Folk Concepts and Scientific Progress

2 August 2015

Sunday


many questions

For some philosophers, naturalism is simply an extension of physicalism, which was in turn an extension of materialism. Narrow conceptions of materialism had to be extended to account for physical phenomena not reducible to material objects (like theoretical terms in science), and we can similarly view naturalism as a broadening of physicalism in order to more adequately account for the world. (I have quoted definitions of materialism and physicalism in Materialism, Physicalism, and… What?.) But, coming from this perspective, naturalism is approached from a primarily reductivist or eliminativist point of view that places an emphasis upon economy rather than adequacy in the description of nature (on reductivism and eliminativism cf. my post Reduction, Emergence, Supervenience). Here the principle of parsimony is paramount.

One target of eliminativism and reductionism is a class of concepts sometimes called “folk” concepts. The identification of folk concepts in the exposition of philosophy of science can be traced to philosopher Daniel Dennett. Dennett introduced the term “folk psychology” in The Intentional Stance and thereafter employed the term throughout his books. Here is part of his original introduction of the idea:

“We learn to use folk psychology — as a vernacular social technology, a craft — but we don’t learn it self-consciously as a theory — we learn no meta-theory with the theory — and in this regard our knowledge of folk psychology is like our knowledge of the grammar of our native tongue. This fact does not make our knowledge of folk psychology entirely unlike human knowledge of explicit academic theories, however; one could probably be a good practising chemist and yet find it embarrassingly difficult to produce a satisfactory textbook definition of a metal or an ion.”

Daniel Dennett, The Intentional Stance, Chap. 3, “Three Kinds of Intentional Psychology”

Earlier (in the same chapter of the same book) Dennett had posited “folk physics”:

“In one sense people knew what magnets were — they were things that attracted iron — long before science told them what magnets were. A child learns what the word ‘magnet’ means not, typically, by learning an explicit definition, but by learning the ‘folk physics’ of magnets, in which the ordinary term ‘magnet’ is embedded or implicitly defined as a theoretical term.”

Daniel Dennett, The Intentional Stance, Chap. 3, “Three Kinds of Intentional Psychology”

Here is another characterization of folk psychology:

“Philosophers with a yen for conceptual reform are nowadays prone to describe our ordinary, common sense, Rylean description of the mind as ‘folk psychology,’ the implication being that when we ascribe intentions, beliefs, motives, and emotions to others we are offering explanations of those persons’ behaviour, explanations which belong to a sort of pre-scientific theory.”

Scott M. Christensen and Dale R. Turner, editors, Folk Psychology and the Philosophy of Mind, Chap. 10, “The Very Idea of a Folk Psychology” by Robert A. Sharpe, University of Wales, United Kingdom

There is now quite a considerable literature on folk psychology, and many positions in the philosophy of mind are defined by their relationship to folk psychology — eliminativism is largely the elimination of folk psychology; reductionism is largely the reduction of folk psychology to cognitive science or scientific psychology, and so on. Others have gone on to identify other folk concepts, as, for example, folk biology:

Folk biology is the cognitive study of how people classify and reason about the organic world. Humans everywhere classify animals and plants into species-like groups as obvious to a modern scientist as to a Maya Indian. Such groups are primary loci for thinking about biological causes and relations (Mayr 1969). Historically, they provided a transtheoretical base for scientific biology in that different theories — including evolutionary theory — have sought to account for the apparent constancy of “common species” and the organic processes centering on them. In addition, these preferred groups have “from the most remote period… been classed in groups under groups” (Darwin 1859: 431). This taxonomic array provides a natural framework for inference, and an inductive compendium of information, about organic categories and properties. It is not as conventional or arbitrary in structure and content, nor as variable across cultures, as the assembly of entities into cosmologies, materials, or social groups. From the vantage of EVOLUTIONARY PSYCHOLOGY, such natural systems are arguably routine “habits of mind,” in part a natural selection for grasping relevant and recurrent “habits of the world.”

Robert Andrew Wilson and Frank C. Keil, The MIT Encyclopedia of the Cognitive Sciences

We can easily see that the idea of folk concepts as pre-scientific concepts is applicable throughout all branches of knowledge. This has already been made explicit:

“…there is good evidence that we have or had folk physics, folk chemistry, folk biology, folk botany, and so on. What has happened to these folk endeavors? They seem to have given way to scientific accounts.”

William Andrew Rottschaefer, The Biology and Psychology of Moral Agency, 1998, p. 179.

The simplest reading of the above is that in a pre-scientific state we use pre-scientific concepts, and as the scientific revolution unfolds and begins to transform traditional bodies of knowledge, these pre-scientific folk concepts are replaced with scientific concepts and knowledge becomes scientific knowledge. Thereafter, folk concepts are abandoned (eliminated) or formalized so that they can be systematically located in a scientific body of knowledge. All of this is quite close to the 19th century positivist August Comte’s theory of the three stages of knowledge, according to which theological explanations gave way to metaphysical explanations, which in turn gave way to positive scientific explanations, which demonstrates the continuity of positivist thought — even that philosophical thought that does not recognize itself as being positivist. In each case, an earlier non-scientific mode of thought is gradually replaced by a mature scientific mode of thought.

While this simple replacement model of scientific knowledge has certain advantages, it has a crucial weakness, and this is a weakness shared by all theories that, implicitly or explicitly, assume that the mind and its concepts are static and stagnant. Allow me to once again quote one of my favorite passage from Kurt Gödel, the importance of which I cannot stress enough:

“Turing… gives an argument which is supposed to show that mental procedures cannot go beyond mechanical procedures. However, this argument is inconclusive. What Turing disregards completely is the fact that mind, in its use, is not static, but is constantly developing, i.e., that we understand abstract terms more and more precisely as we go on using them, and that more and more abstract terms enter the sphere of our understanding. There may exist systematic methods of actualizing this development, which could form part of the procedure. Therefore, although at each stage the number and precision of the abstract terms at our disposal may be finite, both (and, therefore, also Turing’s number of distinguishable states of mind) may converge toward infinity in the course of the application of the procedure.”

“Some remarks on the undecidability results” (Italics in original) in Gödel, Kurt, Collected Works, Volume II, Publications 1938-1974, New York and Oxford: Oxford University Press, 1990, p. 306.

Not only does the mind refine its concepts and arrive at more abstract formulations; the mind also introduces wholly new concepts in order to attempt to understand new or hitherto unknown phenomena. In this context, what this means is that we are always introducing new “folk” concepts as our experience expands and diversifies, so that there is not a one-time transition from unscientific folk concepts to scientific concepts, but a continual and ongoing evolution of scientific thought in which folk concepts are introduced, their want of rigor is felt, and more refined and scientific concepts are eventually introduced to address the problem of the folk concepts. But this process can result in the formulation of entirely new sciences, and we must then in turn hazard new “folk” concepts in the attempt to get a handle on this new discipline, however inadequate our first attempts may be to understand some unfamiliar body of knowledge.

For example, before the work of Georg Cantor and Richard Dedekind there was no science of set theory. In formulating set theory, 19th century mathematicians had to introduce a great many novel concepts (set, element, mapping) and mathematical procedures (one-to-one correspondence, diagonalization). These early concepts of set theory are now called “naïve set theory,” which have largely been replaced by (several distinct) axiomatizations of set theory, which have either formalized or eliminated the concepts of naïve set theory, which we might also call “folk” set theory. Nevertheless, many “folk” concepts of set theory persist, and Gödel spent much of his later career attempting to produce better formalizations of the concepts of set theory than those employed in now accepted axiomatizations of set theory.

As civilization has changed, and indeed as civilization emerged, we have had occasion to introduce new terms and concepts in order to describe and explain newly emergent forms of life. The domestication of plants and animals necessitated the introduction of concepts of plant and animal husbandry. The industrial revolution and the macroeconomic forces it loosed upon the world necessitated the introduction of terms and concepts of industry and economics. In each case, non-scientific folk concepts preceded the introduction of scientific concepts explained within a comprehensive theoretical framework. In many cases, our theoretical framework is not yet fully formulated and we are still in a stage of conceptual development that involves the overlapping of folk and scientific concepts.

Given the idea of folk concepts and their replacement by scientific concepts, a mature science could be defined as a science in which all folk concepts have been either formalized, transcended, or eliminated. The infinitistic nature of science mystery (which is discussed in Scientific Curiosity and Existential Need), however, suggests that there will always be sciences in an early and therefore immature stage of development. Our knowledge of the scientific method and the development of science means that we can anticipate scientific developments and understand when our intuitions are inadequate and therefore, in a sense, folk concepts. We have an advantage over the unscientific past that knew nothing of the coming scientific revolution and how it would transform knowledge. But we cannot entirely eliminate folk concepts from the early stages of scientific development, and in so far as our scientific civilization results in continuous scientific development, we will always have sciences in the early stages of development.

Scientific progress, then, does not eliminate folk concepts, but generates new and ever more folk concepts even as it eliminates old and outdated folk concepts.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.