Friday


figure-against-stars

A Conceptual Overview

What is the relationship between planetary endemism and the overview effect? This is the sort of question that might be given a definitive formulation, once once we have gotten sufficiently clear in our understanding of these ideas and their ramifications. I’m not yet at the point of formulating a definitive expression of this relationship, but I’m getting closer to it, so this post will be about formulating relationships among these and related concepts in a way that is hopefully clear and illuminating, while avoiding the ambiguities inherent in novel concepts.

This post is itself a kind of overview, attempting to show in brief compass how a number of interrelated concepts neatly dovetail and provide us with a rough outline of a conceptual overview for understanding the origins, development, distribution, and destiny of civilization (or some other form of emergent complexity) in the universe.

stars-0

The Stelliferous Era

The Stelliferous Era is that period of cosmological history after the formation of the first stars and before the last stars burn out and leave a cold and dark universe. In the cosmological periodization formulated by Fred Adams and Greg Laughlin, the Stelliferous Era is preceded by the Primordial Era and followed by the Degenerate Era. During the Primordial Era stars have not yet formed, but matter condenses out of the primordial soup; during the Degenerate Era, the degenerate remains of stars, black holes, and some exotic cosmological objects are to the found, but the era of brightly burning stars is over.

What typifies the Stelliferous Era is its many stars, radiating light and heat, and whose nucleosynthesis and supernova explosions forge heavier forms of matter, and therefore the chemical and minerological complexity from which later generations of (high metallicity) stars and planets will form. (A Brief History of the Stelliferous Era is an older post about the Stelliferous Era that needs to be revised and updated.)

In comparison to the later Degenerate Era, Black Hole Era, and Dark Era of cosmological history, the Stelliferous Era is rather brief, extending from 106 to 1014 years from the origins of the universe, and almost everything that concerns us can be further reduced to the eleventh cosmological decade (from 10 billion to 100 billion years since the origin of the universe). Since this cosmological periodization is logarithmic, the later periods are even longer in duration than they initially appear to be.

Our interest in the Stelliferous Era, and, more narrowly, our interest in the eleventh decade of the Stelliferous Era, does not rule out interesting cosmological events in other eras of cosmological history, and it is possible that civilizations and other forms of emergent complexity that appear during the Stelliferous Era may be able to make the transition to survive into the Degenerate Era (cf. Addendum on Degenerate Era Civilization), but this brief period of starlight in cosmological history is the Stelliferous Era window in which it is possible for peer planetary systems, peer species, and peer civilization to exist.

planetary surfaces

Planetary Endemism

Planetary Endemism is the condition of life during the Stelliferous Era as being unique to planetary surfaces and their biospheres. Given the parameters of the Stelliferous Era — a universe with planets, stars, and galaxies, in which both water (cf. The Solar System and Beyond is Awash in Water) and carbon-based organic molecules (cf. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features by Sun Kwok and Yong Zhang) are common — planetary surfaces are a “sweet spot” for emergent complexities, as it is on planetary surfaces that energy from stellar insolation can drive chemical processes on mineral- and chemical-rich surfaces. The chemical and geological complexity of the interface between atmosphere, ocean, and land surfaces provide an opportunity for further emergent complexities to arise, and so it is on planetary surfaces that life has its best opportunity during the Stelliferous Era.

Planetary endemism does not rule out exotic forms of life not derived from water and organic macro-molecules, nor does it rule out life arising in locations other than planetary surfaces, but the nature of the Stelliferous Era and the conditions of the universe we observe points to planetary surfaces being the most common locations for life during the Stelliferous Era. Also, the “planetary” in “planetary endemism” should not be construed too narrowly: moons, planetesimals, asteroids, comets and other bodies within a planetary system are also chemically complex loci where stellar insolation can drive further chemical processes, with the possibility of emergent complexities arising in these contexts as well.

21refPicsSORT

The Homeworld Effect

The homeworld effect is the perspective of intelligent agents still subject to planetary endemism. When the emergent complexities fostered by planetary endemism rise to the level of biological complexity necessary to the emergence of consciousness, there are then biological beings with a point of view, i.e., there is something that it is like to be such a biological being (to draw on Nagel’s formulation from “What is it like to be a bat?”). The first being on Earth to open its eyes and look out onto the world possessed the physical and optical perspective dictated by planetary endemism. As biological beings develop in complexity, adding cognitive faculties, and eventually giving rise to further emergent complexities, such as art, technology, and civilization, embedded in these activities and institutions is a perspective rooted in the homeworld effect.

The emergent complexities arising from the action of intelligent agents are, like the biological beings who create them, derived from the biosphere in which the intelligent agent acts. Thus civilization begins as a biocentric institution, embodying the biophilia that is the cognitive expression of biocentrism, which is, in turn, an expression of planetary endemism and the nature of the intelligent agents of planetary endemism being biological beings among other biological beings.

The homeworld effect does not rule out the possibility of exotic forms of life or unusual physical dispositions for life that would not evolve with the homeworld effect as a selection pressure, but given that planetary endemism is the most likely existential condition of biological beings during the Stelliferous Era, it is to be expected that the greater part of biological beings during the Stelliferous Era are products of planetary endemism and so will be subject to the homeworld effect.

surface-earth-space

The Overview Effect

The overview effect is a consequence of transcending planetary endemism. As biocentric civilizations increase in complexity and sophistication, deriving ever more energy from their homeworld biosphere, biocentric institutions and practices begin to be incrementally replaced by technocentric institutions and practices and civilization starts to approximate a technocentric institution. The turning point in this development is the industrial revolution.

Within two hundred years of the industrial revolution, human beings had set foot on a neighboring body of our planetary system. If a civilization experiences an industrial revolution, it will do so on the basis of already advancing scientific knowledge, and within an historically short period of time that civilization will experience the overview effect. But the unfolding of the overview effect is likely to be a long-term historical process, like the scientific revolution. Transcending planetary endemism means transcending the homeworld effect, but as the homeworld effect has shaped the biology and evolutionary psychology of biological beings subject to planetary endemism, the homeworld effect cannot be transcended as easily as the homeworld itself can be transcended.

For biological beings of planetary endemism, the overview effect occurs only once, though its impact may be gradual and spread out over an extended period of time. An intelligent agent that has evolved on the surface of its homeworld leaves that homeworld only once; every subsequent world studied, explored, or appropriated (or expropriated) by such beings will be first encountered from afar, over astronomical distances, and known to be a planet among planets. A homeworld is transcended only once, and is not initially experienced as a planet among planets, but rather as the ground of all being.

The uniqueness of the overview effect to the homeworld of biological beings of planetary endemism does not rule out further overview effects that could be experienced by a spacefaring civilization, as it eventually is able to see its planetary system, its home galaxy, and its supercluster as isolated wholes. However, following the same line of argument above — stars and their planetary systems being common during the Stelliferous Era, emergent complexities appearing on planetary surfaces characterizing planetary endemism, organisms and minds evolving under the selection pressure of the homeworld effect embodying geocentrism in their sinews and their ideas — it is to be expected that the overview effect of an intelligent agent first understanding, and then actually seeing, its homeworld as a planet among other planets, is the decisive intellectual turning point.

starship-john-harris

Bifurcation of Planetary and Spacefaring Civilizations

What I have tried to explain here is the tightly-coupled nature of these concepts, each of which implicates the others. Indeed, the four concepts outlined above — the Stelliferous Era, planetary endemism, the homeworld effect, and the overview effect — could be used as the basis of a periodization that should, within certain limits, characterize the emergence of intelligence and civilization in any universe such as ours. Peer civlizations would emerge during the Stelliferous Era subject to planetary endemism, and passing from the homeworld effect to the overview effect.

If such a civilization continues to develop, fully conscious of the overview effect, it would develop as a spacefaring civilization evolving under the (intellectual) selection pressure of the overview effect, and such a civilization would birfurcate significantly from civilizations of planetary endemism still exclusively planetary and still subject to the homeworld effect. These two circumstances represent radically different selection pressures, so that we would expect spacefaring civilizations to rapidly speciate and adaptively radiate once exposed to these novel selection pressures. I have previously called this speciation and adaptive radiation the great voluntaristic divergence.

. . . . .

astronaut-above-earth

. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .

night-sky-0

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

A Fine-Grained Overview

5 December 2016

Monday


overview-and-detail

Constructive and Non-Constructive Perspectives

Whenever I discuss methodology, I eventually come around to discussing the difference between constructive and non-constructive methods, as this is a fundamental distinction in reasoning, though often unappreciated, and especially neglected in informal thought (which is almost all human thought). After posting Ex Post Facto Eight Year Anniversary I realized that the distinction that I made in that post between detail (granularity) and overview (comprehensivity) can also be illuminated by the distinction between the constructive and the non-constructive.

Two two pairs of concepts can be juxtapositioned in order to show the four permutations yielded by them. I have done the same thing with the dual dichotomies of nomothetic/ideographic and synchonic/diachronic (in Axes of Historiography) and with weak panspermia/strong panspermia and theological/technological (in Is astrobiology discrediting the possibility of directed panspermia?). The table above gives the permutations for the juxtaposition of detail/overview and constructive/non-constructive.

In that previous post I identified my theoretical ideal as a fine-grained overview, combining digging deeply into details while also cultivating an awareness of the big picture in which the details occur. Can a fine-grained overview be attained more readily through constructive or non-constructive methods?

In P or Not-P I quoted this from Alain Connes:

“Constructivism may be compared to mountain climbers who proudly scale a peak with their bare hands, and formalists to climbers who permit themselves the luxury of hiring a helicopter to fly over the summit.”

Changeux and Connes, Conversations on Mind, Matter, and Mathematics, Princeton, 1995, p. 42

This image makes of constructivism the fine-grained, detail-oriented approach, while non-constructive methods are like the overview from on high, as though looking down from a helicopter. But it isn’t quite that simple. If we take this idea of constructivists as mountain climbers, we may extend the image with this thought from Wittgenstein:

“With my full philosophical rucksack I can climb only slowly up the mountain of mathematics.”

Ludwig Wittgenstein, Culture and Value, p. 4

And so it is with constructivism: the climbing is slow because they labor under their weight of a philosophical burden. They have an overarching vision of what logic and mathematics ought to be, and generally are not satisfied with these disciplines as they are. Thus constructivism has an overview as well — a prescriptive overview — though this overview is not always kept in mind. As Jean Largeault wrote, “The grand design has given way to technical work.” (in the original: “Les grands desseins ont cédé la place au travail technique.” L’intuitionisme, p. 118) By this Largeault meant that the formalization of intuitionistic logic had deprived intuitionism (one species of constructivism) of its overarching philosophical vision, its grand design:

“Even those who do not believe in the omnipotence of logic and who defend the rights of intuition have acceded to this movement in order to justify themselves in the eyes of their opponents. As a result we find them setting out, somewhat paradoxically, the ‘formal rules of intuitionist logic’ and establishing an ‘intuitionistic formalism’.”

…and in the original…

“Ceux-la memes qui ne croient pas a la toute-puissance de la logique et qui défendent les droits de l’intuition, ont du, eux aussi, céder au mouvement pour pouvoir se justifier aux yeux de leurs adversaires, et l’on a vu ainsi, chose passablement paradoxale, énoncer les ‘regles formelles de la logique intuitioniste’ et se constituer un ‘formalisme intuitioniste’.”

Robert Blanché, L’axioimatique, § 17

But intuitionists and constructivists return time and again to a grand design, so that the big picture is always there, though often it remains implicit. At very least, both the granular and the comprehensive conceptions of constructivism have at least a passing methodological familiarity, as we see in the table above, on the left side, granular constructivism with its typical concern for the “right” methods (which can be divorced from any overview), but also, below that, the philosophical ideas that inspired the constructivist deviation from classical eclecticism, from Kant through Hilbert and Brouwer to the constructivists of our time, such as Errett Bishop.

These two faces of methodology are not as familiar with non-constructivism. In so far as non-constructivism is classical eclecticism (a phrase I have taken from the late Torkel Frazén), a methodological “anything goes,” this is the granular conception of non-constructivism that consists of formal methods without any unifying philosophical conception. This much is familiar. Less familiar is the possibility of a non-constructive overview made systematic by some unifying conception. The idea of a non-constructive overview is familiar enough, and appears in the Connes quote above, but it this idea has had little philosophical content.

There is, however, the possibility of giving non-constructive formal methodology an overarching philosophical vision, and this follows readily enough from familiar forms of non-constructive thought. Cantor’s theory of transfinite numbers, and the proof techniques that Cantor formulated (and which remain notorious among constructivists) is a rare example of non-constructive thought pushed to its limits and beyond. Applied to a non-constructive overview, the transfinite perspective suggests that a systematically non-constructive methodology would insistently seek a total context for any idea, by always contextualizing any idea in a more comprehensive setting, and pursuing that contextualization to infinity. Thus any attempt to think a finite thought forces us to grapple with the infinite.

A fine-grained overview might be formulated by way of a systematically non-constructive methodology — not the classical eclecticism that is an accidental embrace of non-constructive methods alongside constructive methods — that digs deep and drills down into details by non-constructive methods that also furnish a sweeping, comprehensive philosophical vision of what formal methods can be, when that philosophical vision is not inspired to systematically limit formal methods (as is the case with constructivism).

Would the details that would be brought out by a systematically non-constructive method be the same fine-grained details that constructivism brings out when it insists upon finitistic proof procedures? Might there be different kinds of detail to be revealed by distinct methods of granularity in formal thought? These are elusive thoughts that I have not yet pinned down, so examples and answers will have to wait until I have achieved Cartesian clarity and distinctness about non-constructive methods. I beg the reader’s indulgence for my inadequate formulations here. Even as I write, ideas appear briefly and then disappear before I can record them, so this post is different from what I imagined as I sat down to write it.

Here again I can appeal to Wittgenstein:

“This book is written for such men as are in sympathy with its spirit. This spirit is different from the one which informs the vast stream of European and American civilization in which all of us stand. The spirit expresses itself in an onwards movement, building ever larger and more complicated structures; the other in striving after clarity and perspicuity in no matter what structure. The first tries to grasp the world by way of its periphery — in its variety; the second at its center — in its essence. And so the first adds one construction to another, moving on and up, as it were, from one stage to the next, while the other remains where it is and what it tries to grasp is always the same.”

Ludwig Wittgenstein, Philosophical Remarks, Foreword

These two movements of thought are not mutually exclusive; it is possible to build larger structures while always trying to grasp an elusive essence. It could be argued that anything built on uncertain foundations will come to naught, so that we must grasp the essence first, before we can proceed to construction. As important as it is to attempt to grasp an elusive essence, if we do this, we risk the intellectual equivalent of the waiting gambit.

. . . . .

Constructivism and Non-constructivism

P or Not-P

What is the Relationship between Constructive and Non-Constructive Mathematics?

A Pop Culture Exposition of Constructivism

Intuitively Clear Slippery Concepts

Kantian Non-Constructivism

Constructivism without Constructivism

The Vacuous Identity Principle

Permutations of Infinitistic Methods

Methodological Differences

Constructivist Watersheds

Constructive Moments within Non-Constructive Thought

Gödel between Constructivism and Non-Constructivism

The Natural History of Constructivism

Cosmology: Constructive and Non-Constructive

Saying, Showing, Constructing

Arthur C. Clarke’s tertium non datur

A Non-Constructive World

. . . . .

Wittgenstein wrote, “With my full philosophical rucksack I can climb only slowly up the mountain of mathematics.”

Wittgenstein wrote, “With my full philosophical rucksack I can climb only slowly up the mountain of mathematics.”

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


eight-ball

Last month, November 2016, marked the eight year anniversary for this blog. My first post, Opening Reflection, was dated 05 November 2008. Since then I have continued to post, although less frequently of late. I have become much less interested in tossing off a post about current events, and more interested in more comprehensive and detailed analyses, though blog posts are rarely associated with comprehensivity or detail. But that’s how I roll.

It is interesting that we have two distinct and even antithetical metaphors to identify non-trivial modes of thought. I am thinking of “dig deep” or “drill down” on the one hand, and, on the other hand, “overview” or “big picture.” The two metaphors are not identical, but each implies a particular approach to non-triviality, with the former implying an immersion in a fine-grained account of anything, while the latter implies taking anything in its widest signification.

Ideally, one would like to be both detailed and comprehensive at the same time — formulating an account of anything that is, at once, both fine-grained and which takes the object of one’s thought in its widest signification. In most cases, this is not possible. Or, rather, we find this kind of scholarship only in the most massive works, like Gibbon’s Decline and Fall of the Roman Empire, or Mario Bunge’s Treatise on Basic Philosophy. Over the past hundred years or so, scholarship has been going in exactly the opposite direction. Scholars focus on a particular area of thought, and then produce papers, each one of which focuses even more narrowly on one carefully defined and delimited topic within a particular area of thought. There is, thus, a great deal of very detailed scholarship, and less comprehensive scholarship.

Previously in Is it possible to specialize in the big picture? I considered whether it is even possible to have a scholarly discipline that focuses on the big picture. This question is posed in light of the implied dichotomy above: comprehensivity usually comes at the cost of detail, and detail usually comes at the cost of comprehensivity.

Another formulation of this dichotomy that brings out other aspects of the dilemma would to ask if it is possible to be rigorous about the big picture, or whether it is possible to be give a detailed account of the big picture — a fine-grained overview, as it were? I guess this is one way to formulate my ideal: a fine-grained overview — thinking rigorously about the big picture.

While there is some satisfaction in being able to give a concise formulation of my intellectual ideal — a fine-grained overview — I cannot yet say if this is possible, or if the ambition is chimerical. And if the ambition for a fine-grained overview is chimerical, is it chimerical because finite and flawed human beings cannot rise to this level of cognitive achievement, or is it chimerical because it is an ontological impossibility?

While an overview may necessarily lack the detail of a close and careful account of anything, so that the two — overview and detail — are opposite ends of a continuum, implying the ontological impossibility of their union, I do know, on the other hand, that clear and rigorous thinking is always possible, even if it lacks detail. Clarity and rigor — or, if one prefers the canonical Cartesian formulation, clear and distinct ideas — is a function of disciplined thinking, and one can think in a disciplined way about a comprehensive overview. If one allows that a fine-grained overview can be finely grained in virtue of the fine-grained conceptual infrastructure that one employs in the exposition of that overview, then, certainly, comprehensive detail is possible in this respect (even if in no other).

I could, then, re-state my ambition as formulated in my opening reflection such that, “my intention in this forum to view geopolitics through the prism of ideas,” now becomes my intention to formulate a fine-grained overview of geopolitics through the prism of ideas. But, obviously, I now seldom post on geopolitics, and am out to bag bigger game. This is, I think, implicit in the remit of a comprehensive overview of geopolitics. F. H. Bradley famously said, “Short of the Absolute God cannot stop, and, having reached that goal, He is lost, and religion with Him.” We might similarly say, short of big history geopolitics cannot stop, and, having reached that goal, it is lost, and political economy with it.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Mere Humanity

22 May 2016

Sunday


From 'How the cheetah got its SPEED: Genes mutated to boost muscle strength making the big cat the fastest mammal on land' by Sarah Griffiths

From ‘How the cheetah got its speed: Genes mutated to boost muscle strength making the big cat the fastest mammal on land’ by Sarah Griffiths

Some time ago in Humanity as One I considered the unity of the human species, and, perhaps as significantly, how we discovered that unity. Beyond the woolly thinking and feel-good platitudes that tend to swamp any discussion of human unity, we know now from the genetic evidence contained within each and every human being that humanity constitutes a single species. But while it has become a stubborn problem in the philosophy of biology of how exactly to define species, the real message of the Darwinian conception of species is that of species anti-realism (for lack of a better term). Nature is continuous, and dividing up the natural world into biological taxa — species, genus, family, order, class, phylum, kingdom — is a convenience of human knowledge but ought not to be conceived as a Platonic form in biology, i.e., a template imposed upon nature, and not nature itself. So it is with the human species: we are a convenience of taxonomy, not a natural kind.

Given species anti-realism, it should surprise no one that all species are not alike; it may be a mistake to seek a single definition for what constitutes a species, though it is a habit of the Platonic frame of mind to settle on an essentialist definition. In biology specifically, for example, there is a long-standing tension between taxonomies based on some structural criterion or criteria (as in the Linnaean system) and taxonomies based on descent (evolutionary biology since Darwin). Marc Ereshefsky in his book The Poverty of the Linnaean Hierarchy advocates completely abandoning the Linnaean taxonomy and offers as an alternative “species pluralism,” asking whether, “Given the theoretical and pragmatic problems facing the Linnaean system, should biologists continue using that system?” With our contemporary naturalistic conception of human beings as one biological species among others, any change in our conception of species becomes a change in our conception of ourselves as a biological species. Might we define the human species in several different but equally valid ways?

In saying that humanity constitutes a single species we could express this comparatively in relation to other species. Because all species are not alike, a given species might, for example, represent more or less genetic diversity. (If we defined species by their genetic diversity, we would have a rather different taxonomy than that which we currently employ.) Geneticists discuss diversity in terms of nucleotide distance and heterozygosity; I will consider the latter as a measure for human genetic diversity. For example, human genetic diversity is lower than C. brenneri, a “bacteria-eating, 1-millimeter-long worm” (cf. The most genetically diverse animal; C. brenneri has been called “hyperdiverse” with a heterozygosity of around 40%, cf. Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri), and higher than the San Nicolas population of island foxes off the coast of California (cf. Foxes on one of California’s Channel Islands have least genetic variation of all wild animals and Genomic Flatlining in the Endangered Island Fox). As I have sometimes cited the cheetah as a mammal population with very low genetic diversity (cf. Multiregional Cognitive Modernity), it is interesting to read that, the San Nicolas island fox, “has nearly an order of magnitude less genetic variation than any other low-diversity species, including the severely endangered African cheetah, Mountain gorilla, and Tasmanian devil.” (cf. Foxes on one of California’s Channel Islands have least genetic variation of all wild animals).

The San Nicolas population of island foxes off the coast of California has perhaps the lowest genetic diversity of any mammal.

The San Nicolas population of island foxes off the coast of California has perhaps the lowest genetic diversity of any mammal.

Now, I will admit that the first comparison with a little-known worm is not very enlightening, as we human beings, being part of the explosive adaptive radiation of mammals after the extinction of the dinosaurs, better understand comparisons with other mammals (cf. A Sentience-Rich Biosphere), and so a better comparison would be the mammal with the greatest genetic diversity. For a non-specialist like myself it is difficult to extract the relevant numbers from the context of scientific papers, but there seem to be mammal populations with significantly higher genetic diversity than human beings, just as there are mammal populations with significantly lower genetic diversity than human beings (on human genetic diversity generally cf. Human heterozygosity: A new estimate). The striped-mouse, Rhabdomys pumilio, has a heterozygosity (in some populations) of 7.3 %, significantly higher than the mammalian mean (there is an established mean heterozygosity for mammals of about 3.6 %, or H = 0.036; cf. Genetic variation in Rhabdomys pumilio (Sparrman 1784) — an allozyme study). The house mouse Mus musculus has populations with a genetic diversity of 8.9 % (H = 0.089). The extremely endangered Rhinoceros unicornis has a heterozygosity of nearly 10%, which may be the highest of any vertebrate (cf. Molecular Markers, Natural History and Evolution by J. C. Avise, p. 366).

indian-rhino

It would be an oversimplification to rely exclusively on heterozygosity as a measure of genetic diversity, but at least it is a measure, and having a quantifiable measure gives us a different way to think about the human species, and a way to think about our species in relation to other species. The intellectual superstructure of agrarian-ecclesiastical civilization, which our industrial-technological civilization has inherited but not yet overcome, gave us the scala naturae, also known as the great chain of being (cf. my post Parsimony and Emergent Complexity). This conception also placed human beings in a context, and near the middle: higher than the animals, but lower than the angels. Genetic diversity places human beings in a naturalistic context that can (or, at least, could, with the proper motivation) be studied scientifically.

The scala naturae, or Great Chain of Being, placed humanity higher than animals but lower than angels.

The scala naturae, or Great Chain of Being, placed humanity higher than animals but lower than angels.

Are human beings being studied scientifically today? Yes and no. If you search Google for “highest genetic diversity” and “lowest genetic diversity” the top search results are all related to the perennially troubling question of human races (which I discussed in Against Natural History, Right and Left). On this point contemporary thought is so compromised that objective scientific research is impossible. This is unfortunate. More than 150 years after Darwin, the biology of human beings is still controversial. This ought to make any rational person wince.

Sigmund Freud wrote, “Where questions of religion are concerned, people are guilty of every possible sort of dishonesty and intellectual misdemeanor.”

Sigmund Freud wrote, “Where questions of religion are concerned, people are guilty of every possible sort of dishonesty and intellectual misdemeanor.”

What Freud once said of religion — “Where questions of religion are concerned, people are guilty of every possible sort of dishonesty and intellectual misdemeanour” — now appears to be true of humanity, which suggests that, despite Comte’s failed attempt to explicitly formulate a religion of humanity, an implicit religion of humanity has grown up almost unnoticed around the idea. This quasi-religious conception of humanity — which Francis Fukuyama expressed by saying, “we have drawn a red line around the human being and said that it is sacrosanct” (cf. Human Exceptionalism) — militates against any scientific self-understanding by humanity. This suggests an interesting possibility for defining a scientific civilization: a scientific civilization is a civilization in which the intelligent agent responsible for the civilization reflexively applies scientific understanding to itself. Scientific medicine studies human beings scientifically in order to keep them healthy and alive, but, with a few exceptions, human beings are not yet understood in a fully scientific context.

Francis Fukuyama said that we have drawn a red line around human beings and called ourselves sacrosanct. While this is accurately descriptive of anthropocentric morality, it isn't a good guide to a scientific understanding of humanity.

Francis Fukuyama said that we have drawn a red line around human beings and called ourselves sacrosanct. While this is accurately descriptive of anthropocentric morality, it isn’t a good guide to a scientific understanding of humanity.

The scientific revolution set the stage for the possibility of a scientific civilization and for studying human beings in a fully scientific context. Neither of these possibilities have yet come to full fruition, and science itself has continued to develop and evolve, so that any scientific civilization or any conception of humanity based on contemporaneous science would have continually developed in parallel with the development of science. It is interesting to note that the scientific revolution begins about the same time as the Columbian Exchange, which latter essentially unified the human species again after our global diaspora (this was the theme of my earlier Humanity as One), in which populations had become separated and did not know themselves to be one species. The sense of humanity as one that emerges from the global unification of the Columbian Exchange and the sense of humanity as one that emerges from science both give us a planetary conception of humanity that might well be called the overview effect as applied specifically to humanity. I would call this “The Human Overview,” except that I have already used this to indicate the comprehensive impression we derive from meeting with and speaking to another.

I would argue now that we are capable of transcending even this planetary conception of humanity because of the recent extrapolation of biology as astrobiology. Science from the scientific revolution to the middle of the twentieth century was the science of a species exclusively subject to planetary endemism, and even though we overcame geocentrism in a narrow sense, our conceptions of the world and of ourselves often remained subject to geocentrism in an extended sense; the intellectual equivalent of geocentrism is the projection of the assumptions of planetary endemism onto our categories of thought. With the first glimpse of the Earth from space (i.e., the overview effect) and a growing awareness of the cosmological context of our planetary system, we began to transcend this intellectual equivalent of geocentrism. One of the consequences of this has been astrobiology, which places biology in a cosmological context, and, in so far as we understand humanity scientifically, places humanity also in a cosmological context.

Astrobiology would be impossible without both contemporary cosmology and biology; cosmology gives the scope of the conception, and biology the depth. With our increasing knowledge of cosmology and growing sophistication in biology, we have the intellectual resources now to formulate the human condition in a cosmological context and hence to understand ourselves scientifically — if only we have the strength of mind to do so. While such a conception of humanity would be “mere humanity” without the overlay of theological, soteriological, eschatological and teleological concepts that have been used in the past to develop a more comprehensive conception of humanity — what I elsewhere called, “the hopeless tangle of rationalization and cognitive bias that we have painstakingly erected around the idea of humanity” — this “mere humanity” is far more noble and edifying in its simplicity than past attempts to guild the lily.

As a species we have a long and painful history of perverting the ideals we have chosen for ourselves and making the human condition much worse than it was before any such ideals were conceived. As Montaigne noted, men, in seeking to become angels, transformed themselves into beasts (cf. Transcendental Humors). Among these brutal ideals I would count all the theological, soteriological, eschatological and teleological concepts that have been used to flesh out the concept of humanity, while the “darkling aspiration” (“dunklen Drange”) of a Faust has proved not to be our undoing, but rather to be what is best in humanity. In the past, our aspiration to embody perverted ideals in our own lives resulted in raising up as false idols fragmented and partial conceptions of humanity; individuals sought to become some particular kind of humanity (rather than “Mere Humanity”), and accounted this striving as a form of virtue, when it is, in fact, the spirit of ethnic cleansing. The planetary conception of humanity, and indeed the astrobiological conception of humanity, gives the lie to all of this. Soon it will be vain to aspire to be anything other than merely human, and soon after that it will be vain to aspire to be human (i.e., exclusively human). But the way to this understanding is through science and a rigorously scientific conception of humanity.

. . . . .

An illustration from Andreas Vesalius' De humanis corporis fabrica, a classic of mere humanity.

An illustration from Andreas Vesalius’ De humanis corporis fabrica, a classic of mere humanity.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Sunday


hunter-gatherers in outer space

What happens when you take a being whose mind was shaped by hunting and gathering in Africa over the past five million years or so, dress that individual in a spacesuit, and put that individual into a spaceship, sending them beyond the planet from which they evolved? What happens to hunter-gatherers in outer space?

As I pointed out in The Homeworld Effect and the Hunter-Gatherer Weltanschauung, the human environment of evolutionary adaptedness (EEA) shapes a worldview based on the standpoint of a planetary surface. Moreover, because the hunter-gatherer lives (or dies) by his attentiveness to his immediate environment, his immediate experience of leaving his planet of origin will make a disproportionate impact upon him. Whereas the hunter-gatherer may intellectually prepare himself, and may know on an intellectual level what to expect, the actual first person experience of leaving his planet of origin and seeing it whole — what Frank Drake calls the overview effect — may have an immediate and transformative impact.

The impact of the overview effect would force the hunter-gatherer to re-examine a number of ideas previously unquestioned, but his reactions, his instincts, would, for the time being, remain untouched. Of course, for a hunter-gatherer to have experienced the overview effect, he will have had to have achieved at least an orbital standpoint, and to achieve an orbital standpoint requires that the hunter-gatherer will have passed through a period of technological development that takes place over a civilizational scale of time — far longer than the scale of time of the individual life, but far shorter than the scale of biological time that could have modified the evolutionary psychology of the hunter-gatherer.

In the particular case of human beings, this period of technological development meant about ten thousand years of agricultural civilization, followed by a short burst of industrialized civilization that made the achievement of an orbital standpoint possible. While it is obvious that the short period of industrialized civilization will have left almost no trace of influence on human behavior, it is possible that the ten thousand years of acculturation to agricultural civilization (and the coevolution with a tightly-coupled cohort of species, as entailed by the biological conception of civilization) did leave some kind of imprint on the human psyche. Thus we might also inquire into the fate of agriculturalists in outer space, and how this might differ from the fate of hunter-gatherers in outer space. It is at least arguable that our interest in finding another planet to inhabit, or even terraforming other planets in our planetary system, is a function of our development of agricultural instincts, which are stronger in some than in others. Some individuals feel a very close connection to the soil, and have a special relationship to farming and food to be had by farming. However, the argument could be made equally well that our search for an “Earth twin” is a function of the homeworld effect more than a specifically agricultural outlook.

The principles to which I am appealing can be extrapolated, and we might consider what could happen in the event of a civilization with a very different history and its relationship to spacefaring, and how it makes the transition to a spacefaring civilization if that civilization is going to survival for cosmologically significant periods of time. Recently in Late-Adopter Spacefaring Civilizations: The Preemption That Didn’t Happen I suggested that terrestrial civilization might have been preempted in the second half of the twentieth century by the sudden emergence of a spacefaring civilization, though this did not in fact happen. Late-adopter spacefaring civilizations might indefinitely postpone the threshold presented by spacefaring, which is difficult, dangerous, and expensive — but also an intellectual challenge, and therefore a stimulus. It is entirely conceivable that, on a planet that remains habitable for a cosmologically significant period of time, that an intelligent species might choose to forgo the challenge and the stimulus of a spacefaring breakout from their homeworld, continuing to embody the homeworld effect even after the means to transcend the homeworld effect are available. What would the consequences be for civilization in this case?

In The Waiting Gambit I discussed the rationalizations and justifications employed to make excuses for waiting for the right moment to initiate a new undertaking, and especially waiting until conditions are “right” for making the transition from a planetary civilization to a spacefaring civilization. These justifications are typically formulated in moral terms, e.g., that we must “get things right” on Earth first before we can make the transition to spacefaring civilization, or, more insidiously, that we don’t deserve to become a spacefaring civlization (as though the Earth deserves to suffer from our presence for a few more million years). It would be easy to dismiss the waiting gambit as a relatively harmless cognitive bias favoring the status quo (a special case of status quo bias), except that there are real biological and civilizational consequences to waiting without limit.

The most obvious consequence of playing along with the waiting gambit is that civilization, or even the whole of humanity, might be wiped out on Earth before we ever achieve the promised moment when we can legitimately expand beyond Earth. This is the existential risk of the waiting gambit as a strategy for human history. But even if we could be assured of the survival of humanity on Earth for the foreseeable future (although no such assurance could be given that was not purely illusory), the waiting gambit still has profound consequences. In so far as civilization is a process of domestication (and in Transhumanism and Adaptive Radiation I suggested a biological conception of civilization based on a cohort of co-evolving species, which I elaborated in The Biological Conception of Civilization), the longer that human beings live in a planetary-bound, biocentric civilization the more domesticated we become. In other words, we are changed by remaining on Earth in the circumstances of civilization, because civilization itself is selective.

If the time between the advent of civilization and the advent of spacefaring is too short to be selective, then the hunter-gatherer mind is maintained because the genome on which this mind supervenes is essentially unchanged. But if the elapsed time between the advent of civilization and the advent of spacefaring is sufficiently extended so that civilizational selection of the intelligent species takes place, the mind is changed along with the genome upon which it supervenes. At some point, neither known nor knowable today, we will have self-selected ourselves (although not knowingly) for settled planetary endemism and we will lose the capacity to live as nomadic hunter-gatherers. This is an here-to-fore unrecognized consequence of long-lived planetary civilizations. If, on the other hand, human beings do make the transition to spacefaring civilization while retaining the evolutionary psychology of hunter-gatherers, the temporary phase of settled civilization (ten thousand years, more or less) will be seen as a temporary aberration, during which historical period the bulk of humanity lived in circumstances greatly at variance with the human EEA.

One aspect of the homeworld effect is acculturation to planetary endemism. This acculturation to planetary endemism helps to explain the waiting gambit and status quo bias, and if perpetuated it would explain the possibility of an advanced technological civilization that remains endemic to a single planet, attaining a full transition from biocentric to technocentric civilization without however making the transition to spacefaring civilization. This would present a radical break from the past, and thus presents us with the difficulty of conceiving a radically different human way of life — a way of life radically disconnected from the biocentric paradigm — but this is a radical difference from the biocentric paradigm that would in turn be radically different from a nomadic civilization with the entirety of the universe in which to roam. In both cases, traces of the biocentric paradigm are preserved, but different traces in each case. The planetary civilization would preserve continuity with the planet and thus a robust continuity with the homeworld effect; a spacefaring nomadic civilization would preserve continuity with the evolutionary psychology of our long hunter-gatherer past. A successor species to humanity, adapted to life in space, and choosing to live in space rather than upon planetary surfaces, would experience the overview effect exclusively, the overview effect supplanting the homeworld effect, and the homeworld effect might experience historical effacement, disappearing from human (or, rather, post-human) experience altogether.

If nomads were to go into space — that is to say, hunter-gatherers in outer space — they probably wouldn’t speak of “settling” a planet, because they would not assume that they would adopt a planetary mode of life for the sake of settling in one place. Perhaps they would speak of the “pastoralization” of a world (cf. Pastoralization, The Argument for Pastoralization, and The Pastoralist Challenge to Agriculturalism), or they might use some other term. The particular term doesn’t really matter, but the concept that the term is used to indicate does matter. Nomadic peoples have very different conceptions of private property, governmental institutions, social hierarchy, soteriology, and eschatology than do settled peoples; the transplantation (note the agricultural language here) of nomadic and settled conceptions to a spacefaring civilization would yield fascinating differences, and the universe is large enough for the embodiment of both conceptions in concrete institutions of spacefaring civilization — whereas Earth alone is not large enough.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

The Martian Standpoint

31 March 2016

Thursday


Mars 0

Red Planet Perspectives

It is difficult to discuss human habitation of Mars scientifically because Mars has for so long played an disproportionate role in fiction, and any future human habitation of Mars will take place against this imaginative background. Future human inhabitants of Mars will themselves read this cultural legacy of fiction centered on Mars, and while some of it will be laughable, there are also likely to be passages that start heads nodding, however dated and inaccurate the portrayal of human life on Mars. And this human future on Mars is seeming increasingly likely as private space enterprises vie with national space agencies, and both public and private space programs are publicly discussing the possibility of sending human beings to Mars.

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site.  (NASA/JPL-Caltech/USGS/Cornell)

Panoramic view of the Payson outcrop near the Opportunity rover’s landing site. (NASA/JPL-Caltech/USGS/Cornell)

A human population on Mars would eventually come to identify as Martians, even though entirely human — Ray Bradbury already said as much decades ago — and it would be expected that the Martian perspective would be different in detail from the terrestrial perspective, though scientifically literate persons in both communities would share the Copernican perspective. There would be countless small differences — Martians would come to number their lives both in Terrestrial years and Martian years, for example — that would cumulatively and over time come to constitute a distinctively Martian way of looking at the world. There would also be unavoidably important differences — being separated from the bulk of humanity, having no large cities at first, not being able to go outside without protective gear, and so on — that would define the lives of Martian human beings.

Wernher von Braun's Mars mission concept as imagined by Chesley Bonestell

Wernher von Braun’s Mars mission concept as imagined by Chesley Bonestell

At what point will Martians come to understand themselves as Martians? At what point will Mars become a homeworld? There will be a first human being to set foot on Mars, a first human being born on Mars, a first human being to die on Mars and be buried in its red soil, a first crime committed on Mars, and so on. Any of these “firsts” might come to be identified as a crucial turning point, the moment at which a distinctively Martian consciousness emerges among Mars residents, but any such symbolic turning point can only come about against the background of the countless small differences that accumulate over time. Given human settlement on Mars, this Martian consciousness will surely emerge in time, but the Martian conscious that perceives Mars as a homeworld will differ from the sense in which Earth is perceived as our homeworld.

An actual, and not a mythical, canal on Mars.

An actual, and not a mythical, canal on Mars.

Human beings lived on Earth for more than a hundred thousand years without knowing that we lived on a planet among planets. We have only known ourselves as a planetary species for two or three thousand years, and it is only in the past century that we have learned what it means, in a scientific sense, to be a planet among countless planets in the universe. A consequence of our terrestrial endemism is that we as a species can only transcend our homeworld once. Once and once only we ascend into the cosmos at large; every other celestial body we visit thereafter we will see first from afar, and we will descend to its surface after having first seen that celestial body as a planet among planets. Thus when we arrive at Mars, we will arrive at Mars knowing that we arrive at a planet, and knowing that, if we settle there, we settle on a planet among planets — and not even the most hospitable planet for life in our planetary system. In the case of Mars, our knowledge of our circumstances will precede our experience, whereas on Earth our experience of our circumstances preceded our knowledge. This reversal in the order of experience and knowledge follows from planetary endemism — that civilizations during the Stelliferous Era emerge on planetary surfaces, and only if they become spacefaring civilizations do they leave these planetary surfaces to visit other celestial bodies.

A sunset on Mars photographed by NASA's Mars Exploration Rover Spirit

A sunset on Mars photographed by NASA’s Mars Exploration Rover Spirit

What is it like, or what will it be like, to be a Martian? The question immediately reminds us of Thomas Nagel’s well known paper, “What is it like to be a bat?” (I have previously discussed this famous philosophical paper in What is it like to be a serpent? and Computational Omniscience, inter alia.) Nagel holds that, “…the fact that an organism has conscious experience at all means, basically, that there is something it is like to be that organism.” A generalization of Nagel’s contention that there is something that it is like to be a bat suggests that there is something that it is like to be a conscious being that perceives the world. If we narrow our conception somewhat from this pure generalization, we arrive at level of generality at which there is something that it is like to be a Terrestrial being. That there is something that it is like to be a bat, or a human being, are further constrictions on the conception of being a consciousness being that perceives the world. But at the same level of generality that there is something that it is like to be a Terrestrial being, there is also something that it is like to be a Martian. Let us call this the Martian standpoint.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

Seeing Earth as a mere point of light in the night sky of Mars will certainly have a formative influence on Martian consciousness.

To stand on the surface of Mars would be to experience the Martian standpoint. I am here adopting the term “standpoint” to refer to the actual physical point of view of an intelligent being capable of looking out into the world and understanding themselves as a part of the world in which they find themselves. Every intelligent being emergent from life as we know it has such a standpoint as a consequence of being embodied. Being an embodied mind that acquires knowledge through particular senses means that our evolutionary history has furnished us with the particular sensory endowments with which we view the world. Being an embodied intelligence also means having a particular spatio-temporal location and having a perspective on the world determined by this location and the sensory locus of embodiment. The perspective we have in virtue of being a being on the surface of a planet at the bottom of a gravity well might be understood as a yet deeper level of cosmological evolution than the terrestrial evolutionary process that resulted in our particular suite of sensory endowments, because all life as we know it during the Stelliferous Era originates on planetary surfaces, and this precedes in evolutionary order the evolution of particular senses.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Sometimes the surface of Mars looks strangely familiar, and at other times profoundly alien.

Mars, like Earth, will offer a planetary perspective. Someday there may be great cities and extensive industries on the moon, supporting a burgeoning population, but, even with cities and industries, the moon will not be a world like Earth, with an atmosphere, and therefore a sky and a landscape in which a human being can feel at home. For those native to Mars — for eventually there will be human beings native to Mars — Mars will be their homeworld. As such, Mars will have a certain homeworld effect, though limited in comparison to Earth. Even those born on Mars will carry a genome that is the result of natural selection on Earth; they will have a body created by the selection pressures of Earth, and their minds will function according to an inherited evolutionary psychology formed on Earth. Mars will be a homeworld, then, but it will not produce a homeworld effect — or, at least, no homeworld effect equivalent to that experienced due to the origins of humanity on Earth. The homeworld effect of Mars, then, will be ontogenic and not phylogenic.

The von Braun Mars mission concept was visionary for its time.

The von Braun Mars mission concept was visionary for its time.

If, however, human beings were to reside on Mars for an evolutionarily significant period of time, the ontogenic homeworld effect of individual development on Mars would be transformed into a phylogenic homeworld effect as Mars became an environment of evolutionary adaptedness. As the idea of million-year-old or even billion-year-old civilizations is a familiar theme of SETI, we should not reject this possibility out of hand. If human civilization comes to maturity within our planetary system and conforms to the SETI paradigm (i.e., that civilizations are trapped within their planetary systems and communicate rather than travel), we should expect such an eventuality, though over these time scales we will probably change Mars more than Mars will change us. At this point, Mars would become a homeworld among homeworlds — one of many for humanity. But it would still be a homeworld absent the homeworld effect specific to human origins on Earth — unless human beings settled Mars, civilization utterly collapsed, resulting in a total ellipsis of knowledge, and humanity had to rediscover itself as a species living on a planetary surface. For this to happen, Mars would have to be Terraformed in order for human beings to live on Mars without the preservation of knowledge sufficient to maintain an advanced technology, and this, too, is possible over time scales of a million years or more. Thus Mars could eventually be a homeworld for humanity in a sense parallel to Earth being a homeworld, though for civilization to continue its development based on cumulative knowledge implies consciousness of only a single homeworld, which we might call the singular homeworld thesis.

. . . . .

The descent to the surface of Mars will shape our perception of the planet.

The descent to the surface of Mars will shape our perception of the planet.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


21refPicsSORT

It cannot be pointed out too often that by far the most extensive period of human history is prehistory. In the past it was possible to evade this fact and its problematic consequences for conventional historiography, because prehistory could be safely set aside as not being history at all. The subsequent rise of scientific historiography, which allows us to read texts other than written language — geological texts, genetic texts, the texts of material culture uncovered by archaeologists, and so on — have been progressively chipping away at the facile distinction between history and prehistory, so that boundary between the two can no longer be maintained and any distinction between history and prehistory must be merely conventional, such as the convention of identifying history sensu stricto with the advent of written language.

The evolutionary psychology of human beings carries the imprint of this long past until recently unknown to us, lost to us, its loss during the earliest period of civilization being a function of history effaced as the events of more recent history wipe clean the slate of the earlier history that preceded it. Scientific historiography provides us with the ability to recover lost histories once effaced, and, like a recovered memory, we recognize ourselves in this recovered past because it is true to what we are, still today.

From the perspective of illuminating contemporary human society, we may begin with the historical recovery of relatively complex societies that emerged from the Upper Paleolithic, which communities were the context from which the Neolithic Agricultural Revolution emerged. But from the perspective of the evolutionary psychology that shaped our minds, we must go back to the origins of the brain in natural history, and follow it forward in time, for each stage in the evolution of the brain left its traces in our behavior. The brainstem that we share with reptiles governs autonomous functions and the most rudimentary drives, the limbic system that we share with other mammals and which is implicated in our sentience-rich biosphere is responsible for our emotions and a higher grade of consciousness than the brainstem alone can support, and the cerebral cortex enables more advanced cognitive functions that include reflexive self-awareness and historical consciousness (awareness of the past and the future in relation to the immediacy of the present).

Each of these developments in terrestrial brain evolution carries with it its own suite of behaviors, with each new set of behaviors superimposed on previous behaviors much as each new layer of the brain is superimposed upon older layers. Over the longue durée of evolution these developments in brain evolution were also coupled with the evolution of our bodies, which enact the behaviors in question. As we descended from the trees and hunted and killed for food, our stomachs shrank and our brains grew. We have the record of this transition preserved in the bones of our ancestors; we can still see today the cone-shaped ribcage of a gorilla, over the large stomach of a species that has remained primarily vegetarian; we can see in almost every other mammal, almost every other vertebrate, the flat skull with nothing above the eyes, compared to which the domed cranium of hominids seems strange and out of place.

As I wrote in Survival Beyond the EEA, “Evolution means that human beings are (or were) optimized for survival and reproduction in the Environment of Evolutionary Adaptedness (EEA).” (Also on the EEA cf. Existential Threat Narratives) The long history of the formation of our cognitive abilities has refined and modified survival and reproduction behaviors, but it has not replaced them. Our hunter-gatherer ancestors of the Upper Paleolithic were already endowed with the full cognitive power that we continue to enjoy today, though admittedly without the concepts we have formulated over the past hundred thousand years, which have allowed us to make better use of our cognitive endowment in the context of civilization. Everything essential to the human mind was in place long before the advent of civilization, and civilization has not endured for a period of time sufficient to make any essential change to the constitution of the human mind.

The most difficult aspects of the human point of view to grasp objectively are those that have been perfectly consistent and unchanging over the history of our species. And so it is that we do not know ourselves as dwellers on the surface of a planet, shaped by the perspective afforded by a planetary surface, looking up to the stars through the distorting lens of the atmosphere, and held tight to the ground beneath our feet by gravity. At least, we have not known ourselves as such until very recently, and this knowledge has endured for a much shorter period of time than civilization, and hence has had even less impact on the constitution of our minds than has civilization, however much impact it has had upon our thoughts. Our conceptualization of ourselves as beings situated in the universe as understood by contemporary cosmology takes place against the background of the EEA, which is a product of our evolutionary psychology.

To understand ourselves aright, then, we need to understand ourselves as beings with the minds of hunter-gatherers who have come into a wealth of scientific knowledge and technological power over an historically insignificant period of time. How did hunter-gatherers conceive and experience their world? What was the Weltanschauung of hunter-gatherers? Or, if you prefer, what was the worldview of hunter-gatherers?

Living in nature as a part of nature, only differentiated in the slightest degree from the condition of prehuman prehistory, the hunter-gatherer lives always in the presence of the sublime, overwhelmed by an environment of a scale that early human beings had no concepts to articulate. And yet the hunter-gatherer learns to bring down sublimely large game — an empowering experience that must have contributed to a belief in human efficacy and agency in spite of vulnerability to a variable food supply, not yet under human control. Always passing through this sublime setting for early human life, moving on to find water, to locate game, to gather nuts and berries, or to escape the depredations of some other band of hunter-gatherers, our ancestor’s way of life was rooted in the landscape without being settled. The hunter-gatherer is rewarded for his curiosity, which occasionally reveals new sources of food, as he is rewarded for his technological innovations that allow him to more easily hunt or to build a fire. The band never has more children than can be carried by the adults, until the children can themselves escape, by running or hiding, the many dangers the band faces.

As settled agriculturalism began to displace hunter-gatherers, first from the fertile lowlands and river valleys were riparian civilizations emerged, new behaviors emerged that were entirely dependent upon the historical consciousness enabled by the cerebral cortex (that is to say, enabled by the ability to explicitly remember the past and to plan for the future). Here we find fatalism in the vulnerability of agriculture to the weather, humanism in this new found power over life, a conscious of human power in its the command of productive forces, and the emergence of soteriology and eschatology, the propitiation of fickle gods, as human compensations for the insecurity inherent in the unknowns and uncertainties of integrating human life cycles with the life cycles of domesticated plants and animals and the establishment of cities, with their social differentiation and political hierarchies, all unprecedented in the history of the world.

The Weltanschauung of hunter-gatherers, which laid the foundations for the emergence of agrarian and pastoral civilizations, I call the homeworld effect in contradistinction to what Frank White has called the overview effect. The homeworld effect is our understanding of ourselves and of our world before we have experienced the overview effect, and before the overview effect has transformed our understanding of ourselves and our world, as it surely will if human beings are able to realize a spacefaring civilization.

The homeworld effect — that our species emerged on a planetary surface and knows the cosmos initially only from this standpoint — allows us to assert the uniqueness of the overview effect for human beings. The overview effect is an unprecedented historical event that cannot be repeated in the history of a civilization. (If a civilization disappears and all memory of its having attained the overview effect is effaced, then the overview effect can be repeated for a species, but only in the context of a distinct civilization.) A corollary of this is that each and every intelligent species originating on a planetary surface (which I assume fulfills the principle of mediocrity for intelligent species during the Stelliferous Era) experiences a unique overview effect upon the advent of spacefaring, should the cohort of emergent complexities on the planet in question include a technologically competent civilization.

The homeworld effect is a consequence of planetary surfaces being a locus of material resources and energy flows where emergent complexities can appear during the Stelliferous Era (this is an idea I have been exploring in my series on planetary endemism, on which cf. Part I, Part II, Part III, Part IV, and Part V). We can say that the homeworld effect follows from this planetary standpoint of intelligent beings emerging on the surface of a planet, subject to planetary constraints, just as the overview effect follows from an extraterrestrial standpoint.

We can generalize from this observation and arrive at the principle that an effect such as the overview effect or the homeworld effect is contingent upon the experience of some standpoint (or, if you prefer, some perspective) that an embodied being experiences in the first person (and in virtue of being embodied). This first level of generalization makes it obvious that there are many standpoints and many effects that result from standpoints. Standing on the surface of a planet is a standpoint, and it yields the homeworld effect, which when formulated theoretically becomes something like Ptolemaic cosmology — A Weltanschauung or worldview that was implicit and informal for our hunter-gatherer ancestors, but which was explicitly formulated and formalized after the advent of civilization. A standpoint in orbit yields a planetary overview effect, with the standpoint being the conditio sine qua non of the effect, and this converges upon a generalization of Copernican cosmology — what Frank White has called the Copernican Perspective. (We could, in which same spirit, posit a Terrestrial Perspective that is an outgrowth of the homeworld effect.) If a demographically significant population attains a particular standpoint and experiences an effect as a result of this standpoint, and the perspective becomes the perspective of a community, a worldview emerges from the community.

Further extrapolation yields classes of standpoints, classes of effects, classes of perspectives, and classes of worldviews, each member of a class possessing an essential property in common. The classes of planetary worldviews and spacefaring worldviews will be different in detail, but all will share important properties. Civilization(s) emerging on planetary surfaces at the bottom of a gravity well constitute a class of homeworld standpoints. Although each homeworld is different in detail, the homeworld effect and the perspective it engenders will be essentially the same. Initial spacefaring efforts by any civilization will yield a class of orbital standpoints, again, each different in detail, but yielding an overview effect and a Copernican perspective. Further overview effects will eventually (if a civilization does not stagnate or collapse) converge upon a worldview of a spacefaring civilization, but this has yet to take shape for human civilization.

A distinctive aspect of the overview effect, which follows from an orbital standpoint, is the suddenness of the revelation. It takes a rocket only a few minutes to travel from the surface of Earth, the home of our species since its inception, into orbit, which no human being saw until the advent of spacefaring. The suddenness of the revelation not only furnishes a visceral counter-example to what our senses have been telling us all throughout our lives, but also stands in stark contrast to the slow and gradual accumulation of knowledge that today makes it possible to understand our position in the universe before we experience this position viscerally by having attained an orbital standpoint, i.e., an extraterrestrial perspective on all things terrestrial.

With the sudden emergence in history of the overview effect (no less suddenly than it emerges in the experience of the individual), we find ourselves faced with a novel sublime, the sublime represented by the cosmos primeval, a wilderness on a far grander scale than any wilderness we once faced on our planet, and, once again, as with our ancestors before the vastness of the world, the thundering thousands of game animals on the hoof, oceans that could not be crossed and horizons that could not be reached, we lack the conceptual infrastructure at present to fully make sense of what we have seen. The experience is sublime, it moves us, precisely because we do not fully understand it. The human experience of the homeworld effect eventually culminated in the emergence of scientific civilization, which in turn made it possible for human beings to understand their world, if not fully, at least adequately. Further extrapolation suggests that the human experience of the overview effect could someday culminate in an adequate understanding of the cosmos, as our hunter-gatherer drives for locating and exploiting resources wherever they can be found, and the reward for technological innovations that serve this end, continue to serve us as a spacefaring species.

. . . . .

I am indebted to my recent correspondence with Frank White and David Beaver, which has influenced the development and formulation of the ideas above. Much of the material above appeared first in this correspondence.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Saturday


planetary surfaces

During the Stelliferous Era planetary surfaces are uniquely suited for emergent complexity such as life and civilization. Planetary surfaces are by their nature complex, being the interface between planet and planetary atmosphere. Planetary surfaces are moreover a “Goldilocks” zone for energy flows during the Stelliferous Era; energy flows on stars themselves are too great for life, while energy flows in space (in the clouds of gas and dust that surround a star) are too little for life. Planetary surfaces, then, provide “just right” energy flows at the interface of atmospheric gases and the minerals constituting the planet. If emergent complexity is going to arise during the Stelliferous, it is going arise here, hence civilizations begin on planets.

That civilizations begin on planets during the Stelliferous Era has certain consequences. Civilizations originate at the bottom of a gravity well, and if they are to expand beyond a planetary surface, they must reach a level of technological sophistication adequate to lift off from its homeworld a demographically significant proportion of its population of the intelligent organism upon which the civilization supervenes. This is the first and the most significant of the horizons of spacefaring civilization, and the spacefaring horizon that provides the initial overview effect of the civilization’s homeworld.

What this means is that there is thus a natural tendency to planetary endemism among civilizations of the Stelliferous Era. In my posts on planetary constraints I outlined the limitations imposed upon a civilization the development of which is limited to the surface of a planet. These constraints include: 1. the spatial constraint, 2. the temporal constraint, 3. the gravitational constraint, 4. the agrarian constraint, 5. the population constraint, 6. the energy constraint, 7. the material constraint, 8. the ontic constraint, and 9. the endemic constraint. These constraints define the scope of the civilizations of planetary endemism.

A planetary civilization is the limit (and, some might argue, the telos) of planetary endemism. Let us define a planetary civilization as a single civilization uniquely determined by the biosphere of a single planet, which means that, for planetary civilizations, there is a one-to-one correspondence between civilizations and their homeworlds. (Here “planet” is to be understood in the broadest possible sense, including dwarf planets, moons, and so on.) In my post Origins of Globalization I argued that terrestrial civilization today is a planetary civilization (and I further commented on this in Civilization and Uniformity).

In the particular case of terrestrial civilization, a single planetary civilization has emerged from the concrescence of multiple civilizations formerly geographically isolated. Once we think of civilization in this schematic and formal way, at least some alternatives to the particular pattern of terrestrial development become obvious. For example, civilization might begin at a single geographical locus on a planet, and spread outward from there, rather than originating independently on multiple occasions. Even given these alternative pathways to planetary civilization, from the most formal perspective these are variations on a theme of planetary civilization, and the big picture distinctions we can make, and which we can expect to be exemplified in the case of other civilizations (if there are other civilizations), can be narrowed to a few classes. If we think of planetary civilization as a classification in a developmental account of civilization, other classifications naturally grow out of this idea. For example:

● Nascent Civilization What I have also called proto-civilization, are cultures on the verge of producing civilization, i.e., intelligent species at a level of social organization immediately anterior to the threshold of civilization. The Human World of the Upper Paleolithic frequently approximated nascent civilization.

● Developing Sub-planetary Civilization Before a civilization or civilizations reach their planetary limit, they may be called sub-planetary. A sub-planetary civilization still undergoing development, and retaining the capability to expanding to its planetary limit, is a developing sub-planetary civilization. As noted above, developing sub-planetary civilizations may be one or many prior to converging upon a planetary civilization.

● Arrested Sub-planetary Civilization A less-than-planetary civilization that has ceased in its development and so no longer retains the capability of expanding to its planetary limit may be called an arrested sub-planetary civilization. Arrested sub-planetary civilizations, which constitute instances of suboptimal civilization, and will eventually become extinct when planetary conditions eventually change beyond the ability of the civilization to adapt. A sub-planetary civilization is, by definition, a geographically regional civilization, so it is a civilization predicated upon the ecological conditions of a particular region of a planet, and is probably limited to inhabiting one or two biomes of its homeworld. This makes an arrested sub-planetary civilization especially vulnerable to extinction, and, in fact, many local civilizations in terrestrial history have gone extinct leaving no successor civilization (e.g., Minoan civilization, Nazca civilization, etc.).

● Developing Planetary Civilization A civilization that has reached the limits of its homeworld, and yet continues in its development, is a planetary civilization on the cusp of making the transition to becoming a spacefaring civilization. While such development might be cut short by the realization of some existential risk, there is nevertheless a distinction to be made between a planetary civilization in possession of the resources (potentially) to make the transition to spacefaring civilization, and a civilization that happens to reach the limits of its homeworld, but which has no hope of making the transition to spacefaring civilization.

● Arrested Planetary Civilization Arrested planetary civilizations, like arrested sub-planetary civilizations, are also a species of suboptimal civilization, and are also subject to inevitable extinction. However, arrested planetary civilizations are somewhat less vulnerable and more robust than arrested sub-planetary civilizations, since the ability to establish a planetary civilization means that transportation and communication networks unify the homeworld and the civilization in possession of such an infrastructure can compensate for regional ecological changes that could mean the end for a geographically regional civilization. Thus, in general, it is to be expected that arrested planetary civilizations can endure for a longer period of time than arrested sub-planetary civilizations, though a planetary civilization is, in turn, likely to endure for a shorter period of time than a spacefaring civilization, which latter possesses access to far greater resources and can achieve redundancy on a scale than no planetary civilization can achieve.

It is interesting to observe that a sub-planetary civilization might seek existential risk mitigation through redundancy by “seeding” copies of itself in different regions of its homeworld. How would we distinguish between such a project and more familiar categories of civilizational expansion or colonization? I will not attempt to answer this question at present. However, I will make the further observation that this approach to redundancy is closed off to any planetary civilization, whether arrested or still in the process of development.

Several of the terms I have employed here are admittedly rather awkward; my point is to try to capture the most general, “big picture” features of a civilization as we might observe its development from outside. For if SETI, in any of its forms, is eventually successful, we will be scientists of civilization looking from the outside in, and if there are many civilizations to be discovered, they will be roughly sortable into a handful of varieties. The varieties of civilization outlined above are based on the root idea of a planetary civilization, which is in turn based on the idea of the planetary endemism of civilizations, which is likely to be a feature of the Stellierous Era.

The argument implied in the above classification is that this classification possesses a certain conceptual naturalness as a consequence of its being rooted in structural features of the universe in which we happen to find ourselves. A different universe, or a different kind of universe, or a universe with a different natural history, might demand a scheme for the classification of any civilizations it hosted which differed from the above, which is an artifact of particular conditions. Thus if we depart sufficiently from the Stellierous Era, a different taxonomy for the classification of civilization may be necessary. For example, in the case of Degenerate Era civilizations, which would probably consist of civilizations descended with modification from civilizations of the Stellierous Era, the above scheme of classification would not likely be very helpful.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


Saturn with astronaut

Our first view of Earth was from its surface; every other planet human beings eventually visit will be first perceived by a human being at a great distance, then from orbit, and last of all from its surface. We will descend from orbit to visit a new world, rather than, as on Earth, emerging from the surface of that world and, only later, much later, seeing it from orbit, and then as a pale blue dot, from a great distance.

With our homeworld, the effect of looking up from the surface of our planet precedes the overview effect; with every other world, the overview effect precedes the surface standpoint. We might call this the homeworld effect, which is a consequence of what I now call planetary endemism (and which, when I was first exploring the concept, I called planetary constraint). We have already initiated this process when human beings visited the moon, and for the first time in human history descended to a new world, never before visited by human beings. With this first tentative experience of spacefaring, humanity knows one world from its surface (Earth) and one world from above (the moon). Every subsequent planetary visit will increase the relative proportion of the overview effect in contradistinction to the homeworld effect.

In the fullness of time, our normative assumptions about originating on a plant and leaving it by ascending in to orbit will be displaced by a “new normal” of approaching worlds from a great distance, worlds perhaps first perceived as a pale blue dot, and then only later descending to familiarize ourselves with surface features. If we endure for a period of time sufficient for further human evolution under the selection pressure of spacefaring civilization, this new normal will eventually replace the instincts formed in the environment of evolutionary adaptedness (EEA) when humanity as a species branched off from other primates. The EEA of our successor species will be spacefaring civilization and the many worlds to which we travel, and this experience will shape our minds as well, producing an evolutionary psychology adapted not to survival on the surface of a planet, but to survival on any planet whatever, or no planet at all.

The Copernican principle is the first hint we have of the mind of a species adapted to spacefaring. It is a characteristic of Copernicanism to call the perspective borne of planetary endemism, the homeworld effect, into question. We have learned that the Copernican principle continually unfolds, always offering more comprehensive perspectives that place humanity and our world in a context that subsumes our previous perspective. Similarly, the overview effect will unfold over the development of spacefaring civilization that takes human beings progressively farther into space, providing ever more distant overviews of our world, until that world becomes lost among countless other worlds.

In my Centauri Dreams post The Scientific Imperative of Human Spaceflight, I discussed the possibility of further overview effects resulting from attaining ever more distant perspectives on our cosmic home — thus attaining an ever more rigorous Copernican perspective. For example, although it is far beyond contemporary technology, it is possible to imagine we might someday have the ability to go so far outside the Milky Way that we could see our own galaxy in overview, and point out the location of the sun in the Orion Spur of the Milky Way.

There is, however, another sense in which additional overview effects may manifest themselves in human experience, and this would be due less to greater technical abilities that would allow for further first person human perspectives on our homeworld and on our universe, and rather due more to cumulative human experience in space as a spacefaring civilization. With accumulated experience comes “know how,” expertise, practical skill, and intuitive mastery — perhaps what might be thought of as the physical equivalent of acculturation.

We achieve this physical acculturation to the world through our bodies, and we express it through a steadily improving facility in accomplishing practical tasks. One such practical task is the ability to estimate sizes, distances, and movements of other bodies in relation to our own body. An astronaut floating in space in orbit around a planet or a moon (i.e., on a spacewalk) would naturally (i.e., intuitively) compare himself as a body floating in space with the planet or moon, also a body floating in space. Frank White has pointed out to me that, in interviews with astronauts, the astronauts themselves have noted the difference between being inside a spacecraft and being outside on a spacewalk, when one is essentially a satellite of Earth, on a par with other satellites.

The human body is an imperfectly uniform, imperfectly “standard” standard ruler that we use to judge the comparative sizes of the objects around us. Despite its imperfection as a measuring instrument, the human body has the advantage of being more intimately familiar to us than any other measuring device, which makes it possible to achieve a visceral understanding of quantities measured in comparison to our own body. At first perceptions of comparative sizes of bodies in space would be highly inaccurate and subject to optical illusions and cognitive biases, but with time and accumulated experience an astronaut would develop a more-or-less accurate “feel” for the size of the planetary body about which he is orbiting. With accumulated experience one would gain an ability to judge distance in space by eye, estimate how rapidly one was orbiting the celestial body in question, and perhaps even familiarize oneself with minute differences in microgravity environments, perceptible only on an intuitive level below the threshold of explicit consciousness — like the reflexes one acquires in learning how to ride a bicycle.

This idea came to me recently as I was reading a NASA article about Saturn, Saturn the Mighty, and I was struck by the opening sentences:

“It is easy to forget just how large Saturn is, at around 10 times the diameter of Earth. And with a diameter of about 72,400 miles (116,500 kilometers), the planet simply dwarfs its retinue of moons.”

How large is Saturn? We can approach the question scientifically and familiarize ourselves with the facts of matter, expressed quantitatively, and we learn that Saturn has an equatorial radius of 60,268 ± 4 km (or 9.4492 Earths), a polar radius of 54,364 ± 10 km (or 8.5521 Earths), a flattening of 0.09796 ± 0.00018, a surface area of 4.27 × 1010 km2 (or 83.703 Earths), a volume of 8.2713 × 1014 km3 (or 763.59 Earths), and a mass of 5.6836 × 1026 kg (or 95.159 Earths) — all figures that I have taken from the Wikipedia entry on Saturn. We could follow up on this scientific knowledge by refining our measurements and by going more deeply in to planetary science, and this gives us a certain kind of knowledge of how large Saturn is.

Notice that the figures I have taken from Wikipedia for the size of Saturn notes Earth equivalents where relevant: this points to another way of “knowing” how large Saturn is: by way of comparative concepts, in contradistinction to quantitative concepts. When I read the sentence quoted above about Saturn I instantly imagined an astronaut floating above Saturn who had also floated above the Earth, feeling on a visceral level the enormous size of the planet below. In the same way, an astronaut floating above the moon or Mars would feel the smallness of both in comparison to Earth. This is significant because the comparative judgement is exactly what a photograph does not communicate. A picture of the Earth as “blue marble” may be presented to us in the same size format as a picture of Mars or Saturn, but the immediate experience of seeing these planets from orbit would be perceived very differently by an orbiting astronaut because the human body always has itself to compare to its ambient environment.

This is kind of experience could only come about once a spacefaring civilization had developed to the point that individuals could acquire diverse experiences of sufficient duration to build up a background knowledge that is distinct from the initial “Aha!” moment of first experiencing a new perspective, so one might think of the example I have given above as a “long term” overview effect, in contradistinction to the immediate impact of the overview effect for those who see Earth from orbit for the first time.

The overview effect over the longue durée, then, will continually transform our perceptions both by progressively greater overviews resulting from greater distances, and by cumulative experience as a spacefaring species that becomes accustomed to viewing worlds from an overview, and immediately grasps the salient features of worlds seen first from without and from above. In transforming our perceptions, our minds will also be transformed, and new forms of consciousness will become possible. This alone ought to be reason enough to justify human spaceflight.

The possibility of new forms of consciousness unprecedented in the history of terrestrial life poses an interesting question: suppose a species — for the sake of simplicity, let us say that this species is us, i.e., humanity — achieves forms of consciousness through the overview effect cultivated in the way I have described here, and that these forms of consciousness are unattainable prior to the broad and deep experience of the overview effect that would characterize a spacefaring civilization. Suppose also, for the sake of the argument, that the species that attains these forms of consciousness is sufficiently biologically continuous that there has been no speciation in the biological sense. There would be a gulf between earlier and later iterations of the same species, but could we call this gulf speciation? Another way to pose this question is to ask whether there can be cognitive speciation. Can a species at least partly defined in terms of its cognitive functions be said to speciate on a cognitive level, even when no strictly biological speciation has taken place?

I will not attempt to answer this question at present — I consider the question entirely open — but I would like to suggest that the idea of cognitive speciation, i.e., a form of speciation unique to conscious beings, is deserving of further inquiry, and should be of special interest to the field of cognitive astrobiology.

. . . . .

The Overview Effect

The Epistemic Overview Effect

Hegel and the Overview Effect

The Overview Effect and Perspective Taking

The Overview Effect in Formal Thought

Our Knowledge of the Internal World

The Human Overview

Personal Experience and Empirical Knowledge

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

The Overview Effect over the longue durée

Civilizations of Planetary Endemism

. . . . .

deep field astronaut 3

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

Wednesday


2011 pictures 166

In my previous post, The Study of Civilization as Rigorous Science I drew upon examples from both Edmund Husserl and Bertrand Russell — the Godfathers, respectively, of contemporary continental and analytical philosophy — to illustrate some of the concerns of constituting a new science de novo, which is what a science of civilization must be.

In particular, I quoted Husserl to the effect that true science eschews “profundity” in favor of Cartesian clarity and distinctness. Since Husserl himself was none-too-clear a writer, his exposition of a distinction between profundity and clarity might not be especially clear. But another example occurred to me. There is a wonderful passage from Bertrand Russell in which he describes the experience of intellectual insight:

“Every one who has done any kind of creative work has experienced, in a greater or less degree, the state of mind in which, after long labour, truth, or beauty, appears, or seems to appear, in a sudden glory — it may be only about some small matter, or it may be about the universe. The experience is, at the moment, very convincing; doubt may come later, but at the time there is utter certainty. I think most of the best creative work, in art, in science, in literature, and in philosophy, has been the result of such a moment. Whether it comes to others as to me, I cannot say. For my part, I have found that, when I wish to write a book on some subject, I must first soak myself in detail, until all the separate parts of the subject matter are familiar; then, some day, if I am fortunate, I perceive the whole, with all its parts duly interrelated. After that, I only have to write down what I have seen. The nearest analogy is first walking all over a mountain in a mist, until every path and ridge and valley is separately familiar, and then, from a distance, seeing the mountain whole and clear in bright sunshine.”

Bertrand Russell, A History of Western Philosophy, CHAPTER XV, “The Theory of Ideas”

Russell returned to this metaphor of seeing a mountain whole after having wandered in the fog of the foothills on several occasions. For example:

“The time was one of intellectual intoxication. My sensations resembled those one has after climbing a mountain in a mist, when, on reaching the summit, the mist suddenly clears, and the country becomes visible for forty miles in every direction.”

Bertrand Russell, The Autobiography of Bertrand Russell: 1872-1914, Chapter 6, “Principia Mathematica”

…and again…

“Philosophical progress seems to me analogous to the gradually increasing clarity of outline of a mountain approached through mist, which is vaguely visible at first, but even at last remains in some degree indistinct. What I have never been able to accept is that the mist itself conveys valuable elements of truth. There are those who think that clarity, because it is difficult and rare, should be suspect. The rejection of this view has been the deepest impulse in all my philosophical work.”

Bertrand Russell, The Basic Writings of Bertrand Russell, Preface

Russell’s description of intellectual illumination employing the metaphor of seeing a mountain whole is an example of the what I have called the epistemic overview effect — being able to place the parts of knowledge within a larger epistemic whole gives us a context for understanding that is not possible when confined to any parochial, local, or limited perspective.

If we employ Russell’s metaphor to illustrate Husserl’s distinction between the profound and the pellucid we immediately see that an attempt at an exposition which is confined to wandering in the foothills enshrouded in mist and fog has the character of profundity, but when the sun breaks through, the fog lifts, and the mist evaporates, we see clearly and distinctly that which we had before known only imperfectly and at that point we are able to give an exposition in terms of Cartesian clarity and distinctness. Russell’s insistence that he never thought that the mist contained any valuable elements of truth is of a piece with Husserl eschewing profundity.

Just so, a science of civilization should surprise us with unexpected vistas when we see the phenomenon of civilization whole after having familiarized ourselves with each individual parts of it separately. When the moment of illumination comes, dispelling the mists of profundity, we realize that it is no loss at all to let go of the profundity that has, up to that time, been our only guide. The definitive formulation of a concept, a distinction, or a principle can suddenly cut through the mists that we did not even realize were clouding our thoughts, revealing to us the perfect clarity that had eluded us up to that time. As Russell noted that, “this view has been the deepest impulse in all my philosophical work,” so too this is the deepest impulse in my attempt to understand civilization.

. . . . .

signature

. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .