Tuesday


energy sources

A distinction often employed in historiography is that between the diachronic and the synchronic. I have written about this distinction in several posts including Axes of Historiography, Ecological Temporality and the Axes of Historiography, Synchronic and Diachronic Geopolitical Theories, and Synchronic and Diachronic Approaches to Civilization.

It is common for this distinction be be explained by saying that the diachronic perspective is through time and the synchronic perspective is across time. I don’t find this explanation to be helpful or intuitively insightful. I prefer to say that the diachronic perspective is concerned with succession while the synchronic perspective is concerned with interaction within a given period of time. Sometimes I try to drive this point home by using the phrases “diachronic succession” and “synchronic interaction.”

In several posts I have emphasized that futurism is the historiography of the future, and history the futurism of the past. In this spirit, it is obvious that the future, like the past, can also be approached diachronically or synchronically. That is to say, we can think of the future in terms of a succession of events, one following upon another — what Shakespeare called such a dependency of thing on thing, as e’er I heard in madness — or in terms of the interaction of events within a given period of future time. Thus we can distinguish diachronic futurism and synchronic futurism. This is a difference that makes a difference.

One of the rare points at which futurism touches upon public policy and high finance is in planning for the energy needs of power-hungry industrial-technological civilization. If planners are convinced that the future of energy production lies in a particular power source, billions of dollars may follow, so real money is at stake. And sometimes real money is lost. When the Washington Public Power Supply System (abbreviated as WPPSS, and which came to be pronounced “whoops”) thought that nuclear power was the future for the growing energy needs of the Pacific Northwest, they started to build no fewer than five nuclear power facilities. For many reasons, this turned out to be a bad bet on the future, and WPPSS defaulted on 2.25 billion dollars of bonds.

The energy markets provide a particularly robust demonstration of synchrony, so that within the broadly defined “present” — that is to say, in the months or years that constitute the planning horizon for building major power plants — we can see a great number of interactions within the economy that resemble nothing so much as the checks and balances that the writers of the US Constitution built into the structure of the federal government. But while the founders sought political checks and balances to disrupt the possibility of any one part of the government becoming disproportionately powerful, the machinations of the market (what Adam Smith called the “invisible hand”) constitute economic checks and balances that often frustrate the best laid schemes of mice and men.

Energy markets are not only a concrete and pragmatic exercise in futurism, they are also a sector that tends to great oversimplification and are to vulnerable to bubbles and panics that have contributed to a boom-and-bust cycle in the industry that has had disastrous consequences. The captivity of energy markets to public perceptions has led to a lot of diachronic extrapolation of present trends in the overall economy and in the energy sector in particular. I’ve written some posts on diachronic extrapolation — The Problem with Diachronic Extrapolation and Diachronic Extrapolation and Uniformitarianism — in an attempt to point out some of the problems with straight line extrapolations of current trends (not to mention the problems with exponential extrapolation).

An example of diachronic extrapolation carried out in great detail is the book $20 Per Gallon: How the Inevitable Rise in the Price of Gasoline Will Change Our Lives for the Better by Christopher Steiner, which I discussed in Are Happy Days Here Again?, speculating on how the economy will change as gasoline prices continue to climb, and written as though nothing else would happen at the same time that gas prices are going up. If we could treat one energy source — like gasoline — in ideal isolation, this might be a useful exercise, but this isn’t the case.

When the price of fossil fuels increase, several things happen simultaneously. More investment comes into the industry, sources that had been uneconomical to tap start to become commercially viable, and other sources of energy that had been expensive relative to fossil fuels become more affordable relative to the increasing price of their alternatives. Also, with the passage of time, new technologies become available that make it both more efficient and more cost effective to extract fossil fuels previously not worth the effort to extract. Higher technologies not only affect production, but also consumption: the extracted fossil fuels will be used much more efficiently than in the past. And any fossil fuels that lie untapped — such as, for example, the oil presumed to be under ANWR — are essentially banked in the ground for a future time when their extraction will be efficient, effective, and can be conducted in a manner consistent with the increasingly stringent environmental standards that apply to such resources.

Energy industry executives have in the past had difficulty in concealing their contempt for alternative and renewable resources, and for decades the mass media aided and abetted this by not taking these sources seriously. But that is changing now. The efficiency of solar electric and wind turbines has been steadily improving, and many European nation-states have proved that these technologies can be scaled up to supply an energy grid on an industrial scale. For those who look at the big picture and the long term, there is no question that solar electric will be a dominant form of energy; the only problem is that of storage, we are told. But the storage problem for solar electricity is a lot like the “eyesore” problem for wind turbines: it has only been an effective objection because the alternatives are not taken seriously, and propaganda rather than research has driven the agenda. The Earth is bathed in sunlight at all times, but one side is always dark. a global energy grid — well within contemporary technological means — could readily supply energy from lighted side to the dark side.

Even this discussion is too limited. The whole idea of a “national grid” is predicated upon an anarchic international system of nation-states in conflict, and the national energy grid becomes in turn a way for nation-states to defend their geographical territory by asserting control of energy resources within that territory. There is no need for a national energy grid, or for each nation-state to have a proprietary grid. We possess the technology today for decentralized energy production and consumption that could move away from the current paradigm of a national energy grid of widely distributed consumption and centralized production.

But it is not my intention in this context to write about alternative energy, although this is relevant to the idea of synchrony in energy markets. I cite alternative energy sources because this is a particular blindspot for conventional thinking about energy. Individuals — especially individuals in positions of power and influence — get trapped in energy groupthink no less than strategic groupthink, and as a result of being virtually unable to conceive of any energy solution that does not conform to the present paradigm, those who make public energy policy are often blindsided by developments they did not anticipate. Unfortunately, they do so with public money, picking winners and losers, and are wrong much of the time, meaning losses to the public treasury.

When an economy, or a sector of the economy, is subject to stresses, that economy or sector may experience failure — whether localized and containable, or catastrophic and contagious. In the wake of the late financial crisis, we have heard about “stress testing” banks. Volatility in energy markets stress tests the components of the energy markets. Since this is a real-world event and not a test, different individuals respond differently. Individuals representing institutional interests respond as one would expect institutions to respond, but in a market as complex and as diversified as the energy market, there are countless small actors who will experiment with alternatives. Usually this experimentation does not amount to much, as the kind of resources that institutions possess are not invested in them, but this can change incrementally over time. The experimental can become a marginal sector, and a marginal sector can grow until it becomes too large to ignore.

All of these events in the energy sector — and more and better besides — are occurring simultaneously, and the actions of any one agent influence the actions of all other agents. It is a fallacy to consider any one energy source in isolation from others, but it is a necessary fallacy because no one can understand or anticipate all the factors that will enter into future production and consumption. Energy is the lifeblood of industrial-technological civilization, and yet it is beyond the capacity of that civilization to plan its energy future, which means that industrial-technological civilization cannot plan its own future, or foresee the form that it will eventually take.

Synchrony in energy markets occurs at an order of magnitude that defies all prediction, no matter how hard-headed or stubbornly utilitarian in conception the energy futurism involved. The big picture reveals patterns — that fossil fuels dominate the present, and solar electric is likely to dominate the future — but it is impossible to say in detail how we will get from here to there.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .