A Prehistory of the Overview Effect

Among many other contributions, E. O. Wilson is known for the Savannah Hypothesis, according to which human beings are especially suited, both biologically and cognitively, to life on the African savannah, which constituted the environment of evolutionary adaptedness (EEA) for our species. E. O. Wilson discusses this in the chapter “The Right Place” in his book Biophilia, in which he characterized this landscape as, “…the ideal toward which human beings unconsciously strive…” (pp. 108-109). Wilson developed this idea over much of this chapter, writing:

“…it seems that whenever people are given a free choice, they move to open tree-studded land on prominences overlooking water. This worldwide tendency is no longer dictated by the hard necessities of hunter-gatherer life. It has become largely aesthetic, a spur to art and landscaping. Those who exercise the greatest degree of free choice, the rich and powerful, congregate on high land above lakes and rivers and along ocean bluffs. On such sites they build palaces, villas, temples, and corporate retreats. Psychologists have noticed that people entering unfamiliar places tend to move toward towers and other large objects breaking the skyline.”

E. O. Wilson, Biophilia, Harvard University Press, 1984, p. 110 (I encourage reading the entire chapter, all of which is relevant to this discussion.)

In this context, the Savannah Hypothesis places human beings in a position to have an overview of the biome that constituted their EEA, that is to say, an overview of their relevant environment, the environment in which their differential survival and reproduction would mean either the continuation or the extinction of the species. As we know, human ancestors survived in such an environment for millions of years, and anatomically modern human beings passed through a bottleneck in such a landscape.

The African savannah was the landscape that played the most recent, and perhaps the most strongly selective role in the human mind and body, and there would be a high survival value attached to having an overview of this landscape. If we seek out prominences from which to take in a sweeping view, we do so for good reason.

Esther Quaedackers’ conception of little big histories.

Little Big Histories and Little Overviews

We can think of this biome overview as a “little overview,” which term I introduce in analogy to Esther Quadecker’s use of “little big histories,” that is to say, big histories that trace the development of some small topic (smaller than the whole of the universe) over cosmological time, from the big bang to the present day, and possibility also extending into the indefinite future. In the unfolding of our “little overviews” over time we have a prehistory of the overview effect as it is fully revealed when we see our homeworld from space.

Little overviews have played an important role in human history. The need for security and surveillance has resulted in the need for watchtowers and for the “crow’s nest” on a ship. Many of the most famous castles are built on high escarpments in order to command the view of the region, which, before telecommunications, was the only way in which to have a comprehensive survey. These precariously perched castles are thrilling to the romantic imagination, but they originally had a strategic purpose of giving an overview of a geographical region that was tactically significant in an age of fighting prior to modern technology. Anything that could happen on a battlefield could be taken in at a single glance.

Everyone will recall that the Persian king Xerxes had a throne erected from which we could watch the Battle of Salamis unfold as it happened. Byron immortalized the image in his Don Juan:

A king sate on the rocky brow
Which looks o’er sea-born Salamis;
And ships, by thousands, lay below,
And men in nations;—all were his!
He counted them at break of day —
And when the sun set where were they?

A culturally significant little overview is described in Petrarch’s account in a letter to his father of climbing Mount Ventoux, which is one of the most famous accounts of mountain climbing in western literature:

“…owing to the unaccustomed quality of the air and the effect of the great sweep of view spread out before me, I stood like one dazed. I beheld the clouds under our feet, and what I had read of Athos and Olympus seemed less incredible as I myself witnessed the same things from a mountain of less fame. I turned my eyes toward Italy, whither my heart most inclined. The Alps, rugged and snow-capped, seemed to rise close by, although they were really at a great distance…”

Francesco Petrarch, The Ascent of Mount Ventoux

It is something of a sport among historians to debate whether Petrarch was essentially medieval or already a modern mind in medieval times. Certainly there are intimations of modernity in Petrarch. The fact that Petrarch made his ascent of Mount Ventoux, that is to say, the spirit in which he made the ascent, was modern, though his response to the experience was not modern, but medieval. While on top Mount Ventoux Petrarch pulled out a copy of St. Augustine’s Confessions (a symbol both of antiquity and of Christendom) and opens to a passage that reads, “And men go about to wonder at the heights of the mountains, and the mighty waves of the sea, and the wide sweep of rivers, and the circuit of the ocean, and the revolution of the stars, but themselves they consider not.” Petrarch takes this as a rebuke to the worldliness implicit in his ambition to ascend the mountain, and he concluded his letter on the experience with this thought: “How earnestly should we strive, not to stand on mountain-tops, but to trample beneath us those appetites which spring from earthly impulses.”

With this medieval Christian response to a little overview there is much in common with the Stoic “view from above” thought experiment that I previously discussed in Stoicism, Sensibility, and the Overview Effect — the pettiness and smallness of the ordinary world of affairs, the need to transcend this smallness, the potential nobility of the human spirit in contrast to its actual corruption — though the specifically Christian elements are distinctive to Petrarch and place him a distance away from Marcus Aurelius’ disdain for the filth of the terrestrial life. Augustinian theology had declared the world good because God made it, so that the world could no longer be grandly dismissed as with the Stoics. It is the sinful human soul, and not the world, that is to be rebuked and chastised. This is the spirit that Petrarch brought to his experience of a little overview.

The Modern Overview Effect

We begin to encounter a more fully modern appreciation of little overviews in the earliest accounts of balloon aviation, where we find the distinctive relation between the attainment of a physical overview and a change in cognitive perspective, i.e., the idea that the two are tightly coupled. An early balloon flight pioneer, Fulgence Marion (a pen name used by Camille Flammarion), presents this relation plainly and simply: “We gave ourselves up to the contemplation of the views which the immense stretch of country beneath us presented.” Here the object of contemplate is the overview itself, which Marion describes in rapturous prose:

“The broad plains appeared before our view in all their magnificence. No snow, no clouds were now to be seen, except around the horizon, where a few clouds seemed to rest on the earth. We passed in a minute from winter to spring. We saw the immeasurable earth covered with towns and villages, which at that distance appeared only so many isolated mansions surrounded with gardens. The rivers which wound about in all directions seemed no more than rills for the adornment of these mansions; the largest forests looked mere clumps or groves, and the meadows and broad fields seemed no more than garden plots. These marvellous tableaux, which no painter could render, reminded us of the fairy metamorphoses; only with this difference, that we were beholding upon a mighty scale what imagination could only picture in little. It is in such a situation that the soul rises to the loftiest height, that the thoughts are exalted and succeed each other with the greatest rapidity.”

Fulgence Marion, Wonderful Balloon Ascents, or, the Conquest of the Skies, Chapter III

Petrarch was on the verge of just such an appreciation of the view from Mount Ventoux, one might even say that he felt this appreciation, but then turned from it in order to use the experience as a pretext to return to the Augustinian “inner man.”

Alexander von Humboldt, one of the great synthesizers of scientific knowledge of the 19th century, attempted to provide an explanation of the connection between overviews and cognitive changes. Criticizing Burke’s view that the feeling of the sublime arises from a lack of knowledge, Humboldt argues that past ignorance was responsible for the cosmological errors of antiquity, while our exultation at glimpsing an overview arises from our ability to connect ideas previously separate, so that the cognitive shift in the overview effect is due not to lack of knowledge, but to the expansion and integration of knowledge:

“The illusion of the senses… would have nailed the stars to the crystalline dome of the sky; but astronomy has assigned to space an indefinite extent; and if she has set limits to the great nebula to which our solar system belongs, it has been to shew us further and further beyond its bounds, (as our optic powers are increased,) island after island of scattered nebulae. The feeling of the sublime, so far as it arises from the contemplation of physical extent, reflects itself in the feeling of the infinite which belongs to another sphere of ideas. That which it offers of solemn and imposing it owes to the connexion just indicated; and hence the analogy of the emotions and of the pleasure excited in us in the midst of the wide sea; or on some lonely mountain summit, surrounded by semi-transparent vaporous clouds; or, when placed before one of those powerful telescopes which resolve the remoter nebulae into stars, the imagination soars into the boundless regions of universal space.”

Alexander von Humboldt, Cosmos: Sketch of a Physical Description of the Universe, London: Longman, Brown, Green, and Longmans, 1846, pp. 20-21

After Petrarch, the world was changed by the three revolutions — scientific, political, and industrial — and this changed context made possible the little overviews of Fulgence Marion and Alexander von Humboldt, who did not feel the need, as did Petrarch, to turn away to focus on the human soul and its cultivation of piety and salvation. Science changed the way that human beings understood the world, and their place in the world, so that subsequent mountain climbers saw the view of the world from the top of a mountain against a different conceptual background. Here is Julius Evola’s evocation of his contemplation of a little overview:

“…after the action, contemplation ensues. It is time to enjoy the peaks and heights from our vantage point: where the view becomes circular and celestial, where petty concerns of ordinary people, of the meaningless struggles of the life of the plains, disappear, where nothing else exists but the sky and the free and powerful forces that reflect the titanic choir of the peaks.”

Julius Evola, Meditations on the Peaks, “The Northern Wall of Eastern Lyskamm”

Evola’s attitude here more closely resembles that of the Stoic “view from above” thought experiment than Petrarch’s response to climbing Mount Ventoux, though Evola may have been consciously evoking the Stoic attitude, and was probably also influenced by Nietzsche, who spent much of his adult life in Switzerland and often rhapsodized on the views from mountain peaks.

It was a little overview that led to the explicit formulation of the overview effect, as Frank White described in the first chapter of the book in which he named and explicitly formulated the overview effect:

“My own effort to confirm the reality of the Overview Effect had its origins in a cross-country flight in the late 1970s. As the plane flew north of Washington, D.C., I found myself looking down at the Capitol and Washington Monument. From 30,000 feet, they looked like little toys sparkling in the sunshine. From that altitude, all of Washington looked small and insignificant. However, I knew that people down there were making life-or-death decisions on my behalf and taking themselves very seriously as they did so… When the plane landed, everyone on it would act just like the people over whom we flew. This line of thought led to a simple but important realization: mental processes and views of life cannot be separated from physical location.”

Frank White, The Overview Effect: Space Exploration and the Future of Humanity, third edition, American Institute of Aeronautics and Astronautics, Inc., 2014, p. 1

Here the modern overview conception is fully stated for the first time in terms amenable to scientific investigation. There is much that is continuous with the ancient and medieval responses to little overviews, and it may be taken as the telos upon which earlier modern accounts like those of Marion, von Humboldt, and Evola converge.

In the ancient, medieval, and modern responses to the overview effect there is both a common element as well as distinctive elements that derive from each period. In common is the sense of elevation above the merely mundane and of converging upon a “big picture” of the relationship between humanity and its homeworld; the distinctive elements arise from the valuation of our homeworld, of humanity, and the conception of the proper relationship between the two. The ancient response draws heavily upon Platonism, seeing the sublunary world as intrinsically less valuable than the superlunary world of the heavens, and humanity is understood to be the better as it tends toward the latter, and the worse as it tends to the former. The medieval response is to reflect on the meanness of human nature in contradistinction to the grandeur of God’s creation. The modern response, while retaining elements of earlier little overviews, begins to pare away the evaluative aspects to converge upon a theoretical expression of the core of the overview experience.

The Future of Little Overviews

Now that humanity is in possession of the overview effect in its most explicit and complete form, as some human beings have seen our homeworld entire with their own eyes, it might be thought that little overviews belong to the past. This would be misleading. The photographs that have brought the overview effect to millions if not billions of persons have been themselves little overviews — an overview that can be held in one’s hand, and which gives us a sense of the actual experience of the overview effect, without actually experiencing the full overview effect for ourselves (like a picture taken from the summit of a mountain by those who did not make the climb themselves). For the time being, the overview effect for most of us will be this little overview, and it remains to some future iteration of our technology to make this view universally available to those who desire it.

Other little overviews also continue to change our perspective on our world and our relation to the universe. The Hubble telescope deep field images — the Hubble Deep Field (HDF), Ultra Deep Field (HUDF), and eXtreme Deep Field (XDF) — are little overviews of the cosmos entire; little because they are a very small sample of the sky, but an overview more comprehensive than any previous human perspective on the universe. In one glance we can take in thousands of galaxies, many of them, like the Milky Way, with hundreds of billions stars each.

Coming to an understanding of the big picture is likely to involve an ongoing dialectic by which we pass from experiences that present us with a more comprehensive perspective, and which serve as imaginative points of departure to contemplation of the cosmos entire, to little overviews that provide counterpoint to our personal experiences and which fill out the expansion of our imagination with greater detail and greater breadth and diversity than the personal experiences of any one individual. Those who can most seamlessly integrate and understand these sources of overviews as a whole, will come to the most comprehensive perspective that can be reconciled with the details and reality of ordinary experience.

Kurt Gödel 1906-1978

An Overview-Seeking Animal

We have all heard that man is a political animal, or a social animal, or a tool-making animal, and so on. We can add to this litany of distinctive human imperatives that man is an overview-seeking animal. The overviews we have attained, perhaps spurred onward by the evolutionary psychology that E. O. Wilson identified as the Savannah hypothesis, have allowed us to repeatedly transcend our previous perspectives, and with this transcendence of physical perspectives has followed a transcendence of cognitive perspectives, i.e., worldviews or conceptual frameworks. Recently in Einstein on Geometrical Intuition I quoted a passage from Gödel (one of my favorite passages, quoted many times) that is relevant to the transcendence of cognitive perspectives:

“Turing… gives an argument which is supposed to show that mental procedures cannot go beyond mechanical procedures. However, this argument is inconclusive. What Turing disregards completely is the fact that mind, in its use, is not static, but is constantly developing, i.e., that we understand abstract terms more and more precisely as we go on using them, and that more and more abstract terms enter the sphere of our understanding. There may exist systematic methods of actualizing this development, which could form part of the procedure. Therefore, although at each stage the number and precision of the abstract terms at our disposal may be finite, both (and, therefore, also Turing’s number of distinguishable states of mind) may converge toward infinity in the course of the application of the procedure.”

“Some remarks on the undecidability results” (Italics in original) in Gödel, Kurt, Collected Works, Volume II, Publications 1938-1974, New York and Oxford: Oxford University Press, 1990, p. 306.

The seeking out of overviews, whether little overviews or grand overviews revealing our homeworld entire, is part of the method of actualizing our cognitive development by adding more terms to the sphere of our understanding. What Gödel approached from an abstract point of view the overview effect gives us from a concrete point of view.

. . . . .


. . . . .

Overview Effects

The Epistemic Overview Effect

The Overview Effect as Perspective Taking

Hegel and the Overview Effect

The Overview Effect in Formal Thought

Brief Addendum on the Overview Effect in Formal Thought

A Further Addendum on the Overview Effect in Formal Thought, in the Way of Providing a Measure of Disambiguation in Regard to the Role of Temporality

Our Knowledge of the Internal World

Personal Experience and Empirical Knowledge

The Overview Effect over the longue durée

Cognitive Astrobiology and the Overview Effect

The Scientific Imperative of Human Spaceflight

Planetary Endemism and the Overview Effect

The Overview Effect and Intuitive Tractability

Stoicism, Sensibility, and the Overview Effect

A Natural History of Overview Effects

Homeworld Effects

The Homeworld Effect and the Hunter-Gatherer Weltanschauung

The Martian Standpoint

Addendum on the Martian Standpoint

Hunter-Gatherers in Outer Space

What will it be like to be a Martian?

. . . . .


. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .



Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior social intelligence.

Eusocial insect colonies achieve an impressive degree of social differentiation and specialization without the kind of intelligence found among mammals. Some scientists call this collective behavior ‘social intelligence.’

In a couple of blog posts, Is encephalization the great filter? and Of Filters, Great and Small, I argued that encephalization is the great filter — clearly implying that this is a single filter that is more significant than another filters, and that encephalization is the great filter. The “great filter” is an idea due to Robin Hanson, according to whom, “The Great Silence implies that one or more of these steps [to visible colonization] are very improbable; there is a ‘Great Filter’ along the path between simple dead stuff and explosive life. The vast vast majority of stuff that starts along this path never makes it. In fact, so far nothing among the billion trillion stars in our whole past universe has made it all the way along this path.”

In the second of the two blog posts noted above, Of Filters, Great and Small, I considered the different possible structures that filters might take, and this is a more nuanced view of the great filter that departs from the idea that a single element of the great filter is uniquely responsible for the great silence and the Fermi paradox. The journey to higher forms of emergent complexity seems to be robust, and therefore likely to have been repeated elsewhere, but it is also a long journey of later emergent complexities multiply supervening upon earlier emergent complexities. This structure of emergent complexities over time is itself a structure more complex than any one of the emergent complexities taken in isolation. In so far as we understand the great filter in this content, we understand a more nuanced view than the idea of one step among many steps along this journey being the unique hurdle to the aggressive expansion of life in the universe, and therefore its visible traces discoverable through cosmology.

Even given this more nuanced view of the great filter, later forms of emergent complexity will be less common than earlier forms, and within the structure of the great filter we can identify particular emergent complexities where the iterated structure falters. If we place this stalling point at exponential encephalization, we might find a universe filled with complex life, but with few or no other intelligent species capable of building a civilization. This is the sense in which I wish my claim that encephalization is the great filter to be understood.

Recently I have had reason to revisit the idea that encephalization is the great filter, and this is primarily due to having read The Social Conquest of Earth by E. O. Wilson, which emphasizes the role of eusociality in the construction of complex societies. I think that Wilson is right about this. Wilson notes that eusociality has emerged on Earth only a handful of times, making it a rare form of emergent complexity: “Eusociality arose in ants once, three times independently in wasps, and at least four times — probably more, but it is hard to tell — in bees.” (p. 136) We can compare this rarity of eusociality as an adaptation to the rarity of intelligence as an adaptation.

The insects that have achieved robust eusociality — perhaps I should say arthropods — are very different from mammals. We must go back more than 500 million years to the split between protostomes and dueterostomes to find the last common ancestor of the two. With the arthropods we share being bilaterally symmetrical, but the split between us — hence the split between our brains and central nervous systems (CNS) — is about as old as the split between mammals and molluscs: chordata, mollusca, and arthropoda are distinct phyla. On the one hand, we know from a recent fossil find something about the CNS of the earliest chordates, which we thus have in common with most other terrestrial animalia (cf. How early a mind?); on the other hand, we also know that neural structures have evolved independently on Earth (cf. The ctenophore genome and the evolutionary origins of neural systems), so that we might speak of neurodiversity among terrestrial animalia. Different brains, when sufficiently complex, are substrates for different forms of emergent consciousness, i.e., different forms of mind.

It is not only dramatically different kinds of minds that might give rise to dramatically different forms of encephalization, and thus intelligence and civilization. Part of the differentness of eusocial insects is their reproductive specialization, which goes along with a genetic structure of a colony in which the superorganism of the colony benefits overall from a majority of individuals not reproducing. This is also dramatically different from human societies. It has been objected to Wilson’s thesis of the eusociality of human beings that human beings are not eusocial, but rather prosocial, and that human cooperative societies cannot be compared to insect cooperative societies because there is no parallel to reproductive specialization among human beings. This, I think, is an unnecessarily narrow conception of eusociality. All we have to do is to recognize that eusociality can take multiple forms (as minds and intelligence can take multiple forms, supervening upon multiple distinct neural structures), some of which involve reproductive specialization and some of which do not, in order for us to recognize human cooperative societies as eusocial.

The most developed brain of the molluscs is that of the octopus, a solitary hunter. Octopi have been hunting in the depths of the sea for hundreds of millions of years, and, apparently, they have never experienced competition on the basis of intelligence, and, perhaps because of this, have never experienced an encephalization event. (Recently in How early a mind? I quoted E. O. Wilson to the effect that, “A Homo sapiens level of intelligence can arise only on land, whether here on Earth or on any other conceivable planet.” ) So octopi have a respectable level of intelligence, but are far from being eusocial. The eusocial insects have a much less powerful brain than octopi or mammals, but they did make the breakthrough to eusociality. Only human beings made the breakthrough to both eusociality and high individual intelligence.

Since reading Wilson on the eusociality of human societies, I can come to think that human civilization is what happens when eusociality coincides with intelligence. Termite mounds and bee hives are what happens when eusociality coincides with insect-level intelligence. And this observation of the interaction of eusociality and intelligence immediately suggests two possible counterfactuals to human civilzation, which I will sketch below. Understand that, in this context, when I use the term “human civilization” I am using this is in its most generic signification, covering all the many different human civilizations that have existed, i.e., the class of all human civilizations (which is the class of all known civilizations constructed by a biological being both eusocial and intelligent).

I noted above that we can employ a conception of eusociality less narrow than that restricted to eusocial insects with reproductive specialization. Similarly, the other element in civilization — intelligence — ought also to be construed broadly. Many different kinds of intelligence interacting with many different kinds of eusociality suggest many different possibilities for civilization distinct from the class of human civilizations. At the present time I am not going to consider kinds of eusociality and intelligence as much as degrees of eusociality and intelligence, and I will assume that the insect transition to reproductive specialization represents eusociality taken to a higher degree than eusociality has progressed in human beings. Similarly, I will assume that human intelligence represents a higher degree of intelligence than now-extinct branches of the genus homo, i.e., our ancestors with lower degrees of encephalization and lower intelligence.

From these assumptions about degrees of eusociality and intelligence, two counterfactual classes of civilization are suggested:

High Eusociality/Low Intelligence

A species might be less intelligent than human beings (i.e., possess a lower degree of encephalization) but more eusocial than human beings, and be able to build a civilization.

Low Eusociality/High Intelligence

A species might be more intelligent than human beings (i.e., possessing a higher degree of encephalization, or a thicker neocortex) but less eusocial than human beings, and be able to build a civilization.

This formulation has the virtue of existing human civilization embodying the principle of mediocrity: our eusociality and intelligence are balanced; we are not as eusocial or as individualistic as we might have been, and we are not as intelligence or as unintelligent as we might have been. We are in the “Goldilocks zone” of coinciding eusociality and intelligence, and this human “sweet spot” for civilization may account for the fact that civilization emerged independently in widely separated geographical regions, not as a result of idea diffusion, but rather as a consequence of independent invention.

In the High Eusociality/Low Intelligence class of civilizations, we would see somewhat individually intelligent beings capable of a high degree of cooperation through eusociality forming socieites (superorganisms) quite early in their history. We can see the degree to which bees and ants and termites can develop societies based on eusociality and an almost negligible individual intelligence; with a degree of eusociality approaching this, but in a species endowed with more cognitive capacity, cities might be built that look like something between a human city and a termite mound, and this might happen spontaneously. If this had happened with an earlier human ancestor — a counterfactual ancestor with greater eusociality than any actual human ancestor — it could have preempted the emergence of human civilization by occurring millions of years earlier.

In the Low Eusociality/High Intelligence class of civilizations, civilization may have come about at the level of scattered bands of hunter-gatherers, or, at least, human beings in small groups may have been able to develop science and technology without large social institutions such as governments, universities, and corporations, which discipline unruly human beings and make it possible for them to work cooperatively together. One can imagine that a more intelligent (counterfactual) species of the genus homo might have been sufficiently intelligent to pursue science at a much earlier period of its history, and one can imagine members of such a species coming together for scientific purposes much as our ancestors came together at Göbekli Tepe (which I first wrote about in The Birth of Agriculture from the Spirit of Religion) possibly for religious rituals, even before they gathered in settlements for agriculture.

Both counterfactual scenarios I have described above could have resulted in civilization on Earth emerging tens of thousands or hundreds of thousands of years earlier than it did in fact emerge. I suppose it would be equally possible to formulate counterfactuals in which different classes of civilization emerged much later.

Each of the three classes of civilizations considered here — moderate eusociality/moderate intelligence, high eusociality/low intelligence, and low eusociality/high intelligence — have distinct advantages and disadvantages, in terms of the viability of the civilization that results. However, cognitive capability begins to play a much greater role in civilization after industrialization when civilization becomes technological and scientific. If a given civilization can survive to make the breakthrough to science-driven technology, all other things being equal, the species with the greatest intelligence will have the greatest advantage in deploying science to further the ends of that species. I suspect that a high eusociality/low intelligence civilization would be stagnant, and possibly so stagnant that the breakthrough to industrialization never occurs. I also suspect that human beings were just smart enough to make that breakthrough, as indicated by the single point of origin of the industrial revolution. Short of that threshold, any civilization remains cosmologically invisible, exclusively bound to its homeworld, and incapable of long-term existential risk mitigation. This scenario is consistent with the great silence, and may constitute another approach to the Fermi paradox.

The research questions that follow from these considerations include: Are there intrinsic limits to eusociality among beings whose biology is not consistent with reproductive specialization? Are there intrinsic limits to intelligence for biological beings of known biochemistry? How do eusociality and intelligence interact biologically and ecologically? Does either constitute a check upon the other?

. . . . .

Cooperation among human beings has its limits -- as illustrated by the story of the Tower of Babel -- and one limit to cooperation is our level of eusociality.  With a higher or lower level of eusociality, civilization would have had a different structure.

Cooperation among human beings has its limits — as illustrated by the story of the Tower of Babel — and one limit to cooperation is our level of eusociality. With a higher or lower level of eusociality, civilization would have had a different structure.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .



Biocentrism in an extended sense

In my recent post The Technocentric Thesis I formulated the latter idea such that all technocentric civilizations begin as biocentric civilizations and are transformed into technocentric civilizations through the replacement of biological constituents with technological constituents. This technocentric thesis implicitly refers to the anterior biocentric thesis, such that all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces (in its strong form) or all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces (in its weak form).

The technocentric thesis may be considered a generalization from the biocentric thesis (or, at least, an extension of the biocentric thesis), in so far as I previously argued in Astrobiology is island biogeography writ large that “spaceflight is to astrobiology as flight is to biogeography” which entails, in regard to the continuity of civilization and natural history, that “technology is the pursuit of biology by other means.” Thus technocentric civilizations continue imperatives of biocentric civilization, but by means other than biocentric means, i.e., by technological rather than biological means. Throughout the process of the replacement of the biological constituents of civilization by technological constituents of civilization, the imperatives of civilization remain intact and continuous.

We can make other generalizations from (and extensions of) the biocentric thesis. I wrote about a generalization of biophilia to non-terrestrial life in The Scope of Biophilia: “[E.O.] Wilson has already anticipated the extrapolation of biophilia beyond terrestrial life. Though Wilson’s term biophilia has rapidly gained currency and has been widely discussed, his original vision embracing a biophilia not limited to Earth has not enjoyed the same level of interest.” Here is the passage in question of E. O. Wilson’s Biophilia:

“From infancy we concentrate happily on ourselves and other organisms. We learn to distinguish life from the inanimate and move toward it like moths to a porch light. Novelty and diversity are particularly esteemed; the mere mention of the word extraterrestrial evokes reveries about still unexplored life, displacing the old and once potent exotic that drew earlier generations to remote islands and jungled interiors.”

Human Biophilia in its initial sense is the affinity that human beings have for the terrestrial biosphere, and the obvious extension of human biophilia (suggested in the passage quoted above from Wilson) would be the affinity that human beings may have for any life whatsoever in the cosmos, terrestrial or extraterrestrial. Might this hold generally for all biological beings, such that we can posit the affinity that some non-terrestrial biological being might have for the life of its homeworld, and the affinity that some non-terrestrial biological being might have for all life, including life on Earth (the mirror image of human biophilia in an extended sense)? These are the exobiological senses of biophilia (exobiophilia, if you like, or xenobiophilia).

These mirror image formulations of human biophilia and biophilia on the part of other intelligent (biological) agents suggests a more comprehensive formulation yet, that of the affinity of any biological being for any biology to be found anywhere in the universe. The presumed affinity that each biological organism will have for the biota of its homeworld involves the existential necessity of an organism’s attachment to the biota of its homeworld on the one hand, while on the other hand there is biophilia as a moral phenomenon, i.e., a constituent in the moral psychology of any biological being, the cognitive expression (or cognitive bias) of biocentrism. Biophilia in this formal sense would be the affinity that any biological being would have for the biota of its homeworld, while this formal biophilia in a generalized sense would be the affinity that any biological being would have for any life whatsoever in the cosmos.

How comprehensive is the scope of biophilia, or how comprehensive can it be, or ought it to be? Can we meaningfully extrapolate the concept of biophilia to such comprehensive scope as to include life on other worlds? I have formulated several thought experiments — Terrestrial Bias, Astrobiology Thought Experiment, and The Book of Earth — to investigate our intuitions in regard to other life, both on Earth and elsewhere. It would be an interesting project to follow up on these thought experiments more systematically as a research program in experimental philosophy. For the moment, however, I remain confined to thought experiments.

There are at least two forces counterbalancing the possibility of an expansive biophilia, with a scope exceeding that of terrestrial biology:

1) biophobia, and…

2) in-group bias

Parallel to biophilia there is biophobia, which is as instinctual as the former. Just as human beings have an affinity for certain life forms, we also have an instinctive fear of certain life forms. Indeed, the biosphere could be divided up into forms of life for which we possess biophilia, forms of life for which we possess biophobia, and forms of life to which we are indifferent. Biophobia, like biophilia, can be extrapolated as above to extraterrestrial forms of life. If and when we do find life elsewhere in the universe, no doubt some of this life will inspire us with awe and wonder, while some of its will inspire us with fear, perhaps even with palpable terror. So the scope of biophilia is modified by the parallel scope of biophobia. Given that terrestrial life is going to be more like us, while alien life will be less like us, I would guess that any future alien life will, on balance, inspire greater biophobia, while terrestrial life will, on balance, inspire greater biophilia. If this turns out to be true, the extension of biophilia beyond life of the terrestrial biosphere will be severely limited.

There is a pervasive in-group bias that marks eusociality in complex life, i.e., life sufficiently complex to have evolved consciousness, and perhaps also among eusocial insects, which are not likely to possess the kind of consciousness possessed by large brained mammals. I am using “eusocial” here in E. O. Wilson’s sense, as I have been reading E. O. Wilson’s The Social Conquest of Earth, in which Wilson contrasts the eusociality of insects and of human beings and a few other mammals. Wilson finds eusociality to be a relatively rare adaptive strategy, but also a very powerful one once it takes hold. Wilson credits human eusociality with the human dominance of the terrestrial biosphere today.

Wilson’s conception of eusociality among primates has been sharply rejected by many eminent biologists, among then Richard Dawkins and Stephen Pinker. The debate over eusociality in primates has focused on group selection (long a controversial topic in evolutionary biology) and the absence of reproductive division of labor in human beings. But the fact that one communication in criticism of Wilson and co-authors to the eminent scientific journal Nature (“Inclusive fitness theory and eusociality” Nature, 2011 March 24; 471, 7339: E1-4; author reply E9-10. doi: 10.1038/nature09831) had 134 signatures indicates that something more than the dispassionate pursuit of knowledge is involved in this debate. I am not going to attempt to summarize this debate here, but I will say only that I find value in Wilson’s conception of eusociality among human beings, and that the criticism of Wilson’s position has involved almost no attempt to understand Wilson’s point sympathetically.

Wilson had, of course, previously made himself controversial with his book on sociobiology, which discipline has subsequently been absorbed into and transformed into evolutionary psychology (one could say that sociobiology is evolutionary psychology in a nascent and inchoate stage of development), which continues to be controversial today, primarily because it says unflattering things about human nature. Wilson has continued to say unflattering things about human nature, and his treatment of human eusociality in The Social Conquest of Nature entails inherent human tribalism, which in turn entails warfare. This is not a popular claim to make, but it is a claim that resonates with my own ideas, as I have many times argued that civilization and war are coevolutionary; Wilson pushes this coevolutionary spiral of (in-group) sociality and (out-group) violence into the prehistoric, evolutionary past of humanity. With this I completely concur.

In-group bias and out-group hostility parallel each other in a way very much like biophilia and biophobia, and we could once again produce parallel formulations for extrapolating these human responses to worlds beyond our own — and perhaps also to other intelligent agents, so that these responses are not peculiarly human. How large can the scope of in-group bias become? It is a staple of many science fiction stories that human beings, divided against each other, unify to fight a common extraterrestrial enemy. I suspect that this would be true, and that in-group bias could be expanded even farther into the universe, but it would never be without the shadow of an out-group, however that out-group came to be defined, whether as other human beings who had abandoned Earth, or another species sufficiently different from us so as to arouse our suspicion and distrust.

There is a little known essay by Freeman Dyson that touches of themes of intrinsic human tribalism that are very much in the vein of Wilson’s argument, though Dyson’s article is many decades old, from the same year that human beings landed on the moon: “Human Consequences of the Exploration of Space” (Bulletin of the Atomic Scientists, Sept. 1969, Vol. XXV, No. 7; I was unable to find this article available on the internet, so I obtained a copy through interlibrary loan… many thanks to the Multnomah County Library System). In this article Dyson considers the problem of people in small groups, and in particular he describes how intrinsic human tribalism (i.e., in-group bias) might be exapted for a better future:

“…the real future of man in space lies far away from planets, in isolated city-states floating in the void, perhaps attached to an inconspicuous asteroid of perhaps to a comet… most important of all for man’s future, there will be groups of people setting out to find a place where they can be safe from prying eyes, free to experiment undisturbed with the creation of radically new types of human beings, surpassing us in mental capacities as we surpass the apes… So I foresee that the ultimate benefit of space travel to man will be to make it possible for him once again to live as he lived throughout prehistoric time, in isolated small units. Once again his human qualities of clannish loyalty and exclusiveness will serve a constructive role…”

Once again, I completely concur, though this is not the whole story. One of the greatest demographic trends of our time is urbanization, and we have seen millions upon millions move from rural areas and small towns into the always growing cities, both for their opportunities and their intrinsic interest. So human beings possess these tribal instincts that Dyson would harness for the good, but also eusocial instincts that flower in the world’s megacities, which are centers of both economic and intellectual innovation. Thus I find much of value in Dyson’s vision, but I would supplement it with the occasional conurbation, and I would assume that, over the course of an individual’s life, that there would be times that they would prefer the isolated community, times when they would prefer urban life, and times when they would want to leave all human society behind and immerse themselves in wilderness and wildness — perhaps even in the wilderness of an alien biosphere.

All of the things I have been describing here are essentially biological visions of the human future, which suggest that biocentric civilization still has many ways that it can grow and evolve, even if it does not converge on a form implied by the technocentric thesis, in which biology is displaced by technology. Technology can replace biology, and, when it does, the ends of biocentric civilization come to served by technological means, but that technology can replace biology does not mean that technology will replace biology.

Perhaps one of the sources of our technophilia is that we tend to think in technological terms because technology attains its ends over human scales of time, even over the scale of time of the individual human life and the individual human consciousness. But what technology can do quickly, biology can also do, more slowly, over biological and geological scales of time. If human civilization should be wiped away by any number of catastrophes that await us, the technological path of development will be foreclosed, but the biological path to development will still continue to be open as long as life exists, though it will operate over a scale of time that human beings do not perceive and mostly do not comprehend.

. . . . .

Paul Klee, Bird Garden, 1924

Paul Klee, Bird Garden, 1924

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .



In The Biocentric Thesis I gave an explicit formulation of the idea that civilizations of the Stelliferous Era originate in the actions of biological agents — actually, I gave two formulations, a weak and a strong, each with a corollary. What I failed to explicitly note in that post was that, in explicitly formulating the biocentric thesis, the idea of biocentricity is not confined to describing the biocentric thesis. In other words, we can identify as “biocentric” some state-of-affairs (presumably a civilization, or, more narrowly, an institution) regardless whether this state-of-affairs exemplifies the biocentric thesis. Thus the concept of the biocentric has a much wider scope than the biocentric thesis specifically.

It is worthwhile to make this distinction because the biocentric thesis is a particular idea about the origin of civilization (an extrapolation of Darwin’s thesis to astrobiological scope) while the idea of the biocentric, being of greater scope, has much wider applicability. If the biocentric thesis is true, that is to say, if all civilizations during the Stelliferous Era begin as biocentric civilizations originating on planetary surfaces (or, in its strong form, if all civilizations in our universe begin as biocentric civilizations originating on planetary surfaces), then biocentrism is not merely a feature of the human condition, it is the condition from which any and all civilizations originate (i.e., it is the common condition of eocivilization).

What is the human relationship to biocentrism beyond a narrowly conceived biocentric thesis on the origins of civilization? In my post Astrobiology Thought Experiment I wrote:

“…I have been trying to get at the human affinity to the rest of life on Earth, and trying to get at it in a primarily visceral sense in order to get around the hopeless tangle of rationalization and cognitive bias that we have painstakingly erected around the idea of humanity.”

What I called “the human affinity for the rest of life on Earth” is also known as biophilia. E. O. Wilson’s initial exposition of the idea of biophilia defined the term as meaning, “…the innate tendency to focus on life and lifelike processes.” This appears on the very first page of his book Biophilia. Elsewhere, in his book The Diversity of Life, Wilson has defined biophilia as, “…the connections that human beings subconsciously seek with the rest of life.”

In formulating the idea of biophilia Wilson already anticipated the extrapolation of biophilia beyond terrestrial life. (Though Wilson’s term biophilia has rapidly gained currency and has been widely discussed, his original vision embracing a biophilia not limited to Earth has not enjoyed the same level of interest.) Also on the first page of Biophilia is this brief reflection on extraterrestrial life:

“From infancy we concentrate happily on ourselves and other organisms. We learn to distinguish life from the inanimate and move toward it like moths to a porch light. Novelty and diversity are particularly esteemed; the mere mention of the word extraterrestrial evokes reveries about still unexplored life, displacing the old and once potent exotic that drew earlier generations to remote islands and jungled interiors.”

Wilson, E. O., Biophilia: the Human Bond with Other Species, Cambridge and London: Harvard University Press, 2003, p. 1.

It seems likely that we would naturally extrapolate both our biophilic and biophobic reactions to any extraterrestrial life we may find. However, it is also likely that, in our encounters with extraterrestrial life in the future, there may be instances in which we cannot as clearly distinguish between the animate and the inanimate as we can with terrestrial life. Our biophilic intuitions may need to be educated and augmented if they are to applied beyond terrestrial life, just as our mathematical intuitions are educated and augmented when we learn advanced mathematical concepts that were no part of our intuitive endowment of mathematical knowledge (we can cite geometrical intuition as an instance of the latter). Unlike the example of educating our mathematical intuitions, however, we cannot educate and augment our biophilic and biophobic reactions without actually traveling to other biospheres and learning directly about other lifeforms, preferably in their native habitats. In other words, progress in biology is ultimately predicated upon progress in space travel. This is implicit in the very idea of astrobiology.

An interest in life as yet unexplored implies the possibility of xenophilia as a special case of biophilia. Wilson seems to unproblematically assume that this is the case, but I have regarded this as an open question. For example, in Terrestrial Bias: Thought Experiments I wrote:

“Is life itself, regardless of its origins, of value to our biophilic minds, or are our anthropogenic minds so focused on differential survival and reproduction of homo sapiens that life itself is an abstract idea that can find no purchase in our sentiments? How far does biophilia extend? Is biophilia really only terrestrial biophilia? Is xenophilia possible for terrestrially evolved minds?”

We can we a bit more systematic about this: we can distinguish between biophilia in a narrow sense and biophilia in an extended sense, and the meaning of biophilia can be extended in more than one way. Biophilia in its narrowest sense is the affinity that human beings have for other terrestrial life. The generalization of this narrow sense of biophilia would be human affinity for all life, wherever that life may be found (as implied by E. O. Wilson). The formalization of the narrow sense of biophilia would be the affinity that any intelligent agent would feel for the biota of its homeworld, and from this formalizaton we can deduce the possibility of a particular intelligent species with its affinity for its particular homeworld (and this is a distinct concept than the purely formal concept of any species’ affinity for its homeworld). The formalization of the generalization of human biophilia would be affinity that any intelligent biological being would have for any life to be found in the universe. These are the permutations of biophilia, and each permutation may be regarded as an open question inviting further research.

Biophilia in the extended sense of the formalization of human biophilia (the affinity that any biological being would have for the biota of its homeworld) can be taken as a foundational posit of cognitive astrobiology, as predictable in shaping minds as natural selection is predictable in shaping bodies. Biophilia is the cognitive expression of biocentrism, and in so far as biocentrism is likely to typify any intelligent biological being, any intelligent biological being is likely to embody the same kind of biophilia found among human beings. In this sense, biophilia is a central phenomenon of cognitive astrobiology.

However, we can also posit that any intelligent agent that builds a technological civilization, and eventually a spacefaring civilization by technological means, will have, to some degree, marginalized native biophilia to the extent that this is necessary in order for a class of persons in this civilization to be fully immersed in a technological milieu. I take this latter condition to be a sine qua non of the development of advanced technological capabilities; perhaps this idea — i.e., the idea of at least one class of persons under the umbrella of a larger society to be immersed in a technological milieu — demands independent analysis and exposition. This I will reserve for a future post.

. . . . .

pictogram biophilia

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .



This Island Earth

Some time ago (on Twitter) I observed that astrobiology is island biogeography writ large. I return to this idea regularly, but have not yet adequately fleshed it out. I touched on this again in From an Astrobiological Point of View, but it would take considerable exposition to do justice to the idea. This post is an unsatisfactory response to my return to an idea that deserves to be studied in his own right and at some length.

Chart of the Galápagos Islands

Chart of the Galápagos Islands

Island biogeography has its origins in the origins of Darwin’s Origin of Species. As we all know, Darwin visited the Galápagos Islands during the voyage of the Beagle that Darwin recounted in The Voyage of the Beagle. Decades of thought and gestation followed, but it was in part the peculiar mix of species in the Galápagos that was crucial for Darwin’s breakthrough to the idea of natural selection. I have myself visited the Galápagos Islands (I wrote about this in Happy Birthday Charles Darwin!) and it is a spectacular lesson in natural history that I cannot recommend highly enough.

theory of island biogeography

Although island biogeography begins with Darwin, it was brought to explicit formulation and theoretical maturity by E. O. Wilson and Robert H. MacArthur in The Theory of Island Biogeography. There the authors say in their opening remarks:

“By studying clusters of islands, biologists view a simpler microcosm of the seemingly infinite complexity of continental and oceanic biogeography. Islands offer an additional advantage in being more numerous than continents and oceans. By their very multiplicity, and variation in shape, size, degree of isolation, and ecology, islands provide the necessary replications in natural ‘experiments’ by which evolutionary hypotheses can be tested.”

Robert H. MacArthur and Edward O. Wilson, The Theory of Island Biogeography, Princeton: Princeton University Press, 1967, Chap. 1, p. 3

Much of this remains valid when translated, mutatis mutandis, into astrobiology. The key, however, is how one goes about arriving at the mutatis mutandis. How can all other things remain equal when we are translating from terrestrial ecosystems in miniature, thus a bit easier to understand than the whole of the terrestrial biosphere, or some major division such as a biome, into worlds entire isolated in the blackness of interplanetary and interstellar space? The analogy is not perfect, but it is suggestive of parallel avenues of approach.

How do you quantify the life of an entire world? Higher biological taxa. This graph shows families rather than species.

How do you quantify the life of an entire world? Higher biological taxa. This graph shows families rather than species.

Scaling up biogeography

While the flora and fauna of islands are sufficiently restricted in scope to make it possible to do a detailed count not only of species present (already in The Voyage of the Beagle we see Darwin noting the number of genera and species present on various islands), but sometimes also of individuals. Obviously we are not going to be able to count species, much less individuals, for entire worlds. We must draw back, look at the big picture, and employ the kind of metrics we see in studies of mass extinctions. In detailing the loss of biodiversity of mass extinctions it is not merely species or even genera that go extinct; sometimes entire families, orders, and classes go extinct. These we can count; in fact, we could reasonably expect to count higher taxa for entire worlds.

taxnomic rank

The reformulation of island biogeographical ideas for astrobiology will be the labor of the production of a new science. The scaling up of our scope to higher biological taxa is only one among many scaling changes in our thought we must pursue in order to develop concepts adequate to the fate of life in the context of galactic ecology.

galactic ecology

Flight and its Technological Equivalents

Geologically young islands — as with the well-known example of the Galápagos Islands, mentioned above — are primarily populated by birds and marine animals. Birds bring with them a variety of plant life; moreover, many plants can float, and are brought to islands by ocean currents. Least common to arrive and to survive are those terrestrial species that find themselves on islands due to sweepstakes dispersal routes, i.e., somewhat unusual circumstances in which a breeding pair of terrestrial animals are able to ride a floating log or mass of vegetation to an otherwise isolated island and can there reproduce, like the marine iguanas on the Galápagos, who have learned to feed by diving into the ocean and forage on inter- and subtidal algae. That is to say, the least common colonists are life forms that cannot swim or fly; being able to traverse planetary distances is a limiting factor in the distribution of a life form.

Darwin Greenhouse

Darwin conducted a simple yet ingenious ecological experiment in island biogeography that he recounted in The Origin of Species:

“I have before mentioned that earth occasionally, though rarely, adheres in some quantity to the feet and beaks of birds. Wading birds, which frequent the muddy edges of ponds, if suddenly flushed, would be the most likely to have muddy feet. Birds of this order I can show are the greatest wanderers, and are occasionally found on the most remote and barren islands in the open ocean; they would not be likely to alight on the surface of the sea, so that the dirt would not be washed off their feet; when making land, they would be sure to fly to their natural fresh-water haunts. I do not believe that botanists are aware how charged the mud of ponds is with seeds: I have tried several little experiments, but will here give only the most striking case: I took in February three table-spoonfuls of mud from three different points, beneath water, on the edge of a little pond; this mud when dry weighed only 6¾ ounces; I kept it covered up in my study for six months, pulling up and counting each plant as it grew; the plants were of many kinds, and were altogether 537 in number; and yet the viscid mud was all contained in a breakfast cup! Considering these facts, I think it would be an inexplicable circumstance if water-birds did not transport the seeds of fresh-water plants to vast distances, and if consequently the range of these plants was not very great. The same agency may have come into play with the eggs of some of the smaller fresh-water animals.”

Charles Darwin, On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, London: John Murray, 1st edition, 1859, GEOGRAPHICAL DISTRIBUTION. CHAP. XII., pp. 386-387

Such is the power of flight to widely disperse species over the surface of Earth. Flight has a value beyond the differential survival and reproduction advantage that it confers upon those species so endowed; it also plays a co-evolutionary role at the largest scale of planetary ecology. That flight should develop within a biosphere is perhaps not inevitable, but we could say instead that a biosphere in which flight emerges is likely to achieve much higher levels of biodiversity, and hence prove a more robust ecosystem. A robust ecosystem, in turn, is more likely to survive existential threats (such as the mass extinctions that have repeatedly punctuated the evolution of life on Earth), so that planetary biospheres of a given longevity are more likely to have flight than not.

convergent flight

Natural selection found several different solutions to the problem of flight. Some small plant seeds, and some very small animals (e.g., spiders), are light enough to be carried by the wind. Some animals fly by gliding (flying squirrels), and some animals employ wings for flight. Wings have emerged separately among insects, dinosaurs, birds, and mammals. Flying fish might also be said to have wings. Given a biosphere not disrupted by the anthropocene, flying fish might eventually transition to a fully flying way of life; this may yet happen in the distant future.



The problem of flight at the level that concerns astrobiology is potentially as diverse as the solutions to the problem of flight in a planetary biosphere. We are only just beginning to understand the complexity of the universe in which we live, and we are continually discovering capacities of nature and of life that previously would have strained our credulity. Just last week on the second episode of The Unseen Podcast, host Paul Carr noted that, with all the exchange of material between the inner planets of the solar system, we would not be surprised to find that all this life comes to the same root, while we probably would be surprised, if found like the oceans of the moons of Jupiter and Saturn, if it came from the same root. That far out in the solar system, we would expect a second genesis if there is any life at all.

If there is life in the subsurface ocean of Europa, we expect that life to be the result of a second genesis.

If there is life in the subsurface ocean of Europa, we expect that life to be the result of a second genesis.

That perspective on the likelihood the relations of life within the confines of a single solar system may change as we learn more about astrobiology. But so far this discussion is primarily a matter of naturally occurring dispersal vectors for species. We must consider astrobiology both before and after technologically-driven dispersal vectors, as well as in regard to terrestrial and to extraterrestrial dispersal vectors. Just as technological dispersal vectors have began to play a major role in our planetary biosphere, especially in relation to the distribution and introduction of invasive species, we would expect a mixture of both natural and technical dispersal vectors in astrobiology.


Spaceflight is to astrobiology as flight is to biogeography.

Given the continuity of natural history and civilization, that spaceflight is to astrobiology as flight is to biogeography follows naturally in the strict sense of “naturally.” In other words, there is a continuity from flight as the result of biology and flight as the result of technology; there is idea diffusion (or idea flow) from nature to civilization: we observe the existence proof of powered, heavier-than-air flight in nature, and we seek to reverse engineer this development and to reproduce it with technology. Thus, in a sense, technology is the pursuit of biology by other means. Thus spaceflight, as the technological equivalent of biological flight, will play a co-evolutionary role at the largest scale of galactic ecology.

flight 2

It may be worth noting in this context that the cluster of developments dependent upon human activity — intelligence, technology, language, and civilization among them — could be said to represent a solution to the problem of survival, but it is a “solution” that we find no where else in nature except in ourselves. Now, in referring to “nature” in the previous sentence I here mean “in the terrestrial biosphere.” This is significant, because a viable solution to the problem of survival (as we can see from the example of flight, or I might also use the example of vision) tends to be repeatedly emergent in nature, so that we find multiple instances of homology and convergent evolution. We do not find this in regard to the human solution to the problem of survival.

If this is a solution to the problem of survival as posed by the terrestrial environment, why did no other species exploit this strategy?

If this is a solution to the problem of survival as posed by the terrestrial environment, why did no other species exploit this strategy?

On a larger scale, a scale at which “nature” does not mean the terrestrial biosphere but rather means the whole of the universe, we may well yet see the cohort of complexities associated with human beings repeated elsewhere, though we have to scale up our perspective, just as with scaling up island biography until it coincides with astrobiology. Metrics appropriate to human activity in a terrestrial context will not be sufficient for human (or, more generally, intelligent) activity in an extraterrestrial context. Another way to understand this is that, confined to the surface of Earth, distinctions that would be significant to civilization are conflated by contingent circumstances; raised off the surface of the Earth, and given energy and resources almost without limit, previously conflated properties of civilization manifest themselves in an extraterrestrial context and eventually become obvious as spacefaring civilizations undergo rapid adaptive radiation and come to exemplify different civilizational properties.

Terrestrial civilizations from an extraterrestrial perspective appear homogenous, but this may be a function of their being subject in common to specific terrestrial selection pressures.

Terrestrial civilizations from an extraterrestrial perspective appear homogenous, but this may be a function of their being subject in common to specific terrestrial selection pressures.

But to return to the idea that technology is the pursuit of biology by other means, as I observed in my Centauri Dreams post, How We Get There Matters, existential ends are not indifferent to technological means. In the particular case of the pursuit of biological ends by technological means, this provides a context for thinking about astrobiology in an age of spacefaring civilizations.

starship classes

Many metrics have been proposed for spacefaring civilization. I mentioned some of these in my last post, Thinking about Civilization, including metrics that I have myself attempted to work out. In that post I did not mention the metric that I proposed in my Centuari Dreams post How We Get There Matters (and which I followed with SETI Under Conditions of Constraint for Spacefaring Civilization), which concerned classes of starships. This is a metric immediately relevant to the question of spaceflight understood as the development of a continuum that begins with the first wind-blown distribution of seeds and spores, and which might some day mean the greening of the galaxy.

. . . . .


. . . . .

Grand Strategy Annex

. . . . .

project astrolabe logo smaller

. . . . .

%d bloggers like this: