Selection Pressures on Spacefaring Civilizations

30 October 2016



An Explanatory Mechanism for Aggressively Expanding Civilizations

Any emergent complexity that adds itself to the ultimate furniture of the universe can be, on the one hand, the basis of further emergent complexities, while on the other hand it can function as a selection pressure upon the other furniture of the universe, including earlier and later iterations of emergent complexity. Now, that sounds very abstract — indeed, I could express this idea even more abstractly in the language of ontology — so let me attempt to provide some illustrative examples. When biology emerged from the geochemical complexity of Earth, biology eventually gave rise to further emergent complexities (consciousness, technology, civilization), but biology also began to shape the geochemical context of its own emergence. Biochemistry emerged from geochemistry, thus biochemistry has always been, ab initio, in coevolution with the geochemistry upon which it supervenes.

Life, then, coevolved with geology, as life now coevolves with later emergent complexities, which means that, in the case of human beings, human life coevolves with the habitat it has made for itself — Earth of the anthropocene and our civilization (cf. Intellectual Niche Construction). This point has been made by Wilson and Lumsden:

“[The] high level of human mental activity creates culture, which has achieved a life of its own beyond the ordinary limits of biology. The principal habitat of the human mind is the very culture that it creates.”

Edward O. Wilson and Charles J. Lumsden, Promethean Fire: Reflections on the Origin of Mind, Cambridge and London: Harvard University Press, 1983, p.

We might distinguish between relationships of tightly-coupled coevolution and loosely-coupled coevolution, with the familiar instances of coevolution — such as pollinating bees and flowers — qualifying as tightly-coupled, while those evolutionary relationships not usually recognized as coevolutionary qualify as loosely-coupled — for example, geochemistry and biochemistry, although the scale at which we make our comparison will be crucial to determining whether the coupling is tight or loose. “Coevolution” is another way of saying that each party to the coevolutionary relationship acts as a selection pressure on the other, so we make the distinction between tightly-coupled coevolution and loosely-coupled coevolution in order to differentiate between selection pressures, some of which are immediate and enduring (tightly-coupled), and some of which are distant and only sporadically influential (loosely-coupled).

Now that civilization has established itself as an emergent complexity on Earth, civilization may serve as the springboard for further emergent complexities, but it also has emerged as a new selection pressure upon the life that gave rise to civilization, while the geology of Earth and the terrestrial biosphere are, in turn, a selection pressure on civilization. Terrestrial (planetary) civilization may come to act as a selection pressure upon other emergent complexities yet to appear, which will also act as a selection pressure on terrestrial civilization, and these emergent complexities are likely to be emergent from civilization. A spacefaring civilization that encompasses (at first) multiple worlds of a planetary system, multiple planetary systems of multiple stars, or multiple galaxies, would be one form of emergent complexity that could arise from planetary civilization.

Among the immediate and enduring selection pressures on spacefaring civilizations will be the distribution of exploitable resources in space, as well as the other spacefaring civilizations with which such a civilization is in competition for these resources (these other spacefaring civilization themselves being an emergent complexity originating from other planetary civilizations derived from other biospheres). There may also be selection pressures from emergent complexities that we do not yet understand, and which we have not yet identified. These two selection pressures — distribution of resources and competition with other spacefaring civilizations — will shape (perhaps have shaped) the origins, evolution, distribution, and fate of spacefaring civilizations. Spacefaring civilizations will be in a tightly-coupled coevolutionary relationship with the cosmological distribution of resources (matter and energy) and the efforts of other spacefaring civilizations to also dominate these resources. Let us consider this more carefully.

When I wrote my post on Social Stratification and the Dominance Hierarchy I included a diagram (reproduced above; also see Group Dynamics) illustrating the selection pressures that lead to a dominance hierarchy in social animals. The diagram distinguished among scarce, limited, and abundant resources. Scarce resources lead to cooperation; sufficiently abundant resources can eliminate competition. In the case of limited resources, these resources can be scattered or concentrated. Scattered resources lead to competition in speed, while concentrated resources lead to competition in aggressiveness, and thence to a dominance hierarchy. The dominance hierarchy among human beings, which in civilization we call social stratification, implies that the resources significant to human beings have been scarce and concentrated.

If we confine our interest in human access to resources only to Earth, we can readily distinguish between regions where resources are sufficiently concentrated that they can be defended, and regions where resources are scattered, cannot be defended, and are therefore the object of competition in speed rather than aggressiveness. (We can also distinguish different social systems that have arisen shaped by the differential distribution of resources.) If we pull back from this geographical scale and consider the question from the perspective of a spacefaring civilization, the whole of Earth, our homeworld, is a concentrated and defensible locus of resources, but the cosmos on the whole represents an extreme scattering, over interstellar and intergalactic distances, of limited or scarce resources. This scattering of limited resources, in contradistinction to the concentrated and defensible resources of the homeworld of any intelligence species, ought to have the result of spacefaring civilizations defending their homeworld while competing for resources with other spacefaring civilizations, not through competition in aggressiveness, but through competition in speed.

Competition in aggressiveness for the resources of spacefaring civilization may be excluded by the scattering of these resources, so that we are not likely to see the emergence of a galactic empire, crushing under the boot heels of its storm troopers the aspirations to freedom, dignity, and equality of intelligent species throughout the galaxy. However, competition in speed for limited resources distributed on a cosmological scale may well be the primary selection pressure on spacefaring civilizations, and competition in speed ought to entail the rapid cosmological expansion of these civilizations.

Elsewhere I have mentioned the papers of S. Jay Olson (cf. Big Time, The Genesis Project as Central Project, and Second Addendum on the Genesis Project as Central Project: Invasive Species) concerning what Olson calls “aggressively expanding civilizations,” which embody rapid expansion on a cosmological scale. Here is Olson’s characterization of such as scenario:

“An ‘aggressive expansion scenario’ is a proposed cosmological phenomenon… whereby a subset of advanced life appears at random throughout the universe and expands in all directions, saturating galaxies and utilizing resources as they go… We also assume that all aggressive expanders will be of the same behaviour type, i.e. they all expand with the same velocity v in the local comoving frame, and the expanding spherical front of galaxy colonization leads to observable changes a fixed time T after the front has passed by.”

“Estimates for the number of visible galaxy-spanning civilizations and the cosmological expansion of life,” S. Jay Olson, International Journal of Astrobiology, Cambridge University Press, 2016, pp. 2-3, doi:10.1017/S1473550416000082

Competition in speed among spacefaring civilization would mean a focus on maximizing v for the expanding spherical front of galaxy colonization.

Citing Bostrom and Omohundro on the nature of superintelligent AI (presumptively the heir of our technological civilization, but see the final sentence below quoted from Olson, as he addresses this as well), Olson writes:

“From an independent field of study, it has been argued that resource acquisition is one of the ‘basic drives’ of a generic superintelligent AI. This means, in essence, that a sufficiently powerful AI will tend to use extreme expansion and resource acquisition as a means of maximizing its utility function, unless it is explicitly and carefully designed to avoid such behavior… even if advanced alien species tend to be monks who have forsaken all worldly gain, the accidents involving insufficiently careful design of an artificial superintelligence are potentially one of the largest observable phenomena in the universe, when they occur. The word ‘civilization’ is not really the best description of such a thing, but we will use it for the sake of historical continuity.”

“Long-term consequences of observing an expanding cosmological civilization”, S. Jay Olson

We can see that competition in speed for limited resources provides an explanatory mechanism for the existence and expansion of aggressively expanding civilizations. Spacefaring civilizations that successfully compete for resources on a cosmological scale endure over cosmological scales of time, and perhaps leave a legacy in the form of a universe transformed sub specie civilizationis. Spacefaring civilizations that fail to expand go extinct, and leave no observable legacy. Whether there is room for more than one aggressively expanding civilization in any one universe, or whether this expansion takes place on scale of time sufficient to foreclose the opportunity of expansion to any rival civilizations, remains an open question. Once a universe is saturated with life, no other life, and no other civilization emergent from other life, would have an opportunity to appear, unless or until a cosmological scale extinction event created such an opportunity (which could be furnished by sufficiently violent gamma ray bursts).

The above considerations pose other interesting questions that could be taken up as research questions in the study of spacefaring civilization. How are we to distinguish between scarce and limited resources on a cosmological scale? Might the closely packed stars of globular clusters and galactic centers constitute limited resources, while diffuse spiral arms and the outer portions of elliptical galaxies constitute scarce resources? At what threshold of availability should we distinguish between matter and energy being scarce or limited? This may be a problem contingently decided by the technologies of spacefaring not yet known to us. That is to say, if technologically mature civilizations find interstellar travel (or intergalactic travel) somewhat routine, then we may regard cosmological resources as scattered and limited, and more concentrated areas such as mentioned (globular clusters and galactic centers) might pass over a threshold such that they would be considered concentrated — thus there would be the possibility of galactic empires competing on aggressiveness for defensible resources. If, on the other hand, interstellar (or intergalactic) travel is always difficult, then the universe presents, at best, limited resources, and perhaps scarce resources. In the case of scarce resources, there would be a window of opportunity for cooperation among spacefaring civilization for the effective and efficient exploitation of these resources.

If, as on the surface of Earth (and relative to a planetary civilization), cosmological resources are distributed unevenly, then the distribution of civilizations will mirror the distribution of resources — not only in extent, but also in character, with concentrated regions producing civilizations competing on aggression, and diffuse regions producing civilizations competing on speed. On a sufficiently large scale, uneven distribution of cosmological resources would violate the cosmological principle, which is a cornerstone of contemporary cosmology. However, on the smaller scales (especially galactic scales) that would confront early spacefaring civilizations, the differential of resources between concentrated stellar regions and diffuse steller regions may be sufficient to differentiate regions of a galaxy given over to competition on speed for cosmological resources and regions of the same galaxy given over to competition on aggressiveness for cosmological resources. With the position of Earth in a spiral arm of the Milky Way, we inhabit a region of relatively diffuse distribution of stars, so that any nascent spacefaring civilizations with which we would be in competition would be competition in speed. It is therefore in our interest to reach the stars as soon as possible, or, by declining competition, reconcile ourselves to the existential risk of being shut out of the possibility of being a civilization relevant to the galaxy.

It may be that civilizations in regions of diffuse and therefore limited resources naturally understand their dilemma and consequently focus upon spacecraft speed (which has always been a preoccupation of those engaged in the speculative engineering of interstellar capable spacecraft), while civilizations in regions of more concentrated and therefore defensible resources intuit their relative ease of travel and focus instead on aggressive domination of their region of space, and the technology that would make such aggressive domination possible. Thus a civilization may already begin to be shaped by the selection pressures of its galactic neighborhood even as a nascent spacefaring civilization. An obvious instantiation of this phenomenon would be a single planetary system in which more than one planet produced life and civilization. These multiple civilizations expanding into a single planetary system would immediately be in conflict over the resources of that planetary system. In our exploration of our own planetary system, we have not had to compete with another civilization, and so our earliest spacecraft have gone into space without armor or armaments. We have a free hand in expanding into our planetary system; that may not be true for all nascent spacefaring civilizations, and it may not be true for us at spacefaring orders of magnitude beyond our planetary system.

. . . . .


. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .


2 Responses to “Selection Pressures on Spacefaring Civilizations”

  1. RJMeyers said

    I recently read a short story that depicts future civilizations somewhat along these lines–“A Soldier of the City” by David Moles. It’s contained in the anthology Engineering Infinity:

    It concerns a human civilization of mega-sized theocratic city-state habitats orbiting a black hole at the center of a globular cluster just outside the Milky Way. The city states are huge, have access to massive concentrations of resources around the disk of the black hole, and are very warlike, yet very insular and do not travel much over interstellar distances. The disk has so many resources to fight over that there’s no need to go elsewhere. Meanwhile, the rest of the globular cluster is inhabited by many other planet-bound human civilizations with fast starships that are starting to form a Federation-like polity called Community, and they are trying to figure out what to do with the massive warlike theocracies at the heart of their space.

    The city states are clearly on the Limited->Concentrated->Aggressiveness side, while the Community and other independent star systems are some (admittedly unclear) combination of Scarce->Cooperation and Limited->Scattered->Competition in Speed.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: