of taxonomy at present taking account of types of planets, I think I can identify a crucial question for this inquiry, and it is this:

What physical gradient is, or would be, correlated with the greatest qualitative gradient in the civilization supervening upon that physical gradient?

In other words, if we could experiment with civilization under controlled condition, systematically substituting different valuables for a given variable while holding all over variables constant, and these variables are the physical conditions to which a given planetary civilization is subject, which one of these variables when its value is changed would produce the greatest variation on the supervening civilization? A qualitative change in civilization yields another kind of civilization, so that if varying a physical condition produces a range of different kinds of civilizations, this is the variable to which we would want to pay the greatest attention in formulating a taxonomy of civilizations that takes into account the kind of planet on which a civilization arises. Understood in this way, civilization, or at least the kind of civilization, can be seen as an emergent property with the physical condition given a varying value as the substructure upon which emergent civilization supervenes.

Some gradients of physical conditions will be closely correlated: planet size correlates with surface area, surface gravity, and atmospheric density. These multiple physical conditions are in turn correlated with multiple constraints upon civilization. With the single variable of planet size correlated to so many different conditions and constraints upon civilization, planet size will probably figure prominently in a taxonomy of civilizations based on homeworld conditions. Large planets and small planets both have advantages and disadvantages for supervening civilizations. Large planets have a large surface area, but the higher gravity may pose an insuperable challenge for the emergence of spacefaring civilization. Small planets would pose less of a barrier to a spacefaring breakout, but they also have less surface area and probably a thinner atmosphere, possibly limiting the size of organisms that could survive in its biosphere. Also, there may be a point at which the surface area on a small planet falls below the minimum threshold necessary for the unimpeded development of civilization.

Planets too large or too small may be inhabitable, in terms of possessing a biosphere, but may be too challenging for a civilization to arise. Any intelligent being on a planet too large or too small would be faced with challenges too great to overcome, resulting in what Toynbee called an arrested civilization. But how large is too large, and how small is too small? We don’t have an answer for these questions yet, but to formulate the question explicitly provides a research agenda.

Other important physical gradients are likely to be temperature (or insolation, which largely determines the temperature of a planet), which can result in planets too hot (Venus) or too cold (Mars), and the amount of water present, which could mean a world too wet or too dry. A planet with a higher temperature would probably have a higher proportion of its surface as desert biomes, and possibly also a greater variety of desert biomes than we find on Earth, while a planet with a lower temperature would probably possess a more extensive cryosphere and a large proportion of it surface in arctic biomes. And a planet mostly ocean (i.e., too wet), with extensive island archipelagos, might foster the emergence of a vigorous seafaring civilization, or it might result in the civilizational equivalent of insular dwarfism. Again, we don’t yet know the parameters the values of these variables can take and still be consistent with the emergence of civilization, but to formulate the question is to contribute to the research agenda.

I think it is likely that we will someday be able to reduce to most significant variables to a small number — perhaps two, size and insolation, much as the two crucial variables for determining a biome are temperature and rainfall — and a variety of qualitatively distinct civilizations will be seen to emerge from variations to these variables — again, as in a wide variety of biomes that emerge from changes in temperature and rainfall. And, again, like ecology, we will probably begin with a haphazard system of taxonomy, as today we have several different taxonomies of biomes.

Civilizations (i.e., civilizations of planetary endemism during the Stelliferous Era) supervene upon biospheres, and a biosphere is a biome writ large. We can study the many terrestrial biomes found in the terrestrial biosphere, but we do not yet have a variety of biospheres to study. When we are able to study a variety of distinct biospheres, we will, of course, in the spirit of science, want to produce a taxonomy of biospheres. With a taxonomy of biospheres, we will be more than half way to a taxonomy of civilizations, and in this way astrobiology is immediately relevant to the study of civilization.

. . . . .

Planetary Endemism

● Civilizations of Planetary Endemism: Introduction (forthcoming)

Civilizations of Planetary Endemism: Part I

Civilizations of Planetary Endemism: Part II

● Civilizations of Planetary Endemism: Part III

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


https://www.eso.org/public/images/eso1214a/

This artist’s impression shows a sunset seen from the super-Earth Gliese 667 Cc. The brightest star in the sky is the red dwarf Gliese 667 C, which is part of a triple star system. The other two more distant stars, Gliese 667 A and B appear in the sky also to the right. Astronomers have estimated that there are tens of billions of such rocky worlds orbiting faint red dwarf stars in the Milky Way alone. (Credit: ESO/L. Calçada)

When I wrote Civilizations of Planetary Endemism I didn’t call it “Part I” because I didn’t realize that I would need to write a Part II, but my recent post on Night Side Detection of M Dwarf Civilizations made me realize that my earlier post on planetary endemism, and specifically using planetary endemism as the basis for a taxonomy of civilizations during the Stelliferous Era, was only one side of a coin, and that the other side of the same coin remains to be examined.

As we saw in Civilizations of Planetary Endemism, during the Stelliferous Era emergent complexities arise on planetary surfaces, which are “Goldilocks” zones not only for liquid water, but also for energy flows. As a consequence, civilizations begin on planetary surfaces, and this entails certain observation selection effects for the worldview of civilizations. In other words, civilizations are shaped by planetary endemism.

One aspect of planetary endemism is temporal, or developmental; this is the aspect of planetary endemism I explored in the first part of Civilizations of Planetary Endemism. Another aspect of planetary endemism is spatial, or structural. The developmental taxonomy of civilizations in my previous post — Nascent Civilization, Developing Sub-planetary Civilization, Arrested Sub-planetary Civilization, Developing Planetary Civilization, and Arrested Planetary Civilization — took account of the spatial consequences of planetary endemism, but in a purely generic way. The spatial limitation of a planetary surface supplies the crucial distinction between planetary and sub-planetary civilizations, while the temporal dimension supplies the crucial distinction between civilizations still developing, and which may therefore transcend their present limitations, and civilizations that have stagnated (and therefore will produce no further taxonomic divisions).

My post on Night Side Detection of M Dwarf Civilizations suggested an approach to planetary endemism in which the spatial constraint enters into a civilizational taxonomy as more than merely the generic constraint of limited planetary surface area. In that post I discussed some properties that would distinctively characterize civilizations emergent on planetary systems of M dwarf stars. In some cases we can derive the likely properties of a civilization from the properties of the planet on which that civilization supervenes. This is essentially a taxonomic idea.

The idea is quite simple, and it is this: different kinds of planets, in different kinds of planetary systems (presumably predicated upon different kinds of stars, and of different kinds of protoplanetary disks that were the precursors to planetary systems), result in different kinds of civilizations supervening upon these different kinds of planets. Given this idea, a taxonomy of civilizations would follow from a taxonomy of planets and of planetary systems.

What kinds of planets are there, and what kinds of planetary systems are there? It is only in the past few years that science has begun to answer this question in earnest, as we have begun to discover and classify exoplanets and exoplanetary systems, as the result of the Kepler mission. This is a work in progress, and we can literally expect to continue to add to our knowledge of planets and planetary systems for hundreds of years to come. We are still in a stage of knowledge where classifications for kinds of planets are emerging spontaneously from unexpected observations, such as “hot Jupiters” — large gas giants orbiting close to their parent stars — and we do not yet have anything like a systematic taxonomy yet.

Since we want to focus on peer life, however, i.e., life as we know it, more or less, this narrows the kinds of planets of interest to far fewer candidates, though ultimately we will need to account for the planetary system context of these habitable exoplanets, and in so doing we will have to take account of all types of planets. There has been a significant amount of attention given to habitable planets around M dwarf stars (one of the reasons I wrote Night Side Detection of M Dwarf Civilizations), which are interesting partly because there are so many M dwarf stars. We can derive interesting consequences for habitable planets around M dwarf stars, such as their being tidally locked, though we have to break this down further according to the size of the planet (since gravity will have an important influence on civilization), the presence of plate tectonics (as a tidally locked planet with active plate tectonics would be a very different place from such a planet without plate tectonics), the strength of the planet’s electrical field, and so on.

Other kinds of planets that have come to attention are “super-Earths,” which are rocky, habitable planets, but larger than Earth, and therefore with a higher surface gravity (therefore with a greater barrier to the transition to spacefaring civilization). The observation selection effects of the transit method employed by the Kepler mission favor larger planets, so the Kepler data sets have not inspired much thinking about smaller planets, but we know from our own planetary system with the smaller Earth twin of Venus, which is too hot, and the smaller yet Earth twin Mars, which is too cold, that the habitable zone of a star can host several Earth-size and smaller planets. When some future science mission makes it possible to survey exoplanetary systems inclusive of smaller worlds, I suspect we will discover a great many of them, and this will generate more questions, like the ability of a smaller planet to maintain its atmosphere and its electrical field, etc.

One way to produce a planetary taxonomy for the civilizations of planetary endemism would be to take Earth as the “standard” inhabitable planet, and to treat all planets inhabited by peer life as departing from the terrestrial norm. We already do this when we speak of Earth twins and super-Earths, but this could be done more systematically and schematically. This, however, does not take into account the parent star or planetary system, so we would have to take our entire planetary system as the “standard” inhabitable planetary system, and work outward from that based on deviations from this norm.

The above is only to suggest the complex taxonomic possibilities for civilizations based on the kind of planet where a civilization originates. I don’t yet have even a schematic breakdown such as I formulated in my previous post on planetary endemism. The variety of planetary conditions where civilizations may arise may be so diverse that it defeats the purpose of a taxonomy, as each individual civilization would have to be approached not as exemplifying a kind, but as something unprecedented in every instance. Still, the scientific mind wants to put its observations in a rational order, so that some of us will always to trying to find order in apparent chaos.

. . . . .

Kepler Orrery III animation of planetary systems (also see Kepler Orrery III at NASA)

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


three peaks 3

This post is intended as a quick addendum to my post The Apotheosis of Emergent Complexity, in which I considered, in turn, the respective peaks of star formation, life, and civilization during the Stelliferous Era, as exemplifying significant forms of emergent complexity in the universe.

peak 5

The apotheosis of emergent complexity recognized in that earlier post — when stars, life, and civilization are all represented — can be further narrowed in scope beyond the parameters I previously set. With the sole examples of ourselves as representing life and civilization, we can acknowledge a minimal form of the apotheosis of emergent complexity already extant, and as long as our civilization endures and continues in development it retains the possibility of seeing further emergent complexities arise. Among the further emergent complexities that could arise from terrestrial life and civilization is the possibility of this life and civilization expanding to other worlds. A simple expansion would represent the spatial and temporal extension of emergent complexity, but life and civilization almost certainly will be changed by their adaptation to other worlds, and this adaptive radiation on a cosmological scale may involve the emergence of further emergent complexity (in which case a fourth peak would need to be defined beyond stars, life, and civilization).

peak 6

An expansion of terrestrial life and civilization into the universe that constitutes an adaptive radiation on a cosmological scale, is an event that I have called the Great Voluntaristic Divergence (in Transhumanism and Adaptive Radiation) — “great” because it takes place on a cosmological scale that dwarfs known adaptive radiations on Earth by many orders of magnitude, “voluntaristic” because both the direction and the nature of the radiation and the adaptation will be a function of conscious and intelligent choice, and “divergence” because different choices will lead to the realization of diverse forms of life and civilization not existing, and not possible, on Earth alone. We can think of the Great Voluntaristic Divergence as a “forcing” event for the principle of plenitude. I have noted previously that cosmology is the principle of plenitude teaching by example. When the principle of plenitude works at the scale of the cosmos and at the level of complexity of civilization, further emergent complexity may yet transform the universe.

peak 7

If we take the peak of emergent complexity as beginning with the Great Voluntaristic Divergence, this peak of emergent complexity so conceived will end with the End Stelliferous Mass Extinction Event (which I first formulated in my Centauri Dreams post Who will read the Encyclopedia Galactica?). Once star formation ceases, the remaining stars will burn out one by one, and, as they wink out, the planetary surfaces on which they have been incubating life and civilizations will go dark. Any life or civilization that survives the coming darkness of the Degenerate Era, the Black Hole Era, and the Dark Era, will have to derive its energy flows from some source other than stellar energy flux concentrated on planetary surfaces, which I noted in my previous post, Civilizations of Planetary Endemism, typify the origins of civilizations during the Stelliferous Era.

peak 8

If life and civilization endure for so long as to confront the end of the Stelliferous Era, there will be plenty of time to prepare for alternative methods of harnessing energy flows. Moreover, I strongly suspect that the developmental course of advanced civilizations — the only kind of civilizations that could so endure — will experience demographic changes that will bring populations into equilibrium with their energy environment, much as we have seen birth rates plummet in advanced industrialized civilizations where scientific medicine reduces infant mortality, lengthens life, and increases the costs of child-rearing. When the End Stelliferous Mass Extinction Event is visited upon our distant descendants and their successor institution to civilization, their horizons will already have been altered to accommodate the change.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Thursday


three peaks 3

David Christian and Stephen Jay Gould on Complexity

The development of the universe as we have been able to discern its course by means of science reveals a growth of emergent complexity against a background of virtually unchanging homogeneity. Some accounts of the universe emphasize the emergent complexity, while other accounts emphasize the virtually unchanging homogeneity. The school of historiography we now call Big History focuses on the emergent complexity. Indeed, Big Historians, most famously David Christian, employ a schematic hierarchy of emergent complexity for a periodization of the history of the universe entire.

David Christian, the best known figure in Big History, emphasizes emergent complexity over cosmological scales of time.

David Christian, the best known figure in Big History, emphasizes emergent complexity over cosmological scales of time.

In contradistinction to the narrative of emergent complexity, Stephen Jay Gould frequently emphasized the virtually unchanging homogeneity of the world. Gould argued that complexity is marginal, perhaps not even statistically significant. Life is dominated by the simplest forms of life, from its earliest emergence to the present day. Complexity has arisen as an inevitable byproduct of the fact that the only possible development away from the most rudimentary simplicity is toward greater complexity, but complexity in life remains marginal compared to the overwhelming rule of simplicity.

When we have the ability to pursue biology beyond Earth, to de-provincialize biology, as Carl Sagan put it, this judgment of Gould is likely to be affirmed and reaffirmed repeatedly, as we will likely find simple life to be relatively common in the universe, but complexity will be rare, and the more life we discover, the less that complex life will represent of the overall picture of life in the universe. And what Gould said of life we can generalize to all forms of emergent complexity; in a universe dominated by hydrogen and helium, as it was when it began with the big bang, the existence of stars, galaxies, and planets scarcely registers, and 13.7 billion years later the universe is still dominated by hydrogen and helium.

Stephen Jay Gould characterized emergent complexity as the 'long tail' of a right-skewed distribution that distracts us from the vast bulk of simple life.

Stephen Jay Gould characterized emergent complexity as the ‘long tail’ of a right-skewed distribution that distracts us from the vast bulk of simple life.

Here is how Gould characterized the place of biological complexity in Full House, his book devoted to an exposition of life shorn of any idea of a trend toward progress:

“I do not deny the phenomenon of increased complexity in life’s history — but I subject this conclusion to two restrictions that undermine its traditional hegemony as evolution’s defining feature. First, the phenomenon exists only in the pitifully limited and restricted sense of a few species extending the small right tail of a bell curve with an ever-constant mode at bacterial complexity — and not as a pervasive feature in the history of most lineages. Second, this restricted phenomenon arises as an incidental consequence — an ‘effect,’ in the terminology of Williams (1966) and Vrba (1980), rather than an intended result — of causes that include no mechanism for progress or increasing complexity in their main actions.”

Stephen Jay Gould, Full House: The Spread of Excellence from Plato to Darwin, 1996, p. 197

And Gould further explained the different motivations and central ideas of two of his most influential books:

Wonderful Life asserts the unpredictability and contingency of any particular event in evolution and emphasizes that the origin of Homo sapiens must be viewed as such an unrepeatable particular, not an expected consequence. Full House presents the general argument for denying that progress defines the history of life or even exists as a general trend at all. Within such a view of life-as-a-whole, humans can occupy no preferred status as a pinnacle or culmination. Life has always been dominated by its bacterial mode.”

Stephen Jay Gould, Full House: The Spread of Excellence from Plato to Darwin, 1996, p. 4

Gould’s work is through-and-through permeated by the Copernican principle, taken seriously and applied systematically to biology, paleontology, and anthropology. Gould not only denies the centrality of human beings to any narrative of life, he also denies any mechanism that would culminate in some future progress of complexity that would be definitive of life. Gould conceived a biological Copernicanism more radical than anything imagined by Copernicus or his successors in cosmology.

emergent complexity 0

Emergent Complexity during the Stelliferous Era

How are we to understand the cohort of emergent complexities of which we are a part and a representative, and therefore also possess a vested interest in magnifying the cosmic significance of this cohort? Our reflections on emergent complexity are reflexive (as we are, ourselves, an emergent complexity) and thus are non-constructive in the sense of being impredicative. Perhaps the question for us ought to be, how can we avoid misunderstanding emergent complexity? How are we to circumvent our cognitive biases, which, when projected on a cosmological scale, result in errors of a cosmological magnitude?

Emergent complexities represent the “middle ages” of the cosmos, which first comes out of great simplicity, and which will, in the fullness of time, return to great simplicity. In the meantime, the chaotic intermixing of the elements and parts of the universe can temporarily give rise to complexity. Emergent complexity does not appear in spite of entropy, but rather because of entropy. It is the entropic course of events that brings about the temporary admixture that is the world we know and love. And entropy will, in the same course of events, eventually bring about the dissolution of the temporary admixture that is emergent complexity. In this sense, and as against Gould, emergent complexity is a trend of cosmological history, but it is a trend that will be eventually reversed. Once reversed, once the universe enters well and truly upon its dissolution, emergent complexities will disappear one-by-one, and the trend will be toward simplicity.

We can't simply take the thresholds of emergent complexity recognized in Big History and reverse them in order to obtain the future history of the universe.

We can’t simply take the thresholds of emergent complexity recognized in Big History and reverse them in order to obtain the future history of the universe.

One could, on this basis, complete the sequence of emergent complexity employed in Big History by projecting its mirror image into the future, allowing for further emergent complexities prior to the onset of entropy-driven dissolution, except that the undoing of the world will not follow the same sequence of steps in reverse. If the evolution of the universe were phrased in sufficiently general terms, then certainly we could contrast the formation of matter in the past with the dissolution of matter in the future, but matter will not be undone by the reversal of stellar nucleosynthesis.

The Structure of Emergent Complexity

Among the emergent complexities are phenomena like the formation of stars and galaxies, and nucleosynthesis making chemical elements and minerals possible. But as human beings the emergent complexities that interest us the most, perhaps for purely anthropocentric reasons, are life and civilization. We are alive, and we have built a civilization for ourselves, and in life and civilization we see our origins and our end; they are the mirror of human life and ambition. If we were to find life and civilization elsewhere in the universe, we would find a mirror of ourselves which, no matter how alien, we could see some semblance of a reflection of our origins and our end.

Recognizable life would be life as we know it, as recognizable civilization would be civilization as we know it, presumably following from life as we know it. Life, i.e., life as we know it, is predicated upon planetary systems warmed by stars. Thus it might be tempting to say that the life-bearing period of the cosmos is entirely contained within the stelliferous, but that wouldn’t be exactly right. Even after star formation ceases entirely, planetary systems could continue to support life for billions of years yet. And, similarly, even after life has faded from the universe, civilization might continue for billions of years yet. But each development of a new level of emergent complexity must await the prior development of the emergent complexity upon which it is initially contingent, even if, once established in the universe, the later emergent complexity can outlive the specific conditions of its emergence. This results in the structure of emergent complexities not as a nested series wholly contained within more comprehensive conditions of possibility, but as overlapping peaks in which the conditio sine qua non of the later emergent may already be in decline when the next level of complexity appears.

The Ages of Cosmic History

In several posts — Who will read the Encyclopedia Galactica? and A Brief History of the Stelliferous Era — I have adopted the periodization of cosmic history formulated by Adams and Greg Laughlin, which distinguishes between the Primordial Era, the Stelliferous Era, the Degenerate Era, the Black Hole Era, and the Dark Era. The scale of time involved in this periodization is so vast that the “eras” might be said to embody both emergent complexity and unchanging homogeneity, without favoring either one.

The Primordial Era is the period of time between the big bang and when the first stars light up; the Stelliferous Era is dominated by stars and galaxies; during the Degenerate Era it is the degenerate remains of stars that dominate; after even degenerate remains of stars have dissipated only massive black holes remain in the Black Hole Era; after even the black holes dissipate, it is the Dark Era, when the universe quietly converges upon heat death. All of these ages of the universe, except perhaps the last, exhibit emergent complexity, and embrace a range of astrophysical processes, but adopting such sweeping periodizations the homogeneity of each era is made clear.

Big History’s first threshold of emergent complexity corresponds to the Primordial Era, but the remainder of its periodizations of emergent complexity are all entirely contained within the Stelliferous Era. I am not aware of any big history periodization that projects the far future as embraced by Adams and Laughlin’s five ages periodization. Big history looks forward to the ninth threshold, which comprises some unnamed, unknown emergent complexity, but it usually does not look as far into the future as the heat death of the universe. (The idea of the “ninth threshold” is a non-constructive concept, I will note — the idea that there will be some threshold and some new emergent complexity, but even as we acknowledge this, we also acknowledge that we do not know what this threshold will be, nor do we known anything of the emergent complexity that will characterize it). Another periodization of comparable scale, Eric Chaisson’s decomposition of cosmic history into the Energy Era, the Matter Era, and the Life Era, cut across Adams and Laughlin’s five ages of the universe, with the distinction between the Energy Era and the Matter Era decomposing the early history of the universe a little differently than the distinction between the Primordial Era and the Stelliferous Era.

peak 1

Peak Stelliferous

The “peak Stelliferous Era,” understood as the period of peak star formation during the Stelliferous Era, has already passed. The universe as defined by stars and galaxies is already in decline — terminal decline that will end in new stars ceasing the form, and then the stars that have formed up to that time eventually burning out, one by one, until none are left. First the bright blue stars will burn out, then the sun-like stars, and the dwarf stars will outlast them all, slowly burning their fuel for billions of years to come. That is still a long time in the future for us, but the end of the peak stelliferous is already a long time in the past for us.

In the paper The Complete Star Formation History of the Universe, by Alan Heavens, Benjamin Panter, Raul Jimenez, and James Dunlop, the authors note that the stellar birthrate peaked between five and eight billion years ago (with the authors of the paper arguing for the more recent peak). Both dates are near to being half the age of the universe, and our star and planetary system were only getting their start after the peak stelliferous had passed. Since the peak, star formation has fallen by an order of magnitude.

star-formation-decline-graph

The paper cited above was from 2004. Since then, a detailed study star formation rates was widely reported in 2012, which located the peak of stellar birthrates about 11 billion years ago, or 2.7 billion years after the big bang, in which case the greater part of the Stelliferous Era that has elapsed to date has been after the peak of star formation. An even more recent paper, Cosmic Star Formation History, by Piero Madau and Mark Dickinson, argues for peak star formation about 3.5 billion years after the big bang. What all of these studies have in common is finding peak stellar birthrates billions years in the past, placing the present universe well after the peak stelliferous.

peak 2

Peak Life

A recent paper that was widely noted and discussed, On The History and Future of Cosmic Planet Formation by Peter Behroozi and Molly Peeples, argued that, “…the Universe will form over 10 times more planets than currently exist.” (Also cf. Most Earth-Like Worlds Have Yet to Be Born, According to Theoretical Study) Thus even though we have passed the peak of the Stelliferous in terms of star formation, we may not yet have reached the peak of the formation of habitable planets, and population of habitable planets must peak before planets actually inhabited by life as we know it can peak, thereby achieving peak life in the universe.

The Behroozi ane Peeples paper states:

“…we note that only 8% of the currently available gas around galaxies (i.e., within dark matter haloes) had been converted into stars at the Earth’s formation time (Behroozi et al. 2013c). Even discounting any future gas accretion onto haloes, continued cooling of the existing gas would result in Earth having formed earlier than at least 92% of other similar planets. For giant planets, which are more frequent around more metal-rich stars, we note that galaxy metallicities rise with both increasing cosmic time and stellar mass (Maiolino et al. 2008), so that future galaxies’ star formation will always take place at higher metallicities than past galaxies’ star formation. As a result, Jupiter would also have formed earlier than at least ~90% of all past and future giant planets.”

We do not know the large scale structure of life in the cosmos, whether in terms of space or time, so that we are not at present in a position to measure or determine peak life, in the way that contemporary science can at least approach an estimate of peak stelliferous. However, we can at least formulate the scientific resources that would be necessary to such a determination. The ability to take spectroscopic readings of exoplanet atmospheres, in the way that we can now employ powerful telescopes to see stars throughout the universe, would probably be sufficient to make an estimate of life throughout the universe. This is a distant but still an entirely conceivable technology, so that an understanding of the large scale structure of life in space and time need not elude us perpetually.

Even if life exclusively originated on Earth, the technological agency of civilization may engineer a period of peak life that follows long after the possibility of continued life on Earth has passed. Life in possession of technological agency can spread itself throughout the worlds of our galaxy, and then through the galaxies of the universe. But peak life, in so far as we limit ourselves to life as we know it, must taper off and come to an end with the end of the Stelliferous Era. Life in some form may continue on, but peak life, in the sense of an abundance of populated worlds of high biodiversity, is a function of a large number of worlds warmed by countless stars throughout our universe. As these stars slowly use up their fuel and no new stars form, there will be fewer and fewer worlds warmed by these stars. As stars go cold, worlds will go cold, one by one, throughout the universe, and life, even if it survives in some other, altered form, will occupy fewer and fewer worlds until no “worlds” in this sense remain at all. This inevitable decline of life, however abundantly or sparingly distributed throughout the cosmos, eventually ending in the extinction of life as we know it, I have called the End Stelliferous Mass Extinction Event (ESMEE).

peak 3

Peak Civilization

If we do not know when our universe will arrive at a period of peak life, even less do we know the period of peak civilization — whether it has already happened, whether it is right now, right here (if we are the only civilization the universe, and all that will ever be, then civilization Earth right now represents peak civilization), or whether peak civilization is still to come. We can, however, set parameters on peak civilization as we can set parameters on peak star formation of the Stelliferous Era and peak life.

The origins of civilization as we know it are contingent upon life as we known it, and life as we known it, as we have seen, is a function of the Stelliferous Era cosmos. However, civilization may be defined (among many other possible definitions) as life in possession of technological agency, and once life possesses technological agency it need not remain contingent upon the conditions of its origins. Some time ago in Human Beings: A Solar Species I addressed the idea that humanity is a solar species. Descriptively this is true at present, but it would be a logical fallacy to conflate the “is” of this present descriptive reality with an “ought” that prescribes out dependence upon our star, or even upon the system of stars that is the Stelliferous Era.

Civilization need not suffer from the End Stelliferous Mass Extinction Event as life must inevitably and eventually suffer. It could be argued that civilization as we know it (and, moreover, as defined above as “life in possession of technological agency”) is as contingent upon the conditions of the Stelliferous Era as is life as we known it. If we focus on the technological agency rather than upon life as we known it, even the far future of the universe offers amazing opportunities for civilization. The energy that we now derive from our star and from fossil fuels (itself a form of stored solar energy) we can derive on a far greater scale from angular momentum of rotating black holes (not mention other exotic forms of energy available to supercivilizations), and black holes and their resources will be available to civilizations even beyond the Degenerate Era following the Stelliferous Era, throughout the Black Hole Era.

Fred Adams and Greg Laughlin's five ages of the universe.

Fred Adams and Greg Laughlin’s five ages of the universe.

In Addendum on Degenerate Era Civilization and Cosmology is the Principle of Plenitude teaching by Example I considered some of the interesting possibilities remaining for civilization during the Degenerate Era, and I pushed this perspective even further in my long Centauri Dreams post Who will read the Encyclopedia Galactica?

It is not until the Dark Era that the universe leaves civilization with no extractable energy resources, so that, if we have not by that time found our way to another, younger universe, it is the end of the Black Hole Era, and not the end of the Stelliferous Era, that will spell the doom of civilization. As black holes fade into nothingness one by one, much like stars at the end of the Stelliferous Era, the civilizations dependent upon them will wink out of existence, and this will be the End Civilization Mass Extinction Event (ECMEE) — but only if there is a mass of civilizations at this time to go extinct. This would mark the end of the apotheosis of emergent complexity.

peak 4

The Apotheosis of Emergent Complexity

We can identify a period of time for our universe that we may call the apotheosis of emergent complexity, when stars are still forming, though on the decline, civilizations are only beginning to establish themselves in the cosmos, and life in the universe is at its peak. During this period, all of the forms of emergent complexity of which we are aware are simultaneously present, and the ecologies of galaxies, biospheres, and civilizations are all enmeshed each in the other.

It remains a possibility, perhaps even a likelihood, that further, unsuspected emergent complexities will grace the universe before its final dissolution in a heat death when the universe will be reduced to the thermodynamic equilibrium, which is the lowest common denominator of existence as we know it. Further forms of emergent complexity would require that we extend the framework I have suggested here, but, short of a robust and testable theory of the multiverse, which would extend the emergent complexity of stars, life, and civilizations to universes other than our own, the basic structure of the apotheosis of emergent complexity should remain as outlined above, even if extended by new forms.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Tuesday


William of Ockham, one of the greatest philosophers of the late Middle Ages, is remembered today primarily for his formulation of the principle of parsimony, also called Ockham's razor.

William of Ockham, one of the greatest philosophers of the late Middle Ages, is remembered today primarily for his formulation of the principle of parsimony, also called Ockham’s razor.

A medieval logician in the twenty-first century

In the discussion surrounding the unusual light curve of the star KIC 8462852, Ockham’s razor has been mentioned numerous times. I have written a couple of posts on this topic, i.e., interpreting the light curve of KIC 8462852 in light of Ockham’s razor, KIC 8462852 and Parsimony and Plenitude in Cosmology.

What is Ockham’s razor exactly? Well, that is a matter of philosophical dispute (and I offer my own more precise definition below), but even if it is difficult to say that Ockham’s razor is exactly, we can say something about what it was originally. Philotheus Boehner, a noted Ockham scholar, wrote of Ockham’s razor:

“It is quite often stated by Ockham in the form: ‘Plurality is not to be posited without necessity’ (Pluralitas non est ponenda sine necessitate), and also, though seldom: ‘What can be explained by the assumption of fewer things is vainly explained by the assumption of more things’ (Frustra fit per plura quod potest fieri per pauciora). The form usually given, ‘Entities must not be multiplied without necessity’ (Entia non sunt multiplicanda sine necessitate), does not seem to have been used by Ockham.”

William of Ockham, Philosophical Writings: A Selection, translated, with an Introduction, by Philotheus Boehner, O.F.M., Indianapolis and New York: The Library of Liberal Arts, THE BOBBS-MERRILL COMPANY, INC., 1964, Introduction, p. xxi

Most references to (and even most uses of) Ockham’s razor are informal and not very precise. In Maybe It’s Time To Stop Snickering About Aliens, which I linked to in KIC 8462852 Update, Adam Frank wrote of Ockham’s razor in relation to KIC 8462852:

“…aliens are always the last hypothesis you should consider. Occam’s razor tells scientists to always go for the simplest explanation for a new phenomenon. But even as we keep Mr. Occam’s razor in mind, there is something fundamentally new happening right now that all of us, including scientists, must begin considering… the exoplanet revolution means we’re developing capacities to stare deep into the light produced by hundreds of thousands of boring, ordinary stars. And these are exactly the kind of stars where life might form on orbiting planets… So we are already going to be looking at a lot of stars to hunt for planets. And when we find those planets, we are going to look at them for basic signs that life has formed. But all that effort means we will also be looking in exactly the right places to stumble on evidence of not just life but intelligent, technology-deploying life.

Here the idea of Ockham’s razor is present, but little more than the idea. Rather than merely invoking the idea of Ockham’s razor, and merely assuming what constitutes simplicity and parsimony, if we are going to profitably employ the idea today, we need to develop it more fully in the context of contemporary scientific knowledge. In KIC 8462852 I wrote:

“One can see an emerging adaptation of Ockham’s razor, such that explanations of astrophysical phenomena are first explained by known processes of nature before they are attributed to intelligence. Intelligence, too, is a process of nature, but it seems to be rare, so one ought to exercise particular caution in employing intelligence as an explanation.”

In a recent post, Parsimony and Emergent Complexity I went a bit further and suggested that Ockham’s razor can be formulated with greater precision in terms of emergent complexity, such that no phenomenon should be explained in terms of a level of emergent complexity higher than that necessary to explain the phenomenon.

De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) is the seminal work on the heliocentric theory of the Renaissance astronomer Nicolaus Copernicus (1473–1543). The book, first printed in 1543 in Nuremberg, Holy Roman Empire, offered an alternative model of the universe to Ptolemy's geocentric system, which had been widely accepted since ancient times. (Wikipedia)

De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) is the seminal work on the heliocentric theory of the Renaissance astronomer Nicolaus Copernicus (1473–1543). The book, first printed in 1543 in Nuremberg, Holy Roman Empire, offered an alternative model of the universe to Ptolemy’s geocentric system, which had been widely accepted since ancient times. (Wikipedia)

De revolutionibus orbium coelestium and its textual history

Like Darwin many centuries later, Copernicus hesitated to publish his big book to explain his big idea, i.e., heliocentrism. Both men, Darwin and Copernicus, understood the impact that their ideas would have, though both probably underestimated the eventual influence of these ideas; both were to transform the world and leave as a legacy entire cosmologies. The particular details of the Copernican system are less significant than the Copernican idea, i.e., the Copernican cosmology, which, like Ockham’s razor, has gone on to a long career of continuing influence.

Darwin eventually published in his lifetime, prompted by the “Ternate essay” that Wallace sent him, but Copernicus put off publishing until the end of his life. It is said that Copernicus was shown a copy of the first edition of De revolutionibus on his deathbed (though this is probably apocryphal). Copernicus, of course, lived much closer to the medieval world than did Darwin — one could well argue that Toruń and Frombork in the fifteenth and sixteenth centuries was the medieval world — so we can readily understand Copernicus’ hesitation to publish. Darwin published in a world already transformed by industrialization, already wrenched by unprecedented social change; Copernicus eventually published in a world that, while on the brink of profound change, had not appreciably changed in a thousand years.

Copernicus’ hesitation meant that he did not directly supervise the publication of his manuscript, that he was not able to correct or revise subsequent editions (Darwin revised On the Origin of Species repeatedly for six distinct editions in his lifetime, not including translations), and that he was not able to respond to the reception of his book. All of these conditions were to prove significant in the reception and propagation of the Copernican heliocentric cosmology.

Copernicus, after long hesitation, was stimulated to pursue the publication of De revolutionibus by his contact with Georg Joachim Rheticus, who traveled to Frombork for the purpose of meeting Copernicus. Rheticus, who had great respect for Copernicus’ achievement, came from the hotbed of renaissance and Protestant scholarship that was Nuremberg. He took Copernicus’ manuscript to Nuremberg to be published by a noted scientific publisher of the day, but Rheticus did not stay to oversee the entire publication of the work. This job was handed down to Andreas Osiander, a Protestant theologian who sought to water down the potential impact of De Revolutionibus by adding a preface that suggested that Copernicus’ theory should be accepted in the spirit of an hypothesis employed for the convenience of calculation. Osiander did not sign this preface, and many readers of the book, when it eventually came out, thought that this preface was the authentic Copernican interpretation of the text.

Osiander’s preface, and Osiander’s intentions in writing the preface (and changing the title of the book) continue to be debated to the present day. This debate cannot be cleanly separated from the tumult surrounding the Protestant Reformation. Luther and the Lutherans were critical of Copernicus — they had staked the legitimacy of their movement on Biblical literalism — but one would have thought that Protestantism would have been friendly to the work of Ockham, given Ockham’s conflict with the Papacy, Ockham’s fideism, and his implicit position as a critic of Thomism. (I had intended to read up on the Protestant interpretation of Ockham prior to writing this post, but I haven’t yet gotten to this.) The parsimony of Copernicus’ formulation of cosmology, then, was a mixed message to the early scientific revolution in the context of the Protestant Reformation.

Both Rheticus and Copernicus’ friend Tiedemann Giese were indignant over the unsigned and unauthorized preface by Osiander. Rheticus, by some accounts, was furious, and felt that the book and Copernicus had been betrayed. He pursued legal action against the printer, but it is not clear that it was the printer who was at fault for the preface. While Rheticus suspected Osiander as the author of the preface, this was not confirmed until some time later, when Rheticus had moved on to other matters, so Osiander was never pursued legally over the preface.

Nicolaus Copernicus (1473–1543) -- Mikołaj Kopernik in Polish, and Nikolaus Kopernikus in German

Nicolaus Copernicus (1473–1543) — Mikołaj Kopernik in Polish, and Nikolaus Kopernikus in German

Copernicus’ Ockham

The most common reason adduced to preferring Copernican cosmology to Ptolematic cosmology is not that one is true and the other is false (though this certainly is a reason to prefer Copernicus) but rather that the Copernican cosmology is the simpler and more straight-forward explanation for the observed movements of the stars and the planets. The Ptolemaic system can predict the movements of stars, planets, and the moon (within errors of margin relevant to its time), but it does so by way of a much more complex and cumbersome method than that of Copernicus. Copernicus was radical in the disestablishment of traditional cosmological thought, but once beyond that first radical step of displacing the Earth of the center of the universe (a process we continue to iterate today), the solar system fell into place according to a marvelously simple plan that anyone could understand once it was explained: the sun at the center, and all the planets revolving around it. From the perspective of our rotating and orbiting Earth, the other planets also orbiting the sun appear to reverse in their course, but this is a mere artifact due to our position as observers. Once Copernicus can convince the reader that, despite the apparent solidity of the Earth, it is in fact moving through space, everything else falls into place.

One of the reasons that theoretical parsimony and elegance played such a significant role in the reception of Copernicus — and even the theologians who rejected his cosmology employed his calculations to clarify the calendar, so powerful was Copernicus’ work — was that the evidence given for the Copernican system was indirect. Even today, only a handful of the entire human population has ever left the planet Earth and looked down on it from above — seeing Earth from the perspective of the overview effect — and so acquired direct evidence of the Earth in space. No one, no single human being, has hovered above the solar system entire and looked down upon it and so obtained the most direct evidence of the Copernican theory — this is an overview affect that we have not yet attained. (NB: in The Scientific Imperative of Human Spaceflight I suggested the possibility of a hierarchy of overview effects as one moved further out from Earth.)

The knowledge that we have of our solar system, and indeed of the universe entire, is derived from observations and deduction from observations. Moreover, seeing the truth of Copernican heliocentrism would not only require an overview in space, but an overview in time, i.e., one would need to hover over our solar system for hundreds of years to see all the planets rotating around the common center of the sun, and one would have to, all the while, remain focused on observing the solar system in order to be able to have “seen” the entire process — a feat beyond the limitations of the human lifetime, not to mention human consciousness.

Copernicus himself did not mention the principle of parsimony or Ockham’s razor, and certainly did not mention William of Ockham, though Ockham was widely read in Copernicus’ time. The principle of parsimony is implicit, even pervasive, in Copernicus, as it is in all good science. We don’t want to account for the universe with Rube Goldberg-like contraptions as our explanations.

In a much later era of scientific thought — in the scientific thought of our own time — Stephen J. Gould wrote an essay titled “Is uniformitarianism necessary?” in which he argued for the view that uniformitarianism in geology had simply come to mean that geology follows the scientific method. Similarly, one might well argued that parsimony is no more necessary than uniformitarianism, and that what content of parsimony remains is simply coextenisve with the scientific method. To practice science is to reason in accordance with Ockham’s razor, but we need not explicitly invoke or apply Ockham’s razor, because its prescriptions are assimilated into the scientific method. And indeed this idea fits in quite well with the casual references to Ockham’s razor such as that I quoted above. Most scientists do not need to think long and hard about parsimony, because parsimonious formulations are already a feature of the scientific method. If you follow the scientific method, you will practice parsimony as a matter of course.

Copernicus’ Ockham, then, was already the Ockham already absorbed into nascent scientific thought. Perhaps it would be better to say that parsimony is implicit in the scientific method, and Copernicus, in implicitly following a scientific method that had not yet, in his time, been made explicit, was following the internal logic of the scientific method and its parsimonious demands for simplicity.

Andreas Osiander (19 December 1498 – 17 October 1552) was a German Lutheran theologian who oversaw the publication of Copernicus' De revolutionibus and added an unsigned preface that many attributed to Copernicus.

Andreas Osiander (19 December 1498 – 17 October 1552) was a German Lutheran theologian who oversaw the publication of Copernicus’ De revolutionibus and added an unsigned preface that many attributed to Copernicus.

Osiander’s Ockham

Osiander was bitterly criticized in his own time for his unauthorized preface to Copernicus, though many immediately recognized it as a gambit to allow for the reception of Copernicus’ work to involve the least amount of controversy. As I noted above, the Protestant Reformation was in full swing, and the events that would lead up the Thirty Years’ War were beginning to unfold. Europe was a powder keg, and many felt that it was the better part of valor not to touch a match to any issue that might explode. All the while, others were doing everything in their power to provoke a conflict that would settle matters once and for all.

Osiander not only added the unsigned and unauthorized preface, but also changed the title of the whole work from De revolutionibus to De revolutionibus orbium coelestium, adding a reference to the heavenly spheres that was not in Copernicus. This, too, can be understood as a concession to the intellectually conservative establishment — or it can be seen as a capitulation. But it was the preface, and what the preface claimed as the proper way to understand the work, that was the nub of the complaint against Osiander.

Here is a long extract of Osiander’s unsigned and unauthorized preface to De revolutionibus, not quite the whole thing, but most of it:

“…it is the duty of an astronomer to compose the history of the celestial motions through careful and expert study. Then he must conceive and devise the causes of these motions or hypotheses about them. Since he cannot in any way attain to the true causes, he will adopt whatever suppositions enable the motions to be computed correctly from the principles of geometry for the future as well as for the past. The present author has performed both these duties excellently. For these hypotheses need not be true nor even probable. On the contrary, if they provide a calculus consistent with the observations, that alone is enough. Perhaps there is someone who is so ignorant of geometry and optics that he regards the epicyclc of Venus as probable, or thinks that it is the reason why Venus sometimes precedes and sometimes follows the sun by forty degrees and even more. Is there anyone who is not aware that from this assumption it necessarily follows that the diameter of the planet at perigee should appear more than four times, and the body of the planet more than sixteen times, as great as at apogee? Yet this variation is refuted by the experience of every age. In this science there are some other no less important absurdities, which need not be set forth at the moment. For this art, it is quite clear, is completely and absolutely ignorant of the causes of the apparent nonuniform motions. And if any causes are devised by the imagination, as indeed very many are, they are not put forward to convince anyone that are true, but merely to provide a reliable basis for computation. However, since different hypotheses are sometimes offered for one and the same motion (for example, eccentricity and an epicycle for the sun’s motion), the astronomer will take as his first choice that hypothesis which is the easiest to grasp. The philosopher will perhaps rather seek the semblance of the truth. But neither of them will understand or state anything certain, unless it has been divinely revealed to him.”

Nicholas Copernicus, On the Revolutions, Translation and Commentary by Edward Rosen, THE JOHNS HOPKINS UNIVERSITY PRESS, Baltimore and London

If we eliminate the final qualification, “unless it has been divinely revealed to him,” Osiander’s preface is a straight-forward argument for instrumentalism. Osiander recommends Copernicus’ work because it gives the right results; we can stop there, and need not make any metaphysical claims on behalf of the theory. This ought to sound very familiar to the modern reader, because this kind of instrumentalism has been common in positivist thought, and especially so since the advent of quantum theory. Quantum theory is the most thoroughly confirmed theory in the history of science, confirmed to a degree of precision almost beyond comprehension. And yet quantum theory still lacks an intuitive correlate. Thus we use quantum theory because it gives us the right results, but many scientists hesitate to give any metaphysical interpretation to the theory.

Copernicus, and those most convinced of his theory, like Rheticus, was a staunch scientific realist. He did not propose his cosmology as a mere system of calculation, but insisted that his theory was the true theory describing the motions of the planets around the sun. It follows from this uncompromising scientific realism that other theories are not merely less precise in calculating the movements of the planets, but false. Scientific realism accords with common sense realism when it comes to the idea that there is a correct account of the world, and other accounts that deviate from the correct account are false. But we all know that scientific theories are underdetermined by the evidence. To formulate a law is to go beyond the finite evidence and to be able to predict an infinitude of possible future states of the phenomenon predicted.

Scientific realism, then, is an ontologically robust position, and this ontological robustness is a function of the underdetermination of the theory by the evidence. Osiander argues of Copernicus’ theory that, “if they provide a calculus consistent with the observations, that alone is enough.” So Osiander is not willing to go beyond the evidence and posit the truth of an underdetermined theory. Moreover, Osiander was willing to maintain empirically equivalent theories, “since different hypotheses are sometimes offered for one and the same motion.” Given empirically equivalent theories that can both “provide a calculus consistent with the observations,” why would one theory be favored over another? Osiander states that the astronomer will prefer the simplest explanation (hence explaining Copernicus’ position) while the philosopher will seek a semblance of truth. Neither, however, can know what this truth is without divine revelation.

Osiander’s Ockham is the convenience of the astronomer to seek the simplest explanation for his calculations; the astronomer is justified in employing the simplest explanation of the most precise method available to calculate and predict the course of the heavens, but he cannot know the truth of his theory unless that truth is guaranteed by some outside and transcendent evidence not available through science — a deus ex machina for the mind.

Copernicus stands at the beginning of the scientific revolution, and he stands virtually alone.

Copernicus stands at the beginning of the scientific revolution, and he stands virtually alone.

The origins of the scientific revolution in Copernicus

Copernicus’ Ockham was ontological parsimony; Osiander’s Ockham was methodological parsimony. Are we forced to choose between the two, or are we forced to find a balance between ontological and methodological parsimony? These are still living questions in the philosophy of science today, and there is a sense in which it is astonishing that they appeared so early in the scientific revolution.

As noted above, the world of Copernicus was essentially a medieval world. Toruń and Frombork were far from the medieval centers of learning in Paris and Oxford, and about as far from the renaissance centers of learning in Florence and Nuremberg. Nevertheless, the new cosmology that emerged from the scientific revolution, and which is still our cosmology today, continuously revised and improved, can be traced to the Baltic coast of Poland in the late fifteenth and early sixteenth century. The controversy over how to interpret the findings of science can be traced to the same root.

The conventions of the scientific method were established in the work of Copernicus, Galileo, and Newton, which means that it was the work of these seminal thinkers who established these conventions. Like the cosmologies of Copernicus, Galileo, and Newton, the scientific method has also been continuously revised and improved. That Copernicus grasped in essence as much of the scientific method as he did, working in near isolation far from intellectual centers of western civilization, demonstrates both the power of Copernicus’ mind and the power of the scientific method itself. As implied above, once grasped, the scientific method has an internal logic of its own that directs the development of scientific thought.

The scientific method — methodological naturalism — exists in an uneasy partnership with scientific realism — ontological naturalism. We can see that this tension was present right from the very beginning of the scientific revolution, before the scientific method was ever formulated, and the tension continues down to the present day. Contemporary analytical philosophers discuss the questions of scientific realism in highly technical terms, but it is still the same debate that began with Copernicus, Rheticus, and Osiander. Perhaps we can count the tension between methodological naturalism and ontological naturalism as one of the fundamental tensions of scientific civilization.

. . . . .

Updates and Addenda

This post began as a single sentence in one of my note books, and continued to grow as I worked on it. As soon as I posted it I realized that the discussions of scientific realism, instrumentalism, and methodological naturalism in relation to parsimony could be much better. With additional historical and philosophical discussion, this post might well be transformed into an entire book. So for the questioning reader, yes, I understand the inadequacy of what I have written above, and that I have not done justice to my topic.

Shortly after posting the above Paul Carr pointed out to me that the joint ESA-NASA Ulysses deep-space mission sent a spacecraft to study the poles of the sun, so we have sent a spacecraft out of the plane of the solar system, which could “look down” on our star and its planetary system, although the mission was not designed for this and had no cameras on board. If we did position a camera “above” our solar system, it would be able to take pictures of our heliocentric solar system. This, however, would be more indirect evidence — more direct than deductions from observations, but not as direct as seeing this with one’s own eyes — like the famous picture of the “blue marble” Earth, which is an overview experience for those of us who have not been into orbit to the moon, but which is not quite the same as going into orbit or to the moon.

Paul Carr also drew my attention to Astronomy Cast Episode 390: Occam’s Razor and the Problem with Probabilities, with Fraser Cain and Pamela Gay, which discusses Ockham’s razor in relation to positing aliens as a scientific explanation.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: